中考数学专题复习一次函数教案
2024年中考数学一轮复习考点精讲课件—一次函数的应用

.
【详解】解:如图, = = 6,∵ ∠ = 60°,∴ 4,3 3 ,
∵点在边上且横坐标为8,∴ 8, 3 , 10,3 3 ,
∵直线过定点,∴ ⊥ 时,点到所在直线的距离取得最大值.
∵ 0, −
5 3
3
∴ 3 = 8 −
, 8, 3 ,设解析式为 = −
考点一 一次函数的实际应用
【变式】(2021·河南平顶山·统考二模)小明和小亮相约从学校前往博物馆,其中学校距离博物馆900米.小明因有
事,比小亮晚一些出发,图中1 = 1 、2 = 2 + 分别是小明、小亮行驶的路程与小明追赶时间之间的关系.
(1)观察图象可知,小亮比小明先走了_______米.
2
20
故答案为:5;3; 3
20
km;
3
考点一 一次函数的实际应用
题型03 行程问题
【例3】(2022·浙江绍兴·统考一模)绍兴首条智慧快速路于今年3月19日正式通车.该快速路上,两站相距
20km,甲、乙两名杭州亚运会会务工作志愿者从站出发前往站附近的比赛场馆开展服务.甲乘坐无人驾驶小
巴,乙乘坐无人驾驶汽车.图中,分别表示甲、乙离开站的路程 km 与时间 min 的函数关系的图象.
(2)求1 、2 的值,并解释2 的实际意义.
(3)通过计算说明,谁先到博物馆.
【详解】
(1)根据图像可以看出小明走的时候,小亮已经走了 100 米.故答案为:100.
(2)将 = 20, = 60代入1 = 1 ,得60 = 201 ,∴1 = 3;
分别将 = 0时, = 100; = 20时, = 140代入2 = 2 + 得
∴A种物品购买7个,B种物品购买13个最省钱.
初中一次函数教学设计范文(通用10篇)

初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
中考数学复习讲义课件 第3单元 第11讲 一次函数

第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )
初中数学_中考一轮复习一次函数教学设计学情分析教材分析课后反思

中考一轮复习一次函数教学设计一、教学内容分析一次函数是初中数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,它的研究方法具有一般性和代表性,是进一步研究反比例函数及二次函数的基本工具,也是学习高中代数、解析几何及其他数学分支的重要基础。
这部分的难点是构建一次函数模型解决实际问题的能力以及综合运用所学知识解决、分析问题的能力,学好这部分知识对发展学生的数学应用意识和建模能力起着至关重要的作用。
一次函数在中考中常常考察一次函数关系式的确定、图像和性质、一次函数的实际应用、一次函数与反比例函数、二次函数的综合题等.,二、学情分析大部分学生都感觉函数比较难,有些学生对一次函数的性质与图像遗忘了,还有些同学上新课时对这部分知识没有理解,学好这部分知识很重要一点就是会用数形结合思想去解决问题、构建一次函数模型解决实际问题,目前这两部分都是学生的难点,综合复习时与其他知识联系也较多,所以对于解决综合题学生感觉难度也较大。
鉴于以上分析本节课分三个模块来进行复习,第一模块复习一次函数的定义、图像及性质,第二模块复习确定一次函数的表达式,第三模块复习用一次函数解决实际问题。
三、教学目标、重难点分析新课标指出,三维目标是紧密联系的一个有机整体,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。
因此确定本节课的教学目标为:知识目标:1、掌握一次函数的系统知识,提高学生解题能力。
2、利用数形结合思想,解决函数问题,破解中考难点。
过程与方法:通过问题的解决体会用数形结合解题的优越性,培养学生的观察能力。
情感目标:体会数学来源于生活,增强用数学的意识教学重点:一次函数的图像、性质,确定一次函数的表达式以及实际应用。
教学难点:一次函数的实际应用,数形结合的灵活运用。
四、教学媒体:电子白板、几何画板、课件五、教学过程分析一次函数复习学习目标:(1)结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
中考数学复习方案 第11课时 一次函数的应用

解得x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,
解得x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.
④交点:表示两个函数的自变量与函数值分别对应相等,这个交点是函数值大
小关系的“分界点”.
基
础
知
识
巩
固
高
频
考
向
探
究
对点演练
题组一
必会题
1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(单位:cm)与燃
烧时间t(单位:h)(0≤t≤4)之间的关系是
h=-5t+20
.
基
础
知
识
巩
固
∴乙用户2,3月份的用气量分别是135 m3,40 m3.
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m3的部分
a+0.25
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
1.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关
2. [八上P157问题2改编]某公司准备与汽车租赁公司签订租车合同.以每月用车里
《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。
2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。
3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。
二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。
2. 重点:一次函数的概念、图象和性质。
3. 难点:一次函数的应用。
三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。
2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。
3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。
4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。
四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。
2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。
3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。
五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。
2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。
六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。
《一次函数》教学教案

《一次函数》教学教案《一次函数》教学教案(通用11篇)14.1.1变量与函数【学习目标】1、通过探索具体问题中的数量关系和变化规律了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;4、会根据函数解析式和实际意义确定自变量的取值范围。
【学习重点】了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。
【学习难点】函数概念的理解;函数关系式的确定学习过程:【前置自学】问题一:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.1.请同学们根据题意填写下表:t/时12345ts/千米2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含t的式子表示s.__s=_________________t的取值范围是这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y ?1.请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y (元)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y.__y=_________________x的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L?1.请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含m的式子表示L.__L=_________________m的取值范围是这个问题反映了_________随_________的变化过程.问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?关系式:________ 1.请同学们根据题意填写下表:面积s(cm2)102030s半径r(cm)2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含s的式子表示r.__r=_________________s的取值范围是这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。
初中数学_一次函数(中考一轮复习)教学设计学情分析教材分析课后反思

中考一轮复习《一次函数》中考一轮复习《一次函数》一、【教学目标】(一)知识与技能1.理解正比例函数和一次函数的概念,能根据实际问题的条件或图象上的点的坐标确定正比例函数和一次函数的解析式.2.理解一次函数和正比例函数的图象与性质,理解它们的性质在实际应用中的意义.3.会用函数图象的方法求方程(组)与不等式(组)的解(集).4.能利用一次函数的图象与性质解决简单的实际问题.(二)过程与方法1、通过复习进一步发展学生形象思维能力和应用数学的能力2、发展学生数形结合意识,提高学生观察图象的能力(三)情感态度价值观通过复习进一步培养学生良好的学习习惯二、【教学重难点】1、重点:一次函数的图象与性质.2、难点:用函数图象的方法求方程(组)与不等式(组)的解(集).三、【教学过程】(一)课前热身1.下列函数中,是一次函数的有 ( )2.一次函数y = -2x +1不经过下列哪个象限( ) y = -xA.第一象限B.第二象限2C. 第三象限D.第四象限(第3题) (第4题)3.(2013.青岛.12)如图,一个正比例函数图象与一次函数的图象相交于点P , 则这个正比例函数的表达式是____________4.一次函数 y=k x +b(k 、b 为常数)的图象如图所示,则关于x 的不等式k x +b>0 的解集______. y x y x y x y 2)4(1)3(1)2(2)1(=+-=== x(二)考点一:一次函数的定义与性质考点知识精讲1、正比例函数和一次函数的概念一般地,如果y kx b =+(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
2、一次函数的图象所有一次函数的图象都是一条直线3、一次函数、正比例函数图象的主要特征:一次函数b kx y +=的图象是经过点(0,b )的直线;正比例函数kx y =的图象是经过原点(0,0)的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数》
1.课标解析
一次函数是初中阶段学生初次接触到的函数知识,它是在学生学习了一元一次方程,一元一次不等式、二元一次方程组的基础上进行学习的。
它是学生学习反比例函数、二次函数的基础与条件,是数形结合思想的一种完美体现,在整个数学知识体系中具有不可替代的作用。
同时,一次函数也是学生利用变量知识解决实际问题的一种数学模型,是学生了解物质世界变化规律的一种思维方式,
2.知识目标
了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。
3.能力目标
让学生经历知识的梳理过程和归纳总结过程,加深对数形结合的数学思想的理解,强化数学的建模意识,提高利用演绎和归纳进行复习的方法的掌握程度。
4.考试内容
(1)一次函数的图象和性质及其应用。
(2)考查学生对“由形到数”和“由数到形”的感知能力和抽象能力。
教学过程
(一)、知识回顾: 开门见山地给出一次函数的定义,图象和性质等的框架图。
(二)、提出“六求”:本单元的知识点比较繁多,且地位比较重要。
因此,我将本单元题目归
为“六求”
(三)分“求”例析及练习
1、求系数(指数):
例1、已知函数y=(k-1)x + m-2
①若它是一个正比例函数,求k , m的值。
②若它是一个一次函数,求 k , m的值。
分析:这类题目主要考察对函数解析式的特征的理解,在讲解时要突出两点:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。
2、求位置:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,因此我把这个知识点编成顺口溜:“小小不过一,大小不过二,小大不过三,大大不过四,”,意思是当k<0,b<0是,直线经过二三四象限,以此类推。
同学们很容易记住并理解:
例:两直线 y=ax+b 和 y=bx+a 在同一平面直角坐标系内的图象可能是 ( )
3、求交点:①一次函数的图象与坐标轴的交点坐标以及两直线交点坐标的求法。
直线
y=kx+b与x轴的交点坐标(-b/k,0),与y轴的交点坐标是(0,b),②两条直线的交点
坐标的求法:是将两直线的解析式联立得一个二元一次方程组,解这个方程组,将解写成一个有序实数对,就是两直线的交点坐标。
例:已知,一次函数y=2x-6与y=-x-2,求其交点坐标。
4、求面积:①一次函数的图象与两条坐标轴围成的直角三角形面积的求法,这可以用一个三角形面积公式来表达,即S=b2/2|k|
②两条直线与坐标轴共同围成的图形的面积。
直线l1的解析式为y= -3x+3 ,且 l1与 x 轴交于点 D,直线l2经过点A,B,直线l1 l2交于点 C.求∆ADC的面积
5、求范围:
⑴、求自变量的取值范围:初中阶段不外乎三种情况:一是当自变量在分母上时,分
母的式子不等于零;二是当自变量在根号内时,根号内的式子大于等于零;三是当自变量既不在分母上,也不在根号内时,自变量的取值为任意实数。
⑵、根据函数的图象或函数的解析式,给出x的取值范围能判定y的相应的取值范围,
或给出y的取值范围判定x的相应的取值范围,这是一类较难的问题,讲解时,要特别注意数形结合。
例.一次函数y=kx+b的图像如图所示,当y<0时,x的取值范围是_________。
6、求解析式:一般用待定系数法求函数的解析式,待定系数法的一般步骤是“设→代→解→答”。
例1:已知y与x-1成正比例,x=8时,y=6,写出y与x之间函数关系式,并分别求出x=4时y的值和y =-3时x的值。
例2:如图,直线a是一次函数y=kx+b的图象,求其解析式?
(三)、小结:本节课归纳的“六个求”不是互相孤立,而是互相依托,互相渗透的。
由此告诉同学们,只有将知识融会贯通,举一反三,才能学有所乐,学有所成。
(四)、课堂检测:
作业的布置应精心设计,体现分层教学和因材施教的原则。
必做题是一些基础性较强的题目,目的是让学生打牢基础;
提高题是需要技巧的题目,目的是有意识的培养学生链接中考的能力。
基础题:
1、下列1、下列函数(1)y=3πx (2)y=8x-6 (3)y= 1/x (4)y= -8x (5)y=5x2-4x+1中,是一次函数的有()
A.4个
B.3个
C.2个
D.1个
2、下列y关于x的函数中,是正比例函数的为()
A、y=x/ 2;
B、y=x/2;
C、y=2/x;
D、y=2/1 x
3、(2015陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()
A 、 2 B、 -2 C 、4 D、-4
4、(2015常德)一次函数y=-1/2x+1的图象不经过下列哪个象限()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
提高题:
1、(2015潍坊)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()
A.B.C.D.
2、已知点(-6,y1),(8,y2)都在直线y= -x-6上,则y1 y2大小关系是( )
A.y1 >y2
B.y1 =y2
C.y1 <y2
D.不能比较
3、如果弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象如图所示,那么弹簧不挂物体时的
长度是( )
A.9 cm
B.10cm
C.10.5cm
D.11cm
y cm 五:设计理念:
将知识进行分门别类,专项解答,这样有得于学生对知识的系统掌握和专项强
18
化,提高学生学习效率和对知识的掌控度。
12.5。