复合材料在航空中的应用
先进复合材料在航空航天领域的应用

先进复合材料在航空航天领域的应用1概述现阶段,我国航空航天事业得到前所未有的发展,航空航天领域对材料的要求不断提升,为了满足航空航天领域对材料性能的要求,应该研发新型、高性能的材料,先进复合材料应运而生,其具有多功能性、经济效益最大化、结构整体性以及可设计性等众多特点。
将先进复合材料应用在航空航天领域,能够有效地提高现代航空航天器的性能,减轻其质量。
和传统钢、铝材料相比,先进复合材料的应用,能够减轻航天航空器结构重量的30%左右,在提高航空航天器性能的同时,还能降低制造和发射成木。
现阶段,先进復合材料己经成为飞船、卫星、火箭、飞机等现代航空航天器的理想材料,同时,先进复合材料己经和高分子材料、无机非金属材料及金属材料并列为四大材料。
因此,文章针对先进复合材料在航空航天领域应用的研究具有重要的现实意义。
2我国先进复合材料发展现状自20世纪70年代开始,我国就开始了对复合材料的研究工作,经过40多年的研究与发展,我国先进复合材料的技术水平不断提高,并且取得了可喜的进步。
现阶段,我国先进复合材料在航空航天领域中的应用,逐渐实现了从次承力构件向主承力构件的转变,被广泛地推广和应用在军机、民机、航空发动机、新型验证机和无人机、卫星和宇航器、导弹以及火箭等领域,即先进复合材料己经进入到实践应用阶段。
但是,我国先进复合材料技术的发展和研究成果与国外发达国家的水平还具有一定的差距,现阶段我国先进复合材料的设计理念、制备方法、加工设备、生产工艺以及应用规模等都相对落后。
例如,我国军用战斗机中复合材料的用量低于国外先进战斗机的复合材料用量,仅有少数的军用战斗机超过20%,例如J-20其复合材料的用量约为27%。
我国成功研制的C919大型民用飞机,单架飞机的先进复合材料的用量超过16吨,标志着我国先进复合材料在航空航天领域的应用水平在不断提高。
3先进复合材料简介3.1先进复合材料的组成复合材料是由金属、无机非金属、有机高分子等若干种材料采用复合工艺组成的新兴材料,先进复合材料不仅能够保留原有组成材料的特点,还能够对各种组成材料的优良性能进行综合,各种材料性能的相互补充和关联,能够赋予新兴复合材料无法比拟的优越性能。
复合材料在航空航天中的应用

复合材料在航空航天中的应用咱先来说说啥是复合材料哈。
简单来讲,复合材料就是把不同的材料组合在一起,就像搭积木一样,让它们的优点凑一块,变得更厉害。
比如说,把强度高的纤维和耐磨损的树脂放在一块儿,就成了一种新的厉害材料。
在航空航天领域,复合材料那可是大显身手。
就拿飞机来说吧,以前的飞机大多是用金属做的,又重又不灵活。
但现在有了复合材料,情况就大不一样啦!我记得有一次坐飞机,正好靠窗,我就盯着那飞机的翅膀看。
旁边的一个小朋友好奇地问我:“叔叔,这飞机翅膀是用啥做的呀?”我就跟他说:“这翅膀呀,很多部分都是复合材料做的哟。
”小朋友瞪大眼睛,一脸不可思议。
复合材料让飞机变得更轻啦,这样就能飞得更远、更省油。
而且它的强度还特别高,能承受住飞行中的各种压力和冲击。
你想想,飞机在天上飞,遇到气流啥的,要是材料不结实,那可就危险啦。
航天领域也是一样。
火箭的外壳很多也是复合材料做的。
以前的火箭外壳又重又不耐高温,现在用了复合材料,耐高温的同时还减轻了重量,让火箭能带着更多的东西飞到太空去。
就像前段时间看的一个纪录片,讲的是新一代的航天飞行器的研发过程。
研发团队为了找到最合适的复合材料,那可是做了无数次的实验。
有时候为了测试一种新的复合材料在极端环境下的性能,他们得在实验室里熬上好几个通宵。
最终,他们成功了,新的复合材料让飞行器的性能有了巨大的提升。
在航空航天中,复合材料的应用可不只是在飞机和火箭的外壳上。
飞机内部的一些零部件,比如座椅的框架、行李架啥的,也都开始用复合材料了。
这不仅减轻了重量,还让飞机内部的空间更大更舒适。
还有那些卫星,小小的身体里也藏着不少复合材料的奥秘。
为了能在太空那种恶劣的环境中正常工作,卫星的结构材料就得既轻又耐用,复合材料正好满足了这些要求。
总之啊,复合材料在航空航天领域的应用那真是越来越广泛,给我们的蓝天梦想和星辰大海之旅带来了更多的可能。
说不定未来,还会有更神奇的复合材料出现,让我们的飞行变得更加不可思议!回想那次飞机上和小朋友的对话,我相信,等他长大了,一定能看到更多复合材料带来的惊喜。
复合材料在民用航空飞机中的应用

复合材料在民用航空飞机中的应用复合材料在民用航空飞机中的应用越来越广泛,主要是为了实现飞机的减重、耐腐蚀和降低成本。
复合材料结构具有轻质化、小型化和高性能化等特点,可以提高飞机的抗震动动稳定性、气动弹性、超声速巡航、过失速飞行控制、耐热性能、抗冲击损伤能力、前翼飞机先进气动布局和抗雷击防护等方面的实际应用效果。
复合材料是由两种或两种以上的原材料通过各种工艺方法组合成的新材料。
与单一均质材料相比,复合材料具有质量轻、抗震动、抗裂纹、耐热、抗冲击、防雷击等方面的优越性。
与金属材料相比,在导电性和成形工艺等方面也有显著差异。
复合材料飞机密封、静电防护和抗雷击方面的作用十分重要。
在民用航空飞机中,增强纤维主要有碳纤维、玻璃纤维、芳纶和硼纤维等。
碳纤维因其产量高、性能好、纤维类型规格多、成本低经济实惠等特点,在民用航空飞机结构上应用最为广泛。
碳纤维增强树脂基复合材料在航天飞机舱门、机械臂和压力等方面有着重要的应用。
几种飞机结构上常用纤维的性能比较如表1所示。
复合材料在民航飞机上的应用功用主要是为了实现飞机的减重、耐腐蚀和降低成本。
波音飞机777/787和空中客车A330/A340/A380上复合材料的应用,标志着航空飞机复合材料结构设计发展已经成熟。
复合材料飞机结构技术是以实现高结构效率、减轻飞机重量、改善飞机气动弹性和结构的坚固性等综合性能为目标的高新技术。
Carbon fiber rced resin-XXX and pressure vessels。
with the most critical being the thermal tiles of the space shuttle。
which can ensure its safe repeated flight。
while the rced carbon/carbon material RCC can enable the space XXX 1700℃ XXX.In n。
复合材料在航空领域的应用

复合材料在航空领域的应用
复合材料是指由两种或两种以上不同的材料组成的新材料,具有多种
材料的优点和互补性能。
在航空领域,复合材料具有重量轻、强度高、耐
腐蚀、热稳定性好等优点,因此被广泛应用于飞机的结构件、外壳、发动
机舱等部位。
本文将从复合材料在飞机结构中的应用、外壳及涂层中的应
用以及在发动机舱中的应用等方面进行论述。
首先,复合材料在飞机结构中的应用广泛,主要体现在机翼、尾翼、
襟翼等部位。
由于复合材料具有较高的强度和刚度,可以减少结构重量,
提高飞机的机动性和燃油效率。
例如,波音公司的777客机采用了大量的
复合材料结构件,使整机减重约20%,燃油效率提高了10%以上。
此外,
复合材料还具有良好的耐腐蚀性能,可以延长飞机使用寿命,减少维护成本。
其次,复合材料在飞机外壳中的应用也非常重要。
飞机外壳是保护乘
客和货物免受外界环境影响的重要部位。
复合材料具有优异的抗疲劳性能
和耐腐蚀性能,可以提供更好的保护。
此外,复合材料的制备工艺灵活,
可以制造出各种形状和尺寸的外壳,以满足不同型号和用途的飞机的需求。
例如,波音公司的787梦想飞机采用了大量的复合材料外壳,使整机的飞
行距离和航程得到了大幅度的增加。
总之,复合材料在航空领域的应用非常广泛,不仅可以减少飞机的自重,提高燃油效率,还可以提供更好的抗疲劳性能和防腐蚀性能。
未来,
随着航空科技的不断发展和复合材料技术的进一步成熟,相信复合材料在
航空领域的应用将会进一步扩大。
复合材料在航空工程中的应用

复合材料在航空工程中的应用航空工程是一个高度复杂而又充满挑战的领域,随着科技的不断进步,复合材料在航空工程中的应用越来越广泛。
复合材料由两种或多种不同材料的组合而成,具有独特的优势和特性,因此被广泛用于航空工程中的设计和制造。
首先,复合材料在航空工程中的应用主要体现在飞机机身结构上。
相比于传统的金属结构,复合材料具有更轻质和更高的强度,能够提高飞机的整体性能。
例如,碳纤维复合材料具有优异的机械性能和耐久性,可以承受高负荷和极端环境条件,从而提高了飞机的飞行效率和使用寿命。
此外,复合材料的设计灵活性也使得飞机的外形更加流线型,减少了阻力,提升了飞行速度和燃油效率。
其次,复合材料在航空工程中的应用还涉及到飞机部件的制造。
在过去,航空工程中的部件制造需要通过焊接或螺栓固定来完成。
而现在,复合材料的使用则实现了更为高效和精确的制造过程。
例如,使用复合材料可以通过模压而非传统的切割和焊接来制造机翼,提高了部件的一致性和质量。
此外,复合材料的可塑性和可切割性也使得航空工程中的部件制造过程更加灵活和可靠。
另外,复合材料在航空工程中的应用也有助于改善飞机的飞行安全性。
航空工程对于材料的要求非常高,需要能够在极端条件下保持稳定性和强度。
复合材料由于其良好的抗冲击性和抗腐蚀性,在飞机领域具有巨大潜力。
例如,用于制造飞机机身的复合材料能够有效减少振动和噪音,并增加乘客的舒适度。
同时,复合材料也能够抵抗腐蚀和疲劳,延长飞机的使用寿命,提高整体的安全性能。
在航空工程中,复合材料的应用还能够降低生产成本。
尽管复合材料的制造相对较为复杂,但由于其轻质和高强度的特点,可以减少航空器的总重量,进而减少燃料消耗和运营成本。
此外,复合材料还能够减少零部件的数量,简化装配过程,提高生产效率和降低人力成本。
因此,尽管初期投资相对较高,但长期来看,复合材料在航空工程中的应用能够实现成本的节约和效益的提升。
综上所述,复合材料在航空工程中的应用具有广泛的优势和潜力。
复合材料在航天航空的应用与发展

复合材料在航天航空的应用与发展复合材料是由不同种类的材料组合而成的一种新型材料,具有轻量化、高强度、耐腐蚀、耐高温等特点,因此在航天航空领域具有广泛的应用前景。
本文将从航天航空领域的需求出发,介绍复合材料在航天航空中的应用及其发展。
首先,在航天器结构中,采用复合材料可以显著降低其重量,提高载荷能力。
航天器在进入大气层时需要承受巨大的压力和温度变化,而复合材料具有较强的耐温性能和抗压能力,可以有效保护航天器内部结构及设备的完整性。
此外,复合材料还具有良好的耐腐蚀性能,可以减少航天器受到外界环境侵蚀的风险。
其次,在航空器的制造中,复合材料的应用也越来越广泛。
例如,飞机的机身、翼面和尾部等部位常采用复合材料制造,使飞机具有较低的自重、较高的刚度和较大的载荷承载能力。
此外,复合材料还可以减少空气动力学的阻力,提高飞机的空气动力性能,从而降低飞机的能耗和减少排放。
除了结构应用,复合材料还在航天航空中发挥着重要的功能性作用。
例如,航空中常见的雷达罩和机载天线罩等部件,通常采用复合材料制造,以保证其良好的电磁透明性能和超低雷达反射面积。
同时,复合材料还广泛应用于卫星、航空发动机、导弹等关键部件的制造,以提高其工作温度范围和可靠性。
随着航天航空领域的发展,复合材料的应用也在不断的创新和发展。
一方面,通过改进材料的制备工艺和技术,不断提高复合材料的力学性能、耐热性能和耐腐蚀性能,以满足航天航空领域的特殊需求。
另一方面,随着纳米技术的发展,可以将纳米材料引入到复合材料中,进一步改善其性能。
例如,通过添加纳米碳管可以提高复合材料的导电性能和电磁阻尼性能,使其在航天航空领域具备更广泛的应用前景。
总的来说,复合材料在航天航空中的应用与发展前景广阔。
随着科技的进步和技术的创新,复合材料将在航天航空领域发挥更加重要的作用,提高飞行器的性能和可靠性,推动航天航空领域的发展。
复合材料在航空领域的用途

复合材料在航空领域的用途航空工业是一个高度技术化和创新性的领域,复合材料作为一种轻质、高强度、耐腐蚀的新型材料,在航空领域得到了广泛的应用。
复合材料由两种或两种以上的材料组合而成,具有优异的性能,能够满足飞机在强度、刚度、耐热性、耐腐蚀性等方面的要求。
本文将探讨复合材料在航空领域的用途,以及其在飞机制造、航空器结构、航空航天技术等方面的重要作用。
一、复合材料在飞机制造中的应用1. 复合材料在飞机机身中的应用飞机机身是飞机的主要结构之一,承担着飞行载荷和保护乘客的重要任务。
传统的金属材料虽然强度高,但密度大,容易生锈,而且加工复杂。
相比之下,复合材料具有重量轻、强度高、耐腐蚀等优点,能够大幅减轻飞机自重,提高飞机的燃油效率和飞行性能。
因此,复合材料在飞机机身中得到广泛应用,使得飞机更加安全可靠。
2. 复合材料在飞机机翼中的应用飞机机翼是飞机的另一个重要部件,直接影响飞机的升力和飞行稳定性。
复合材料具有优异的强度和刚度,能够有效减轻机翼的重量,提高飞机的升力系数和飞行效率。
同时,复合材料还具有良好的抗疲劳性能和耐腐蚀性能,能够延长机翼的使用寿命,降低维护成本。
因此,复合材料在飞机机翼中的应用也越来越广泛。
二、复合材料在航空器结构中的应用1. 复合材料在航空器机身中的应用除了民用飞机,军用飞机和无人机等航空器也广泛采用复合材料作为机身结构材料。
复合材料具有优异的隐身性能,能够有效减小雷达反射截面,提高飞机的隐身性能。
同时,复合材料还具有良好的抗弹性和抗冲击性能,能够提高航空器的生存能力和作战效果。
因此,复合材料在航空器机身中的应用对于提高航空器的综合性能具有重要意义。
2. 复合材料在航空器翼面中的应用航空器的翼面是承受飞行载荷和提供升力的重要部件,对于航空器的飞行性能和稳定性起着至关重要的作用。
复合材料具有优异的强度和刚度,能够有效减轻翼面的重量,提高航空器的升力系数和飞行效率。
同时,复合材料还具有良好的耐热性能和耐腐蚀性能,能够适应复杂的飞行环境和恶劣的气候条件。
复合材料在航空航天领域的应用

复合材料在航空航天领域的应用
复合材料是指由两种或两种以上不同性质的材料组成的一种新型材料,其具有重量轻、强度高、耐腐蚀、耐磨损等特点。
在航空航天领域中,复合材料得到了广泛的应用。
首先,在飞机制造中,复合材料被广泛应用于机身结构和机翼等部件
的制造。
由于其重量轻、强度高的特点,可以减少飞机自身重量,提
高飞行效率和节省燃油。
同时,复合材料还具有较好的抗腐蚀性能和
疲劳寿命,在恶劣环境下也能保持较长时间的使用寿命。
其次,在航天器制造中,复合材料也被广泛应用于卫星外壳、推进器
和载荷舱等部件的制造。
由于太空环境中温度极低、真空气压极低且
辐射强度大,传统金属材料容易受到损坏或失效。
而复合材料具有较
好的耐温性和抗辐射能力,在太空环境中更加稳定可靠。
此外,复合材料还被应用于航空航天领域中的其他领域,如飞行器制
导系统、航空发动机部件等。
在这些领域中,复合材料能够提供更高
的工作效率和更长的使用寿命,同时也能够减少维护成本和延长设备
寿命。
总之,复合材料在航空航天领域中具有广泛的应用前景,随着科技不
断进步和材料性能的不断提高,相信复合材料将会在未来的航空航天领域中发挥更加重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《飞行器设计与工程专业技术讲座(三)》结课报告班级:学号:姓名:日期:2016年10 月09 日复合材料在航空中的应用前言现代高科技的发展离不开复合材料,复合材料[1]对现代科学技术的发展,有着十分重要的作用。
复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。
进入21 世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。
2003~2008 年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。
一.复合材料的简介复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。
复合材料的基体材料分为金属和非金属两大类。
金属基体常用的有铝、镁、铜、钛及其合金。
非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。
增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
复合材料使用的历史可以追溯到古代。
从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。
20 世纪40 年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。
50 年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。
70 年代出现了芳纶纤维和碳化硅纤维。
这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。
二.在航空中常用的复合材料60 年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×10 厘米(cm),比模量大于4×10cm。
为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。
按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。
其使用温度分别达250~350℃、350~1200℃和1200℃以上。
先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。
目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。
1.树脂基复合材料树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。
其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。
树脂基介电--防热材料有高硅氧/聚四氟乙烯材料,它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。
先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。
与传统的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于后二者。
目前用途最广的主要有碳纤维复合材料( CFRP)和芳纶纤维复合材料( AFRP) 。
CFRP 具有比强度高、耐高温、减振性好、耐疲劳性能优越等突出优点,是目前民用飞机上用量最大,也是航空航天等尖端科技领域发展较为成熟的先进复合材料[2]。
AFRP 热稳定性好,耐介质性能优良,可作为复合装甲材料,有较强的防护力。
国外近年致力于将该种材料用于制作军、民用飞机的"光谱屏蔽"材料,其关键性能指标抗冲击性能相当出色。
2.金属基复合材料金属基复合材料主要是指以Al 、Mg 等轻金属为基体的复合材料。
在航空和宇航方面主要用它来代替轻但有毒的铍。
这类材料具有优良的横向性能、低消耗和优良的可加工性,已成为在许多应用领域最具商业吸引力的材料,并且在国外已实现商品化。
而在我国仅有少量批量生产,以汽车及机械零件为主,年产量仅5000 吨左右,与国外差距较大[3]。
3.陶瓷基复合材料和碳/碳复合材料陶瓷基复合材料和碳/碳复合材料属于耐热结构复合材料。
目前美国和西欧各国侧重于对陶瓷基复合材料在航空和军事应用上的研究。
美国国防部一直把这项技术列入重点投资项目,仅1992 年美国投入陶瓷基复合材料应用研究的经费就高达3500 万美元[4];法国SEP 公司用陶瓷基复合材料制成的SCD- SEP 火箭试验发动机已通过点火试车,并使结构减重50%[5] 。
国内从20世纪90 年代初开始进行该领域的研究,目前尚未有批量生产的报道。
我国获得应用的陶瓷基耐高温防热/透波阻及防热,透波,承载多功能复合材料主要为二氧化硅基复合材料。
二氧化硅基透波复合材料是以二氧化硅材料为基体,采用高硅氧纤维织物或石英纤维织物作为增强体,经浸渍增密、热处理、防潮处理等工艺技术途径制备的复合材料,具有优良的防热、耐热、透波、承载及抗冲击等功能。
三.应用现状1.飞机机身上的应用先进复合材料用于加工主承力结构和次承力结构、其刚度和强度性能相当于或超过铝合金的复合材料。
目前被大量地应用在飞机机身结构制造上和小型无人机整体结构制造上。
飞机用复合材料经过近40 年的发展,已经从最初的非承力构件发展到应用于次承力和主承力构件, 可获得减轻质量( 20-30)% 的显著效果。
目前已进入成熟应用期,对提高飞机战术技术水平的贡献、可靠性、耐久性和维护性已无可置疑, 其设计、制造和使用经验已日趋丰富。
迄今为止, 战斗机使用的复合材料占所用材料总量的30%左右,新一代战斗机将达到40%; 直升机和小型飞机复合材料用量将达到( 70-80)%左右, 甚至出现全复合材料飞机。
[5]“科曼奇”直升机的机身有70% 是由复合材料制成的,但仍计划通过减轻机身前下部质量,以及将复合材料扩大到配件和轴承中,以使飞机再减轻15%的质量。
“阿帕奇”为了减轻质量,将采用复合材料代替金属机身。
使用复合材料,未来的联合运输旋转翼(JTR)飞机的成本将减少6% ,航程增加55% ,或者载荷增加36%,以典型的第四代战斗机F/A-22 为例复合材料占24.2% , 其中热固性复合材料占23.8%,热塑性复合材料占0.4%左右。
热固性复合材料的70% 左右为双马来酰亚胺树脂(BMI, 简称双马)基复合材料[6],生产200 多种复杂零件,其它主要为环氧树脂基复合材料,此外还有氰酸酯和热塑性树脂基复合材料等。
主要应用部位为机翼、中机身蒙皮和隔框、尾翼等。
近10 年来,国内飞机上也较多的使用了复合材料。
例如由国内3 家科研单位合作开发研制的某歼击机复合材料垂尾壁板, 比原铝合金结构轻21kg, 减质量30% 。
北京航空制造工程研究所研制并生产的QY8911/HT3 。
双马来酰亚胺单向碳纤维预浸料及其复合材料已用于飞机前机身段、垂直尾翼安定面、机翼外翼、阻力板、整流壁板等构件。
由北京航空材料研究院研制的PEEK/AS4C 热塑性树脂单向碳纤维预浸料及其复合材料,具有优异的抗断裂韧性、耐水性、抗老化性、阻燃性和抗疲劳性能,适合制造飞机主承力构件,可在120℃下长期工作,已用于飞机起落架舱护板前蒙皮。
在316℃这一极限温度下的环境中,复合材料不仅性能优于金属,而且经济效益高。
据波音公司估算,喷气客机质量每减轻1kg,飞机在整个使用期限内即可节省2200 美元。
2.航空涡轮发动机上的应用由于具有密度小、比强度高和耐高温等固有特性,复合材料在航空涡轮发动机上应用的范围越来越广且比例越来越大,使航空涡轮发动机向“非金属发动机”或“全复合材料发动机”方向发展。
(1)树脂基复合材料凭借比强度高,比模量高,耐疲劳与耐腐蚀性好,阻噪能力强的优点,树脂基复合材料在航空发动机冷端部件(风扇机匣、压气机叶片、进气机匣等)和发动机短舱、反推力装置等部件上得到广泛应用。
如JTAGG 验证机的进气机匣采用碳纤维增强的PMR15 树脂基复合材料, 比采用铝合金质量减轻26%;F136 发动机采用与F110-132 发动机相似的复合材料风扇机匣, 使质量减轻9kg 。
( 2)碳化硅纤维增强的钛基复合材料[7]凭借密度小(有的仅为镍基合金的1/2), 比刚度和比强度高,耐温性好等优点,碳化硅纤维增强的钛基复合材料在压气机叶片、整体叶环、盘、轴、机匣、传动杆等部件上已经得到了广泛应用。
( 3)陶瓷基复合材料[8]目前主要的陶瓷基复合材料产品是以SiC 或C 纤维增强的SiC 和SiN 基复合材料。
凭借密度较小(仅为高温合金的1/3-1/4), 力学性能较高,耐磨性及耐腐蚀性好等优点,陶瓷基复合材料,尤其是纤维增强陶瓷基复合材料,已经开始应用于发动机高温静止部件(如喷嘴、火焰稳定器),并正在尝试应用于燃烧室火焰筒、涡轮转子叶片、涡轮导流叶片等部件上。
3.航空隐身材料上的应用新型隐身材料对于飞机和导弹屏蔽或衰减雷达波或红外特征,提高自身生存和突防能力,具有至关重要的作用。
在雷达波隐身材料方面,除涂层外,复合材料作为结构隐身材料正日益引起人们的关注,主要为碳纤维增强热固性树脂基复合材料(如C/EP、C/PI 或C/BMI )和热塑性树脂基复合材料(如C/PEEK ,C/PPS),目前已经得到了某些应用。
四. 发展前景复合材料是未来发展我国航空航天工程最有前途的材料,在未来的研制中涡轮发动机材料必须在抗拉强度、蠕变阻力、低和高循环疲劳、耐高温腐蚀和耐冲击损伤等方面满足要求。
提高复合材料高耐热性、强度和韧性是发展复合材料的关键, 今后在耐高温材料上应重点研制结构陶瓷、陶瓷复合材料, 和微叠层复合材料。
同时要在研究低成本复合材料的制造技术上加大力度。
参考文献[1]中国复合材料网[2]科学研究动态监测中心. 战略高技术研究动态监测快报[R]. 成都: 中科院成都文献情报中心, 2005[3]孙晋良. 当前中国尖端材料发展的现状和趋势[R].上海: 中国复合材料学会, 2004.[4]O KOJIE R S, SAVRUN E, NGUYEN P, et al Relirbility Evaluation of Direct Chip Attached Silicon Carbide Pressure Transducers[A]. 3rd International Conferenceon Sensors[ C]. Vienna, Austria: 2004. 24-27.[5]张佐光. 功能复合材料[M]. 北京: 化学工业出版社, 2004. 22-30.[6]邓云, 王欣, 李建国, 等. 新型海冰调查设备--冰样压缩机[J]. 海洋技术, 2006, 25(1) : 50-53[7]张世银, 汪仁和. 多功能冻土三轴试验机的研制与应用[J]. 试验技术与试验机, 2007, 47( 1) : 67-70[8]高向群, T. H. Jacka. 人造冰和冰芯冰蠕变和方位组构发展对比[J]. 冰川冻土, 1995, 17(4) : 343-349对所学专业的认识和发展的打算飞行器设计与工程专业(代码082501)属于工学大类,航空航天类。