2018年高中物理必修2第七章曲线运动作业19机械能守恒定律新人教版

合集下载

2018-2019学年高中物理第七章机械能守恒定律8机械能守恒定律习题新人教版必修2

2018-2019学年高中物理第七章机械能守恒定律8机械能守恒定律习题新人教版必修2

58机械能守恒定律对点训练知识点一机械能守恒的判定1.(多选)在下列所述实例中,若不计空气阻力,机械能守恒的是()A.石块自由下落的过程B.电梯加速上升的过程C.抛出的铅球在空中运动的过程D.木箱沿粗糙斜面匀速下滑的过程2.(多选)下列物体中,机械能守恒的是()A.做平抛运动的物体B.被匀速吊起的集装箱C.光滑曲面上自由运动的物体4D.物体以g的加速度竖直向上做匀减速运动3.下列关于物体的机械能是否守恒的叙述正确的是()A.物体做匀速直线运动时,机械能一定守恒B.物体做匀变速直线运动时,机械能一定守恒C.外力对物体所做的功等于0时,机械能一定守恒D.只有重力对物体做功时,机械能一定守恒4.(多选)下列说法中正确的是()A.物体在合外力作用下做变速运动,动能一定发生变化B.物体的动能不变,所受合力可能为零C.做匀变速运动的物体的机械能可能守恒D.只有重力对物体做功,物体的机械能一定守恒知识点二机械能守恒定律的基本应用图L7-8-15.(多选)如图L7-8-1所示,细绳的一端固定于O点,另一端系一小球,在O点的正下方钉一个钉子C.小球从一定高度处释放,不考虑细绳的质量和形变,不计一切阻力,细绳摆到竖直位置时,被钉子挡住,比较细绳被钉子挡住前、后瞬间() A.小球的动能变小B.小球的动能不变C.小球的重力势能变小D.小球的机械能不变6.(多选)如图L7-8-2所示,半径分别为r和R的两个光滑半圆形槽的圆心在同一水平面上,质量相等的两物体分别自两个半圆形槽左边缘的最高点无初速度地释放,在下滑过程中,两物体()图L7-8-2A.机械能均逐渐减小B.经最低点时动能相等C.均能到达半圆形槽右边缘最高点D.机械能总是相等的知识点三曲线运动中的机械能守恒问题图L7-8-37.一根长为l且不可伸长的轻质细绳一端固定于O点,另一端拴一个质量为m的小球.现将小球拉至细绳沿水平方向绷紧的状态,由静止释放小球,如图L7-8-3所示.若不考虑空气阻力的作用,重力加速度为g,则小球摆到最低点A时的速度大小为________,此时绳对小球的拉力大小为________.被抛8.如图L7-8-4所示,在水平台面上的A点有一个质量为m的小球以初速度v出,不计空气阻力,重力加速度为g,求它到达台面下方h处的B点时的速度大小.图L7-8-4综合拓展9.图L7-8-5是某轻轨车站的设计方案,与站台连接的轨道有一个小坡度,电车进站要上坡,出站要下坡.已知坡高为2m,电车到a点时的速度为25.2km/h,此后便切断电动机的电源,如果不考虑电车所受的摩擦力,则电车能否冲上站台?如果电车不能冲上站台,请说明理由;如果电车能冲上站台,求它到达b点时的速度大小.(g取10m/s2)图L7-8-510.以20m/s的初速度将一物体从地面竖直上抛,若忽略空气阻力,g取10m/s2,试求:(1)物体上升的最大高度;(2)以地面为参考平面时,物体在上升过程中重力势能和动能相等时离地面的高度.11.如图L7-8-6所示,光滑的倾斜轨道与半径为R的光滑圆弧轨道相连接,圆弧轨道的最低点B和最高点C与圆心O在同一竖直线上,质量为m的小球在倾斜轨道上A点由静止释放,重力加速度为g.要使小球恰能通过圆弧轨道的最高点,小球释放点离圆弧轨道的最低点为多高?通过轨道最低点时球对轨道的压力为多大?图L7-8-612.如图L7-8-7所示,竖直放置的半径R=80cm的半圆形光滑轨道与水平轨道相连g5-mg=m-g,有F=mg,可知物体受到竖直向上的大小为mg的外力作用,该力对物体做2C接,连接点为P.质量为m=50g的小球以一定的初速度沿水平轨道向左运动,并沿圆轨道的内壁运动到最高点M,如果小球经过N点时速度vN=8m/s,经过M点时对轨道的压力为0.5N.取10m/s2.求:(1)小球经过半圆轨道的P点时对轨道的压力大小.(2)小球从N点运动到M点的过程中克服摩擦阻力做的功.图L7-8-71.AC[解析]石块自由下落的过程和抛出的铅球在空中运动的过程,只有重力做功,机械能守恒;电梯加速上升的过程中除重力做功外,钢索的拉力也对电梯做正功,所以机械能不守恒;木箱沿粗糙斜面匀速下滑的过程,除重力做功外,要克服摩擦力做功,所以机械能不守恒.选项A、C正确.2.AC[解析]物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒,所以A、C项正确;被匀速吊起的集装箱,绳的拉力4对它做正功,机械能不守恒;物体以g的加速度向上做匀减速运动时,由牛顿第二定律得F 411555了正功,机械能不守恒.3.D[解析]物体做匀速直线运动时,动能不变,势能仍可能变化,选项A错误;物体做匀变速直线运动时,动能不断改变,机械能不一定守恒,选项B错误;外力对物体所做的功等于0时,动能不变,势能仍可能变化,选项C错误;机械能守恒的条件是只有重力或系统内弹力对物体做功,选项D正确.4.BCD[解析]若物体在合外力作用下做匀速圆周运动,匀速圆周运动为变速运动,动能不变,A错误;在光滑水平面上匀速运动的物体所受的合力为0,机械能守恒,B正确;平抛运动为匀变速运动,做平抛运动的物体机械能守恒,正确;根据机械能守恒条件可知D正确.5.BD[解析]小球到达最低点时,速度方向沿水平方向,在钉子挡住细绳瞬间,合外力对小球做功为零,则小球的动能不变,故A项错误,B项正确;在钉子挡住细绳瞬间,小球的质量和高度不变,则小球的重力势能不变,故C项错误;在钉子挡住细绳瞬间,小球的动能与重力势能都不变,则小球的机械能不变,故D项正确.6.CD[解析]两物体质量相等,开始时高度相同,释放时两物体的机械能相同,释放后两物体都是只有重力做功,机械能都守恒,到最低点时下降高度不同,重力势能不同,动能不同,A、B错误,D正确;根据机械能守恒定律可知,两物体均能回到等高的半圆形槽右边缘最高点,C正确.7.2gl3mg[解析]小球由最高点落下,只有重力做功,绳子的拉力不做功,故机械能守恒,则mgl1=mv2,故小球摆到最低点时的速度大小为v=2gl,此时根据牛顿第二定律可得F-mg=l0 B0B112g 2×10 2g 2 v 20 4g 11. R 6mg1 100v 2m ,将速度的大小代入可得 F =3mg.8. v 2+2gh[解析] 小球被抛出后运动过程中只有重力做功,机械能守恒,选地面为参考平面,设 A 点距地面高为 H ,则1 1 mgH +2mv 2=mg(H -h)+2mv2解得 v B = v 2+2gh.另外,若选台面为参考平面,则1 1 2mv 2=-mgh +2mv 2同样可解得 v B = v 2+2gh.9.能 3m/s[解析] 电车电源切断后,只有重力做功,故机械能守恒.取 a 点所在平面为参考平面, 电车在 a 点的机械能为1 E 1=E k1=2mv2其中 v 1=25.2km/h =7m/s若将这些动能全部转化为势能,由机械能守恒定律得12 mv 2=mgh′v 2 72 解得 h′= 1= m =2.45m>h =2m ,所以电车能冲上站台设电车到 b 点时的速度为 v 2,由机械能守恒定律得 1 12mv 2=mgh +2mv 2解得 v 2= v 2-2gh = 72-2×10×2m/s =3m/s.10.(1)20m (2)10m[解析] (1)设物体上升的最大高度为 H ,对物体整个上升过程应用机械能守恒定律,有1 mgH =2mv2v 2 解得 H = 0=20m.(2)设物体重力势能和动能相等的位置距地面的高度为 h ,此时物体的速度为 v ,则有1mgh = mv 2对物体由抛出到运动至该位置的过程应用机械能守恒定律有1 1 mgh +2mv 2=2mv2联立解得 h = =10m.52[解析] 小球在运动过程中受到重力和轨道支持力的作用,轨道支持力对小球不做功,R 2 C C BP M M N只有重力做功,小球机械能守恒,取轨道最低点所在平面为参考平面.因小球恰能通过圆弧轨道的最高点,说明此时轨道对小球的作用力为零,只有重力提供v 2 向心力,根据牛顿第二定律有 mg =m C得 v C = gR1 在圆弧轨道的最高点,小球的机械能为 E C =2mv 2+2mgR在释放点,小球的机械能为 E A =mgh 根据机械能守恒定律有 E C =E A1即 mgh =2mv 2+2mgR5 联立解得 h = R1同理,小球在圆弧轨道的最低点时的机械能为 E B =2mv 2根据机械能守恒定律有 E B =E C得 v B = 5gR小球在圆弧轨道的最低点受到轨道的支持力和重力,根据牛顿第二定律有v 2F N -mg =mR B得 F N =6mg根据牛顿第三定律,小球对轨道的压力为 F′N =F N =6mg. 12.(1)3.5N (2)0.4J[解析] (1)小球在最高点,根据牛顿第三定律,轨道对小球的弹力 F N1=0.5N ,由向心 mv 2力公式有 F N1+mg =R M 解得 v M =4m/s1 1由 P 到 M ,由机械能守恒定律有2mv 2=2mv 2+mg·2R解得 v P =4 3m/smv 2 在 P 点,由向心力公式有 F N2-mg = R P 解得 F N2=3.5N根据牛顿第三定律可知,在 P 点小球对轨道的压力大小为 3.5N.1 1 (2)由 N 到 M ,由动能定理有-mg·2R-W f =2mv 2-2mv2解得 W f =0.4J.。

人教版高中物理必修2第七章 机械能守恒定律1. 追寻守恒量――能量习题(1)

人教版高中物理必修2第七章 机械能守恒定律1. 追寻守恒量――能量习题(1)

2018-2019年高中物理人教版《必修2》《第七章机械能守恒定律》《第一节追寻守恒量》课后练习试卷【3】含答案考点及解析班级:___________ 姓名:___________ 分数:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.长l的轻杆一端固定着一个小球A,另一端可绕光滑水平轴O在竖直面内做圆周运动,如图所示,下面叙述符合实际的是()A.小球在最高点的速度至少为B.小球在最高点的速度大于时,受到杆的拉力作用C.当球在直径ab下方时,一定受到杆的拉力D.当球在直径ab上方时,一定受到杆的支持力【答案】BC【解析】试题分析:小球在最高点的速度至少为0,A错误;球在最高点的速度大于时,向心力大于mg,一定受到杆的拉力作用,B正确;当球在直径ab下方时,重力和轻杆的力提供向心力,一定受到杆的拉力,C正确;当球在直径ab上方时,可能受到杆的支持力或拉力,D错误。

考点:本题考查了竖直面内的圆周运动问题。

2.为了探测月球,嫦娥三号探测器先在以月球中心为圆心,高度为h的圆轨道上运动,随后飞船多次变轨,最后围绕月球做近月表面的圆周飞行,周期为To引力常量G已知。

则A.可以确定月球的质量B.可以确定月球的半径C.可以确定月球的平均密度D.可以确定嫦娥三号探测器做近月表面圆周飞行时,其质量在增大【解析】试题分析:月球的质量M=,由于不知道月球的半径r,也就不知道嫦娥三号探测器围绕月球做近月表面的圆周飞行的半径,也就没有办法确定月球的质量的,所以A、B错误;密度ρ=,所以可以确定月球的平均密度,故C正确;可以确定嫦娥三号探测器做近月表面圆周飞行时,其质量是不变,故D错误。

考点:人造卫星;万有引力定律及其应用3.如图所示,可视为质点的、质量为m的小球,在半径为R的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是()A.小球能够通过最高点时的最小速度为0B.小球能够通过最高点时的最小速度为C.如果小球在最高点时的速度大小为2,则此时小球对管道的外壁有作用力D.如果小球在最低点时的速度大小为,则小球通过最高点时与管道间无相互作用力【答案】ACD【解析】当小球运动到最高点速度大于零就可以通过,所以A对;B错;当通过最高点只由重力提供向心力时,小球对管道内外壁都没有作用力,由最低点到最高点只有重力做功,所以机械能守恒,设最低点为零势面,D 对;所以当小球到达最高点的速度大于时,外壁对小球有弹力作用,C对;4.物体受到几个恒力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做( )A.静止或匀速直线运动B.匀变速直线运动C.曲线运动D.匀变速曲线运动【答案】BCD【解析】若物体在几个恒力的作用处于平衡状态时,是静止的,故再施加一个恒力后,物体受力恒定,做匀加速直线运动,若物体在几个恒力的作用处于平衡状态时,是运动的,再施加一个恒力后,如果这个恒力与速度方向共线,则物体做匀变速直线运动,若不共线,物体做曲线运动,因为受力恒定,为匀变速曲线运动,BCD正确。

人教版高中物理必修二第七章-机械能守恒定律-知识点归纳

人教版高中物理必修二第七章-机械能守恒定律-知识点归纳

第七章《机械能守恒定律》知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。

功是能量转化的量度。

2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。

某力对物体做负功,也可说成“物体克服某力做功”。

当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5 功是一个过程所对应的量,因此功是过程量。

6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。

7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。

即W 总=W1+W2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W=Flcos α求出合外力的功。

方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。

1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。

2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。

5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P=Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。

(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。

人教版高中物理必修2第七章机械能守恒定律测试

人教版高中物理必修2第七章机械能守恒定律测试

一、单选题1.如图所示,物体在恒力F作用下沿光滑水平面前进L,力F的方向与物体运动方向夹角为α,物体的质量为m,重力加速度为g.在此过程中,下列关于力做功的说法中正确的是()A.力F做功为FL B.力F做功为FL cosαC.重力做功为mgL D.合力对物体做功为02.如图所示,质量相同的两物体处于同一高度,A沿固定在地面上的光滑斜面下滑,B自由下落,最后到达同一水平面,则( )A.重力对两物体做的功相同B.重力的平均功率相同C.到达底端时重力的瞬时功率P A<P B D.到达底端时两物体的动能相同,速度相同3.如图所示,半径为R的1/8光滑圆弧轨道左端有一质量为m的小球,在大小恒为F、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v,已知重力加速度为g,则( )A.此过程拉力做功为22FR B.此过程拉力做功为4FRC.小球运动到轨道的末端时,拉力的功率为12 FvD.小球运动到轨道的末端时,拉力的功率为2Fv4.如图所示,甲、乙两球质量相同,悬线一长一短,如将两球从同一水平面无初速释放,不计阻力,则小球通过最低点时()A.甲球受到的拉力与乙球受到的拉力大小相等B.甲球重力做功的瞬时功率最大C.甲球的动能和乙球的动能相等D .相对同一参考平面,甲球的机械能大5.如图所示,质量为的物体以速度0υ离开桌面后经过A 点时,所具有的机械能是(以桌面为零势能面,不计空气阻力) ( )A .2012mvB .2012mv mgh - C .201()2mv mg H h ++ D .2012mv mgh + 6.质量为m 的物体,从静止出发以g /2的加速度竖直下降h ,下列几种说法正确的是( ) A .机械能增加了12mgh B .动能减少了12mgh C .机械能减少了12mgh D .重力势能增加了mgh7.放在粗糙水平面上的物体受到水平拉力的作用,在0~6 s 内其速度与时间的图象和该拉力的功率与时间的图象分别如图甲、乙所示.下列说法错误..的是( ) A .0~6 s 内物体的位移大小为30 mB .0~6 s 内拉力做的功为70 JC .滑动摩擦力的大小为5 ND .物体的质量为109kg 8.如图,一物体从光滑斜面AB 底端A 点以初速度v 0上滑,沿斜面上升的最大高度为h ,下列说法中正确的是(设下列情境中物体从A 点上滑的初速度仍为v 0)( )A .若把斜面CB 部分截去,物体冲过C 点后上升的最大高度仍为hB .若把斜面AB 变成曲面AEB ,物体沿此曲面上升仍能到达B 点C .若把斜面弯成圆弧形D 物体仍沿圆弧升高hD .以上说法都不对二、多选题9.如图所示,长为L 的轻杆一端固定一个质量为m 的小球,另一端可绕固定轴O 转动,已知小球通过最高点P 时速度为2gL ,不计一切阻力,则( ) A .在最高点P 轻杆受到小球对它的向下的弹力B .小球在最低点Q 受到轻杆对它的弹力大小为92mg C .小球在最低点Q 和最高点P ,轻杆中的弹力大小之差为5mgD .小球要到达最高点P 点,最低点Q 点最小的速度为5gL10.如图所示,光滑斜面固定在水平地面上,轻质弹簧一端固定在斜面顶端,另一端与物块相连,弹簧处于自然长度时物块位于O 点。

人教版高一物理必修二第7章 机械能守恒定律(期末)训练(带解析)

人教版高一物理必修二第7章 机械能守恒定律(期末)训练(带解析)

2019—2020物理人教必修二第7章机械能守恒定律(期末)训练含答案必修二第七章机械能守恒定律一、选择题1、如图所示,在同一水平方向恒力F的作用下,一物体分别沿着粗糙水平面和光滑水平面从静止开始运动相同位移x,物体沿着粗糙水平地面运动位移x过程中,力F做的功和做功的平均功率分别为W1、P1.物体沿着光滑水平地面运动位移x过程中,力F做的功和做功的平均功率分别为W2、P2.则()A.W1>W2、P1>P2B.W1=W2、P1<P2C.W1<W2、P1<P2D.W1=W2、P1>P22、如图所示,一小孩和一大人都以水平的力匀速推动相同的木箱在相同的路面走同样的位移(推木箱的速度大小如图中所注),比较此过程中两人分别对木箱做功的多少( )A.大人做的功多B.小孩做的功多C.大人和小孩做的功一样多D.条件不足,无法判断3、下列实例中,动能转化为势能的是()A. 竖直上抛的正在上升的小球B. 上紧发条的玩具汽车汽车正在行驶C. 从高处下落的石块D. 从斜槽上滚下的小球4、如图所示,一根绳的两端分别固定在两座猴山的A,B处,A,B两点水平距离为16 m,竖直距离为2 m,A,B间绳长为20 m。

质量为10 kg的猴子抓住套在绳上的滑环从A处滑到B处。

以A点所在水平面为参考平面,猴子在滑行过程中重力势能最小值约为(绳处于拉直状态)( )A.-1.2×103 JB.-7.5×102 JC.-6.0×102 JD.-2.0×102 J5、如图所示,滑雪者由静止开始沿斜坡从A点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数均为μ,滑雪者(包括滑雪板)的质量为m,A、B两点间的水平距离为L.在滑雪者经过AB段的过程中,摩擦力所做功的大小为( )A.大于μmgL B.小于μmgLC.等于μmgL D.以上三种情况都有可能6、一根质量为M的直木棒,悬挂在O点,有一只质量为m的猴子抓着木棒,如图甲所示。

新人教版高中物理必修2课件第七章机械能守恒定律1追寻守恒量--能量7.2功

新人教版高中物理必修2课件第七章机械能守恒定律1追寻守恒量--能量7.2功

【补偿训练】 1.用50 N的力拉一个质量为10 kg 的物体在水平地面 上前进,如图所示若物体前进了10 m,如果物体与水平 面间动摩擦因数μ=0.1,物体克服阻力做了多少功 (sin37°=0.6,cos37°=0.8,g取10 m/s2) ( )
A.
(1)小孩与雪橇整体的合力所做的功。 (2)对小孩与雪橇整体的拉力所做的功与摩擦力所做的 功。
【思维·建模】
【解析】(1)2 s内雪橇的位移为:
l= 1 at2= 1×0.5×22 m=1 m,
2
2
小孩与雪橇整体所受合力为:F合=ma=40×0.5 N=20 N
合外力对雪橇做的功为:W合=F合l=20×1 J=20 J
(2)拉力F做功为:WF=Flcos α=60×1×0.8 J=48 J 摩擦力做的功为: W=Ff W合-WF=20 J-48 J=-28 J。 答案:(1)20 J (2)48 J -28 J
任务2 计算变力做功的四种方法
方法 转换法
以例说法
用力F把小球从A处缓慢拉到B
处,F做功为WF,则有: WF-mgl(1-cos θ)=0, 得WF=mgl(1-cos θ)
功,C错误;轮胎受到地面的支持力竖直向上,而轮胎的 位移水平向右,则轮胎在竖直方向上没有发生位移,支 持力不做功,D错误。
【规律方法】判断力做正、负功的方法 (1)根据力F和物体位移l方向的夹角α判断——常用于 恒力做功的情形。 (2)根据力与物体瞬时速度方向的夹角θ判断——常用 于曲线运动的情形。
1.动能:物体由于_运__动__而具有的能量。 2.势能:相互作用的物体凭借其_位__置__而具有的能量。 3.能的转化:在伽利略的理想斜面实验中,小球的_势__ _能__和__动__能__可以相互转化。

新教材 人教版高中物理必修第二册全册各章知识点汇总及配套习题

新教材 人教版高中物理必修第二册全册各章知识点汇总及配套习题

高中物理必修第二册全册各章知识点汇总及配套习题第五章抛体运动.................................................................................................................... - 1 - 第六章圆周运动.................................................................................................................... - 6 - 第七章万有引力与宇宙航行.............................................................................................. - 11 - 第八章机械能守恒定律...................................................................................................... - 16 -第五章抛体运动知识体系曲线运动及其研究方法1.曲线运动的特点(1)做曲线运动的物体,在某点的瞬时速度的方向,就是曲线在该点的切线方向,物体在曲线运动中的速度方向时刻在改变,所以曲线运动一定是变速运动。

(2)在曲线运动中,由于速度在时刻变化,所以物体的运动状态时刻改变,故做曲线运动的物体所受合外力一定不为零。

2.物体做曲线运动的条件(1)从动力学角度来理解:物体所受合外力的方向与物体的速度方向不在同一条直线上,具体有如图所示的几种形式。

(2)从运动学角度来理解:物体的加速度方向与速度方向不在同一条直线上。

3.曲线运动的研究方法——运动的合成与分解利用运动的合成与分解研究曲线运动的思维流程:(欲知)曲线运动规律――→等效分解(只需研究)两直线运动规律――→等效合成(得知)曲线运动规律。

人教版高中物理必修二课后练习答案详解

人教版高中物理必修二课后练习答案详解

人教版高中物理Ⅱ课后习题答案第五章:曲线运动第1节 曲线运动1. 答:如图6-12所示,在A 、C 位置头部的速度与入水时速度v 方向相同;在B 、D 位置头部的速度与入水时速度v 方向相反。

图6-122. 答:汽车行驶半周速度方向改变180°。

汽车每行驶10s ,速度方向改变30°,速度矢量示意图如图6-13所示。

图6-133. 答:如图6-14所示,AB 段是曲线运动、BC 段是直线运动、CD 段是曲线运动。

图6-14第2节 质点在平面内的运动1. 解:炮弹在水平方向的分速度是v x =800×cos60°=400m/s;炮弹在竖直方向的分速度是v y =800×sin60°=692m/s 。

如图6-15。

图6-152. 解:根据题意,无风时跳伞员着地的速度为v 2,风的作用使他获得向东的速度v 1,落地速度v 为v 2、v 1的合速度(图略),即:v xv v1vB6.4/v m s ===,速度与竖直方向的夹角为θ,tanθ=0.8,θ=38.7°3. 答:应该偏西一些。

如图6-16所示,因为炮弹有与船相同的由西向东的速度v 1,击中目标的速度v 是v 1与炮弹射出速度v 2的合速度,所以炮弹射出速度v 2应该偏西一些。

图6-164. 答:如图6-17所示。

图6-17第3节 抛体运动的规律1. 解:(1)摩托车能越过壕沟。

摩托车做平抛运动,在竖直方向位移为y =1.5m =212gt经历时间0.55t s ===在水平方向位移x =v t =40×0.55m =22m >20m 所以摩托车能越过壕沟。

一般情况下,摩托车在空中飞行时,总是前轮高于后轮,在着地时,后轮先着地。

(2)摩托车落地时在竖直方向的速度为v y =gt =9.8×0.55m/s =5.39m/s 摩托车落地时在水平方向的速度为v x =v =40m/s 摩托车落地时的速度:/40.36/v s m s == 摩托车落地时的速度与竖直方向的夹角为θ, tanθ=vx /v y =405.39=7.422. 解:该车已经超速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(十九)一、选择题1.(多选)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( ) A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关 答案 ABC解析 运动员在下落过程中,重力做正功,重力势能减小,故A 项正确.蹦极绳张紧后的下落过程中,弹力向上,位移向下,弹力做负功,弹性势能增加,故B 项正确.选取运动员、地球和蹦极绳为一系统,在蹦极过程中,只有重力和系统内弹力做功,这个系统的机械能守恒,故C 项正确.重力势能改变的表达式为ΔE p =mg Δh ,由于Δh 是绝对的,与选取的重力势能零点无关,故D 项错.2.如图所示,在水平台面上的A 点,一个质量为m 的物体以初速度v 0被抛出,不计空气阻力,则它到达B 点时速度的大小是( )A.2ghB.v 02+2gh C.v 02-2gh D .v 02hg答案 B解析 若选桌面为参考面,则12mv 02=-mgh +12mv B 2,解得v B =v 02+2gh.3.如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN是通过椭圆中心O 点的水平线.已知一小球从M 点出发,初速率为v 0,沿管道MPN 运动,到N 点的速率为v 1,所需时间为t 1;若该小球仍由M 点以初速率v 0出发,而沿管道MQN 运动,到N 点的速率为v 2,所需时间为t 2,则( ) A .v 1=v 2,t 1>t 2B .v 1<v 2,t 1>t 2C .v 1=v 2,t 1<t 2D .v 1<v 2,t 1<t 2答案 A解析 由于椭圆形管道内壁光滑,小球不受摩擦力作用,因此小球从M 到N 过程机械能守恒,由于M 、N 在同一高度,根据机械能守恒定律可知,小球在M 、N 点的速率相等,B 、D 项错误;小球沿MPN 运动的过程中,速率先减小后增大,而沿MQN 运动的过程中,速率先增大后减小,两个过程运动的路程相等,到N 点速率都为v 0,根据速率随时间变化关系图像可知,由于两图像与时间轴所围面积相等,因此t 1>t 2,A 项正确,C 项错误.4.以相同大小的初速度v 0将物体从同一水平面分别竖直上抛,斜上抛,沿光滑斜面(足够长)上滑,如图所示,设三种情况物体能达到的最大高度分别为h 1、h 2和h 3,不计空气阻力,斜上抛物体在最高点的速度方向水平,则( )A .h 1=h 2>h 3B .h 1=h 2<h 3C .h 1=h 3<h 2D .h 1=h 3>h 2答案 D解析 在三种情况下,都只有重力对物体做功,因此物体的机械能守恒,选取抛出时的水平面为重力势能零势能参考平面,由机械能守恒定律,有 竖直上抛:最高点速度为零,动能为零,12mv 02=mgh 1,得h 1=v 022g .同理:沿斜面向上,有h 3=v 022g.斜上抛:设在最高点速度为v ,12mv 02=mgh 2+12mv 2,得h 2=v 02-v22g<h 1.故h 1=h 3>h 2.5.(多选)如图所示是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底部B 处安装一个压力传感器,其示数N 表示该处所受压力的大小.某滑块从斜面上不同高度h 处由静止下滑,通过B 时,下列表述正确的有( ) A .N 小于滑块重力 B .N 大于滑块重力 C .N 越大表明h 越大 D .N 越大表明h 越小答案 BC解析 设滑块到达B 点时的速度为v ,根据牛顿第二定律有N ′-mg =m v2R ,根据机械能守恒定律,有mgh =12mv 2,两式联立解得N ′=mg(1+2h R ),故N =N ′=mg(1+2hR ),所以N 大于滑块重力,且N 越大表明h 越大,B 、C 两项正确.6.(多选)竖直放置的轻弹簧下连接一个小球,用手托起小球,使弹簧处于压缩状态,如图所示.则迅速放手后(不计空气阻力)( ) A .放手瞬间小球的加速度等于重力加速度 B .小球与弹簧与地球组成的系统机械能守恒 C .小球的机械能守恒D .小球向下运动过程中,小球动能与弹簧弹性势能之和不断增大 答案 BD解析 放手瞬间小球加速度大于重力加速度,A 项错误;整个系统(包括地球)的机械能守恒,B 项正确,C 项错误;向下运动过程中,由于重力势能减小,所以小球的动能与弹簧弹性势能之和增大.7.(多选)如图所示,斜面置于光滑水平地面,其光滑斜面上有一物体由静止沿斜面下滑,在物体下滑过程中,下列说法正确的是( ) A .物体的重力势能减少,动能增加 B .物体的机械能不变C .斜面对物体的作用力垂直于接触面,不对物体做功D .物体和斜面组成的系统机械能守恒 答案 AD解析 物体由静止开始下滑的过程其重力势能减少,动能增加,A 项正确.物体沿斜面下滑时,既沿斜面向下运动,又随斜面向右运动,弹力方向垂直于接触面,但与速度方向之间的夹角大于90°,所以斜面对物体做负功,物体的机械能减少,B 、C 项错误.对物体与斜面组成的系统,只有物体的重力和物体与斜面间的弹力做功,机械能守恒,D 项正确. 8.(多选)一个物体以一定的初速度竖直上抛,不计空气阻力,那么在下图中,表示物体的动能E k 随高度h 变化的图像A ,物体的重力势能E p 随速度v 变化的图像B ,表示物体的机械能E 随高度h 变化的图像C ,表示物体的动能E k 随速度v 的变化图像D ,其中可能正确的是( )答案 ACD解析 机械能守恒,E 1=12mv 02,E 2=mgh +E k ,E 1=E 2,E k =E 1-mgh ,E 1为定值,故E k 与h 是一次函数关系,A 项正确;E 1=E p +12mv 2,E p =E 1-12mv 2,故E p 与v 是二次函数关系,B 项错误;机械能守恒,机械能不变,物体在任何高度E 不变,故C 项正确;E k =12mv 2,E k 与v 是二次函数关系,故D 项正确.9.(多选)如图所示,小球沿水平面通过O 点进入半径为R 的半圆弧轨道后恰能通过最高点P ,然后落回水平面,不计一切阻力.下列说法正确的是( )A .小球落地点离O 点的水平距离为2RB .小球落地时的动能为5mgR2C .小球运动到半圆弧最高点P 时向心力恰好为零D .若将半圆弧轨道上部的14圆弧截去,其他条件不变,则小球能达到的最大高度比P 点高0.5R 答案 ABD解析 由题意知mg =m v 2R ,故小球经P 点时的速度大小v =gR ,C 项错.由2R =12gt 2、x =vt 得小球落地点离O 点的水平距离为2R ,A 项对.根据动能定理2mgR =E k -12mv 2得小球落地时的动能E k =2mgR +12mv 2=52mgR ,B 项对.由mgh =52mgR 得小球能达到的最大高度h =2.5R ,比P 点高0.5R ,D 项对.10.如图所示,一不可伸长的柔软轻绳跨过光滑的定滑轮,绳两端各系一小球a 和b.a 球质量为m ,静止于地面;b 球质量为3m ,用手托住,高度为h ,此时轻绳刚好拉紧.从静止开始释放b ,则当b 刚落地时a 的速度为( )A.ghB.2ghC.3ghD.6gh答案 A解析 a 、b 两球组成的系统机械能守恒,设b 刚落地时的速度大小为v ,则整个过程动能增加量ΔE k 增=12(m +3m)v 2=2mv 2,重力势能的减少量ΔE p 减=3mgh -mgh =2mgh ,由机械能守恒得ΔE k 增=ΔE p 减,所以2mv 2=2mgh ,v =gh ,A 项正确. 二、非选择题11.如图,在竖直平面内有一固定光滑轨道,其中AB 是长为R 的水平直轨道,BCD 是圆心为O 、半径为R 的3/4圆弧轨道,两轨道相切于B 点.在外力作用下,一小球从A 点由静止开始做匀加速直线运动,到达B 点时撤除外力.已知小球刚好能沿圆轨道经过最高点C ,重力加速度为g.求:(1)小球在AB 段运动的加速度的大小; (2)小球从D 点运动到A 点所用的时间. 答案 (1)52g (2)(5-3)R g解析 (1)设小球在C 点的速度大小为v C ,根据牛顿第二定律有,mg =m v C2R小球从B 点运动到C 点,根据机械能守恒定律,12mv B 2=12mv C 2+2mgR ,在AB 段设加速度的大小为a ,由运动学公式,有 v B 2=2aR ,联立解得AB 段运动的加速度的大小a =5g/2.(2)设小球在D 处的速度大小为v D ,下落到A 点时的速度大小为v ,由机械能守恒定律有: 12mv B 2=12mv D 2+mgR. 12mv B 2=12mv 2,设小球从D 点运动到A 点所用的时间为t ,由运动学公式得,gt =v -v D 联立解得:t =(5-3)Rg.12.如图所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过桌边的定滑轮与质量为M 的砝码相连.已知M =2m ,让绳拉直后使砝码从静止开始下降h(小于桌高)的距离,木块仍没离开桌面,则此时砝码的速度为多少?此过程中拉力对砝码做了多少功? 答案233gh -23mgh 解析 在砝码下降h 的过程中,系统增加的动能为 ΔE k 增=12(M +m)v 2系统减少的重力势能为ΔE p 减=Mgh 由机械能守恒定律,得12(M +m)v 2=Mgh解得砝码的速度为v =2Mgh M +m =233gh 对M 由动能定理,得Mgh +W =12Mv 2解得拉力对砝码做功W =-13Mgh =-23mgh13.2014年冬季奥林匹克运动会跳台滑雪比赛在俄罗斯举行.图为一跳台的示意图.假设运动员从雪道的最高台A 由静止开始滑下,不借助其他器械,沿光滑雪道到达跳台的B 点时速度多大?当他落到离B 点竖直高度为10 m 的雪地C 点时,速度又是多大?(设这一过程中运动员没有做其他动作,忽略摩擦和空气阻力,取g =10 m/s 2)答案 8.9 m/s 16.7 m/s解析 运动员在滑雪过程中只有重力做功,故运动员在滑雪过程中机械能守恒.取B 点所在水平面为参考平面.由题意知A 点到B 点的高度差h 1=4 m ,B 点到C 点的高度差h 2=10 m ,从A 点到B 点的过程由机械能守恒定律得12mv B 2=mgh 1,故v B =2gh 1=4 5 m/s ≈8.9 m/s ; 从B 点到C 点的过程由机械能守恒定律得 12mv B 2=-mgh 2+12mv C 2, 故v C =2g (h 1+h 2)=270 m/s ≈16.7 m/s.14.如图是为了检验某种防护罩承受冲击能力的装置,M 为半径R=1.0 m ,固定于竖直平面内的14光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面内的截面为半径r =0.69 m 的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M 的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量m =0.01 kg 的小钢珠,假设某次发射的钢珠沿轨道恰好能过M 的上端点,水平飞出后落到N 的某一点上.取g =10 m/s 2,求:(1)发射该钢珠前,弹簧的弹性势能E p 多大? (2)钢珠落到圆弧N 上时的速度大小v N 是多少? 答案 (1)0.15 J (2)4 m/s解析 (1)设钢珠在M 轨道最高点的速度为v , mg =m v 2R①从发射前到最高点,由机械能守恒定律,得 E p =mgR +12mv2②联立①②,解出E p =0.15 J(2)钢珠从最高点飞出后,做平抛运动x =vt③ y =12gt 2④ 由几何关系x 2+y 2=r2⑤从飞出M 到打在N 的圆弧面上,由机械能守恒定律,得 mgy +12mv 2=12mv N2⑥联立①③④⑤⑥式,解出v N =4 m/s15.(2017·徐州学业考试)如图所示,竖直放置的光滑14圆弧轨道半径为L ,底端切线水平且轨道底端P 距水平地面的高度也为L ,Q 为圆弧轨道上的一点,它与圆心O 的连线OQ 与竖直方向的夹角为60°.现将一质量为m ,可视为质点的小球从Q 点由静止释放,g =10 m/s 2,不计空气阻力.求:(1)小球在P 点时的速度大小;(2)改变小球的释放位置,使小球落地点B 到轨道底端P 的正下方A 的距离为2L ,小球从释放到落地的运动过程中,重力做的功. 答案 (1)小球在P 点时的速度大小是gL ; (2)重力做的功为2mgL.解析 (1)小球滑到圆弧轨道底端的过程机械能守恒,令P 点重力势能为0,则有: mgL(1-cos60°)=12mv 2解得v =gL(2)小球离开P 点后做平抛运动,所用时间为t ,则小球下落的高度为: L =12gt 2 水平位移为:2L =vt 解得v =2gL小球从释放到P 点机械能守恒,设释放点距P 点高为h ,则有: mgh =12mv 2解得h =L所以,小球从释放到落地,重力做的功为: W =2mgL点评 本题考查了机械能守恒和平抛运动的综合,知道平抛运动在水平方向和竖直方向上的运动规律是解决本题的关键.。

相关文档
最新文档