电磁感应现象及其应用生活实践中

合集下载

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用

利用法拉第电磁感应定律解释电磁感应现象的现实应用电磁感应是一种重要的物理现象,它是基于法拉第电磁感应定律而产生的。

法拉第电磁感应定律表明,当导体中的磁通量变化时,导体两端会产生感应电动势,从而产生感应电流。

这一定律被广泛应用于各个领域,包括能源、工业和科学研究等。

在本文中,我们将探讨利用法拉第电磁感应定律解释电磁感应现象的现实应用。

1. 电力发电电力发电是法拉第电磁感应定律的一个典型应用。

发电机利用磁场与导体之间的相互作用来产生电动势。

当转子在磁场中旋转时,导线回路中的磁通量随之变化,从而产生感应电动势。

这个电动势可以被引导出来,用来驱动发电机产生电流。

电力发电是利用法拉第电磁感应定律进行实现的重要方法。

2. 变压器的工作原理变压器是电力系统中常见的设备,也是利用法拉第电磁感应定律的应用之一。

变压器通过改变电流的电压大小来实现能量的传输和转换。

它由两个线圈组成,一个是高压线圈,另一个是低压线圈。

当高压线圈中的电流变化时,会产生变化的磁场,从而在低压线圈中感应出电动势,实现电能的转换。

3. 感应加热感应加热是利用法拉第电磁感应定律来实现的一种加热方法。

通过在导体周围产生变化的磁场,可以感应出导体中的涡流,从而产生热量。

这种加热方法在工业生产中被广泛应用,特别是在金属加热和熔化的过程中。

4. 感应传感器和电磁测量利用法拉第电磁感应定律,我们可以设计出各种感应传感器和用于电磁测量的设备。

例如,感应传感器可以用于检测磁场、电流、位移和速度等物理量。

通过测量感应电动势或感应电流的大小,我们可以获取到所需的数据信息。

5. 磁悬浮列车技术磁悬浮列车技术是一项先进的交通运输技术,也是法拉第电磁感应定律的应用之一。

磁悬浮列车利用电磁感应产生的力来实现悬浮和推进。

当列车通过轨道时,轨道中的线圈会产生变化的磁场,从而引起列车上的磁体感应出电动势。

利用这种电动势产生的力,使列车浮在轨道上并推进。

总结:法拉第电磁感应定律作为一项重要的物理定律,具有广泛的应用领域。

电磁感应的应用例子

电磁感应的应用例子

电磁感应的应用例子电磁感应是电磁学的重要概念之一,广泛应用于各个领域。

下面列举了10个电磁感应的应用例子。

1. 发电机:发电机利用电磁感应原理将机械能转化为电能。

当导体在磁场中运动或磁场变化时,导体内产生感应电动势,通过导线外的电路就可实现能量转换。

2. 变压器:变压器利用电磁感应原理调整输入电压和输出电压的比例。

当输入电流通过一根绕在铁心上的线圈时,在另一根绕在同一铁心上的线圈中就会感应出相应的电流。

3. 感应加热:感应加热利用电磁感应原理产生感应电流,在导体中产生热量。

这种方法广泛应用于工业生产中的熔炼、焊接和热处理等领域。

4. 感应炉:感应炉是一种利用电磁感应原理加热物体的设备。

它通过感应线圈产生的交变磁场使工件内部产生感应电流,从而使工件加热。

5. 磁力计:磁力计是一种测量磁场强度的仪器,利用电磁感应原理。

当磁场发生变化时,磁力计中的线圈会感应出电动势,通过测量电动势的大小可以间接测量磁场强度。

6. 刷卡门禁系统:刷卡门禁系统利用电磁感应原理实现对门禁的控制。

门禁系统中的读卡器会产生一个电磁场,当刷卡时,卡片内的芯片会感应到这个电磁场并产生响应,从而实现门禁的开关。

7. 电磁感应式水表:电磁感应式水表利用电磁感应原理测量水的流量。

当水流经过水表中的导体时,会产生感应电动势,通过测量电动势的大小可以计算出水的流量。

8. 电磁炮:电磁炮是一种利用电磁感应原理发射物体的装置。

它通过电流通过线圈产生磁场,然后利用磁场对物体施加力,从而将物体发射出去。

9. 感应电动机:感应电动机是一种利用电磁感应原理工作的电动机。

当线圈中通过交变电流时,会产生感应电动势,从而使电动机转动。

10. 电磁感应炉:电磁感应炉是一种利用电磁感应原理加热金属的设备。

它通过感应线圈产生的交变磁场使金属内部产生感应电流,从而使金属加热。

以上是电磁感应的一些应用例子,电磁感应的原理在生活中和工业生产中有着广泛的应用。

通过利用电磁感应,可以实现能量转换、测量、控制和加热等多种功能,为我们的生活和工作带来了便利。

电磁感应的应用

电磁感应的应用

电磁感应的应用电磁感应是电磁学中的重要现象之一,它指的是当导体中的磁通量发生改变时,会产生感应电流。

这一现象不仅在日常生活中具有广泛的应用,也在各个领域的科学研究和工程实践中发挥着关键作用。

本文将探讨电磁感应在不同领域中的应用。

1. 发电机电磁感应的最典型应用就是发电机。

发电机利用电磁感应现象将机械能转化为电能。

工作原理是通过旋转的磁场线圈产生感应电流,进而达到产生电能的目的。

发电机被广泛应用于电力工业,为家庭和工业供应电能。

2. 变压器变压器是另一个重要的电磁感应应用。

它通过电磁感应的原理,实现了变换交流电压的功能。

变压器通过交变磁通产生感应电动势,并将电能从一端传输到另一端。

变压器被广泛应用于电力系统中,用于调整电压水平,以适应不同设备的需求。

3. 感应加热电磁感应加热是一种高效且无污染的加热方法。

它利用感应电流在导体中产生的热量来加热物体。

感应加热广泛应用于工业领域,如金属熔炼、焊接和热处理等。

相比传统的加热方法,电磁感应加热具有高效、节能的特点。

4. 感应传感器电磁感应还被应用于传感技术领域。

感应传感器通过测量电磁感应现象中的变化来检测和测量物理量。

例如,磁力计利用电磁感应原理来测量磁场强度;涡流传感器通过感应电流的变化来检测金属材料的缺陷。

感应传感器在工业自动化、交通运输和环境监测等领域具有广泛的应用。

5. 无线充电近年来,无线充电技术得到了快速发展,它利用电磁感应实现了电能的无线传输。

无线充电设备通常由一个发送器和一个接收器组成,通过电磁感应的原理,将电能从发送器传输到接收器。

无线充电广泛应用于智能手机、电动汽车等领域,为人们提供了更便捷的充电方式。

6. 电磁炮电磁炮是一种新型火炮武器,它利用电磁感应产生的强磁场来加速发射物体。

电磁炮具有高速度、高精度和长射程等特点,被认为是未来军事技术的重要方向之一。

总结电磁感应作为电磁学的重要现象,具有广泛的应用领域。

从发电机、变压器到感应加热、感应传感器,电磁感应技术在能源、工业、科学研究和国防等多个领域发挥着重要作用。

电磁感应现象在生活中的应用

电磁感应现象在生活中的应用

电磁感应现象在生活中的应用
一、电磁感应现象的基本概念
电磁感应是指当磁场或电场的变化引起电场或磁场产生的现象。

这一现象是物理学中的重要现象,广泛应用于生活和工业中。

二、电磁感应在生活中的应用
1. 电动发电机
电动发电机利用电磁感应原理将机械能转化为电能。

当导体在磁场中运动时,导体内部自由电子受到磁场的作用而产生电动势,从而产生电流。

电动发电机广泛应用于发电厂、风力发电等领域。

2. 电磁炉
电磁炉利用电磁感应原理加热食物。

电磁炉内部通过电感线圈产生高频交变电流,在磁场的作用下导致锅底产生涡电流,从而加热锅底和食物。

电磁炉具有快速加热、高效节能等优点,广泛应用于家庭厨房和餐饮业。

3. 电磁感应灶
电磁感应灶是一种利用电磁感应原理将电能转化为热能的厨具,现已广泛应用于家庭和商业厨房。

电磁感应灶通过感应线圈产生高频电流,在锅底产生涡电流从而加热锅底,能够控制加热温度、节能环保。

4. 交变电流发光灯
交变电流发光灯利用电磁感应原理发光。

电灯的灯丝通过电流产生热量,进而发光。

电磁感应在发光灯中的应用使得灯泡的亮度更高、寿命更长。

三、结语
电磁感应现象在生活中的应用不仅有助于改善生活质量,提高能源利用效率,还推动了科技的发展。

通过不断改进和创新,电磁感应技术将在未来得到更广泛的应用。

生活中的电磁现象

生活中的电磁现象

生活中的电磁现象
电磁现象在生活中无处不在,它们影响着我们的日常生活,甚至塑造了现代社会。

从电灯的发光到手机的通讯,从电磁炉的加热到电梯的运行,电磁现象无时无刻不在我们身边发挥作用。

在家里,我们可以看到电磁现象的应用。

电视、电脑、冰箱、洗衣机等家电都
离不开电磁技术。

电磁炉利用电磁感应加热食物,让我们的烹饪更加方便快捷。

而无线网络、手机信号也是利用电磁波进行传输,让我们可以随时随地与他人交流。

在工业生产中,电磁现象也发挥着重要作用。

电磁铁可以用来吊装重物,电磁
感应加热可以用来熔化金属,电磁波可以用来进行无损检测。

这些都大大提高了生产效率,推动了工业的发展。

在交通运输中,电磁现象也有着重要的应用。

电动汽车利用电磁感应进行充电,高铁利用电磁悬浮技术实现超高速运行,磁悬浮列车利用电磁力悬浮于轨道上,减少了摩擦阻力,提高了运行速度。

总的来说,电磁现象已经深深地融入到我们的生活中,让我们的生活更加便利、高效。

然而,我们也要注意电磁辐射对人体健康的影响,合理使用电磁设备,保护自己和家人的健康。

希望未来电磁技术能够更好地为人类服务,让我们的生活变得更加美好。

电磁感应现象在生活中的应用

电磁感应现象在生活中的应用

电磁感应现象在生活中的应用
电磁感应现象是指电磁场作用于导体时,导体内的电流会发生变化的现象。

电磁感应现象在生活中有很多应用。

电磁炉:电磁炉是利用电磁感应现象加热的一种厨具。

电磁炉的炉膛内装有电磁线圈,通过电流流动使线圈发热,从而加热食物。

感应加热器:感应加热器是利用电磁感应现象加热的一种设备。

它由电磁线圈和铁芯组成,电流流动时会产生磁场,使铁芯发热,从而加热周围的物体。

电动机:电动机是利用电磁感应现象产生旋转力的一种机械。

电动机的转子由带有电流的导体组成,电流流动时会产生磁场,使转子旋转。

电动机可以用来驱动很多机械设备,如电视机、空调、冰箱、汽车等。

电视机:电视机是利用电磁感应现象传送图像信息的一种电子设备。

电视机的电视屏幕内部装有电磁线圈,通过电流流动使线圈产生磁场,从而产生图像。

电话:电话是利用电磁感应现象传送声音信息的一种通信设备。

电话的话筒内部装有电磁线圈,通过电流流动使线圈产生磁场,从而产生声音。

电磁铁:电磁铁是利用电磁感应现象吸附金属物体的一种工具。

电磁铁内部装有
电磁线圈,通过电流流动使线圈产生磁场,从而吸附金属物体。

电磁感应现象在生活中的应用非常广泛,它不仅方便了我们的生活,还为科学技术的发展做出了巨大的贡献。

电磁感应现象在生活中的应用有哪些

电磁感应现象在生活中的应用有哪些

电磁感应现象在生活中的应用有哪些
物理是很贴近我们生活的一门学科,与我们的生活密切相关,那电磁感
应现象在生活中有哪些实际应用呢,下面小编为大家整理相关信息,供大家
参考。

1 电磁感应现象在生活中的实际应用电磁感应原理用于很多设备和系统,
其中包括感应马达;发电机;变压器;充电池的无接触充电;感应铁架的电炉;感应焊接;电感器;电磁成型(电磁铸造,eletromagnetic forming);磁场计;电磁感应灯;中频炉;电动式传感器;电磁炉;磁悬浮列车,以以下两个应
用为例具体说明。

电磁感应式震动电缆报警器:
在电磁感应式电缆的聚乙烯护套内,其上、下两部分空间有两块近于半弧
形充有永久磁性的韧性磁性材料。

它们被中间两根固定绝缘导线支撑着分离
开来。

两边的空隙正好是两个磁性材料建立起来的永久磁场,空隙中的活动
导线是裸体导体,当此电缆受到外力的作用而产生震动时,导线就会在空隙
中切割磁力线,由电磁感应产生电信号。

此信号由处理器(又称接口盒)进
行选频、放大后将300—3000Hz 的音频信号通过传输电缆送到控制器。

当此
信号超过一定的阈值时,便立刻触发报警电路报警,并通过音频系统监听电
缆受到震动时的声响。

麦克风:
动圈麦克风的工作原理是以人声通过空气使震膜震动,然后在震膜上的线
圈绕组和环绕在动圈麦头的磁铁形成磁力场切割,形成微弱的电流。

驻极体
麦克风的工作原理是以人声通过空气使震膜震动,从而然后上震膜和下金属
铁片的距离产生变化,使其电容改变,形成电流阻抗。

而声卡的MICIN 是对。

电磁感应现象的实际应用举例

电磁感应现象的实际应用举例

电磁感应现象的实际应用举例电磁感应是指当磁场发生变化时,在磁场中的导体中将产生感应电动势和电流的现象。

这一现象给人类的生活和科技发展带来了巨大的变革。

本文将介绍一些电磁感应现象的实际应用举例,旨在展示电磁感应的重要性以及其在日常生活和科技领域的广泛应用。

1. 发电机电磁感应最主要的应用之一就是发电机。

根据法拉第电磁感应定律,当导体在磁场中运动时,磁通量的变化将导致感应电动势的产生。

发电机利用这一原理将机械能转化为电能。

例如,水力发电站中的涡轮通过流动水的动力带动发电机转动,产生电能。

通过这种方式,电磁感应实现了能源的转化和利用,为人类的工业生产和生活提供了便利。

2. 变压器变压器是另一个重要的电磁感应应用。

变压器利用电磁感应原理将输入端的交流电压通过互感作用转化为具有不同电压的输出端。

变压器的工作原理是基于法拉第电磁感应定律和电感耦合的效应。

通过变压器,电能可以在不同的电压间进行高效率的转换和传输,广泛应用于电力系统中的输配电、电动机起动以及各种电子设备。

3. 感应加热电磁感应还被广泛应用于感应加热技术。

感应加热是通过将高频交流电流引入导体中,利用电流在导体内产生的电阻加热原理来加热物体。

感应加热具有快速、高效、环保等优点,被广泛应用于金属熔化、金属焊接、热处理、石油开采等领域。

例如,感应加热技术被用于工业中的铁炉和钢铁生产过程中,通过感应加热加热金属到所需温度,实现高效、精确的加热。

4. 电磁感应传感器电磁感应现象也被广泛应用于传感技术。

电磁感应传感器利用电磁感应的原理来检测和测量各种物理量,例如磁场、位移、速度、温度等。

这些传感器在工业自动化、车辆导航、医学诊断、安全监测等领域发挥着重要的作用。

例如,磁电感应传感器可以用于测量行车速度,位移传感器用于测量机械设备的位移和形变。

5. 磁共振成像在医学领域,磁共振成像(MRI)是一种基于电磁感应原理的重要技术,可以对人体内部进行无创性的三维成像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西北农林科技大学电磁感应现象及其应用学院:风景园林艺术学院班级:园林134姓名:***学号:**********134电磁感应现象及其在生活中的应用西北农林科技大学风景园林艺术学院姓名崔苗苗班级园林134班学号 2013011465摘要自法拉第历经十年发现电磁感应现象后,电磁感便开始应用生活中。

话筒,电磁炉,电视机,手机等生活用品,无不与人类生活息息相关,极大地方便了我们的生活,推动了社会历史的进步和发展。

同时,它的应用也是理论向实践不断探索和改进的过程,理论唯有应用于实践,才更能发挥它的价值。

关键词电磁感应现象生活应用电磁感应现象的发现不仅揭示了电与磁之间的内在联系,而且为电与磁之间的转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在生活中具有重大的意义。

它的发现,标志着一场重大的工业和技术革命的到来。

在电工技术,电子技术以及电磁测量等方面都有广泛的应用,人类社会从此迈入电气化时代,对推动生产力和科学技术发展发挥了重要作用。

物理发现的重要性由此可见。

本文主要介绍了电磁感应现象及其在人类生活中的相关应用。

一.电磁感应现象定义闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。

本质是闭合电路中磁通量的变化。

而闭合电路中由电磁感应现象产生的电流叫做感应电流。

二.电磁感应发现历程电磁学是物理学的一个重要分支,初中时代的奥斯特实验为我们打开电磁学的大门,此后高中三年这一部分内容也一直是学习的重中之重。

继1820奥斯特实验之后,电与磁就不再是互不联系的两种物质,电流磁效应的发现引起许多物理学家的思考。

当时,很多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,而迈克尔·法拉第即为其中一位。

他在1821年发现了通电导线绕磁铁转动的现象,然后经历10年坚持不懈的努力,最终于1831年取得突破性进展。

法拉第将两个线圈绕在一个铁环上,其中一个线圈接直流电源,另一个线圈接电流表。

他发现,当接直流电源的线圈电路接通或断开的瞬间,接电流表的线圈中会产生瞬时电流。

而在这个过程中,铁环并不是必须的。

无论是否拿走铁环,再做这个实验的时候,上述现象仍然发生,只是线圈中的电流弱些。

为了透彻研究电磁感应现象,法拉第又继续做了许多的实验。

终于,在1831年11月24日,他在向皇家学会提交的一个报告中,将这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。

此后又总结出:只要穿过闭合电路的磁通量发生变化,闭合电路中就会有电流产生。

三.应用电磁感应现象自发现之日起,便一直在改变着人们的生活。

时至今日,生活中可以处处见到它的影子。

无论是话筒,电磁炉,还是收音机,发电机,都是我们可以见到和听到的物品。

而且,在高中物理中,我们便不断接触与其应用相关的题目,这些物品也曾作为物理试题的载体,不时出现在试卷中。

现在看来,也是分外亲切。

3.1动圈式话筒在剧场和演讲等活动中,放大声音已经成为一种迫切的需要,而电磁感应现象的发现与应用已经成功解决了这个问题。

放大声音的装置由话筒,扩音器和扬声器三部分,其中话筒是把声音转变为电信号的装置。

动圈式话筒,是利用电磁感应现象制成的,当声波使金属膜片振动时,连接在膜片上的音圈也随着一起振动,音圈在永久磁铁的磁场里振动,其中就会产生感应电流,感应电流的大小和方向都变化,变化的振幅和频率由声波决定,这个信号电流经扩音器放大后传给扬声器,从扬声器中就发出放大的声音。

如今,话筒或者麦克风已经随处可见。

3.2电磁炉相信有不少人都用过电磁炉加热过食物,它的方便快捷为我们的日常饮食带来很大的便利,对我们的饮食方式也产生了一定影响。

电磁炉应用电磁感应原理对食品进行加热。

它的炉面是耐热陶瓷板,交变电流通过陶瓷板下方的线圈产生磁场,磁场内的磁力线穿过铁锅、不锈钢锅等底部时,产生涡流,令锅底迅速发热,达到加热食品的目的。

电磁炉的灶台台面是一块高强度、耐冲击的陶瓷平板,台面下边装有高频感应加热线圈、高频电力转换装置及相应的控制系统,台面的上面放有平底烹饪锅。

电磁炉的工作过程是:电流电压经过整流器转换为直流电,又经高频电力转换装置使直流电变为超过音频的高频交流电,将高频交流电加在扁平空心螺旋状的感应加热线圈上,由此产生高频交变磁场。

其磁力线穿透灶台的陶瓷台板而作用于金属锅。

在烹饪锅体内因电磁感应就有强大的涡流产生。

涡流克服锅体的内阻流动时完成电能向热能的转换,所产生的焦耳热就是烹调的热源。

3.2电磁感应灯电磁感应灯作为照明工具中的新发明,具有许多传统照明工具所没有的优势。

它具有十万小时的高使用寿命,同时又免维护费用。

而且它的光源质量更高,高显色性使物体的本身的颜色即明亮又逼真,电磁感应灯还具有更可靠的瞬间启动性能,同时低热量输出,具有更可靠的抵抗电压剧烈波动的能力,其照明也更加节能,能够减少二氧化碳排放量。

同时,电磁感应灯的暖白光比黄色的钠灯更合适应用于道路照明,光照温和,可以保证道路行驶的安全性和舒适性电磁感应灯没有电极,依靠电磁感应和气体放电的基本原理而发光。

没有灯丝和电极使灯泡的寿命长达100,000小时,是白炽灯的100倍,高压气体放电灯的5~15倍,紧凑荧光灯的5倍~10倍。

基于上述原理,气体通过磁场放电而产生了可见光。

即由电子镇流器产生的频率为230KHz,金属线圈磁环组成的电磁变压器在玻璃管(含有特殊工作气体)周围创造了磁场。

由线圈引起的放电路径形成一个闭路,从而引起自由电子的加速度。

这些自由电子和汞原子相碰撞而激发了电子.因为激活的电子从高能态退到低能态,他们放射出紫外线,当通过玻璃管表面的三基色荧光粉时,产生的紫外线转化成可见光。

在能源危机和温室效应益发严重的今日,各国都在不断强调可持续发展的重要性。

在这种大环境下,符合环保照明和绿色照明的要求的电磁感应灯,有着推广和普及的巨大潜力。

暖白光这一先进的理念已经在美国、英国、比利时、挪威等国家得到了广泛应用。

3.3变压器变压器是利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器。

其输送电流的多少由用电器的功率决定。

高中时期的试题中有许多相关的计算问题。

变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯中便产生交流磁通,使次级线圈中感应出电压。

变压器由铁芯和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。

变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。

3.4手机充电器对于手机,或许是现在生活中与我们联系最为紧密的电子产品之一了。

给手机充电几乎是每日必做的事情,以前却从未考虑过手机充电电源的原理。

所有手机充电器其实都是由一个稳定电源(主要是稳压电源、提供稳定工作电压和足够的电流)加上必要的恒流、限压、限时等控制电路构成。

它和变压器原理几近相同。

3.5磁带录音机自有了手机等产品之后,许多功能集于一体,录音这种功能也一并存在,磁带录音机听来或许会让我们觉得陌生。

磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成。

录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随音频电流变化的磁场。

磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。

放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。

在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。

3.6汽车车速表汽车驾驶室内的车速表是指示汽车行驶速度的仪表。

它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。

在此之前,从未想过它竟然也是电磁感应的应用实例。

车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。

其中永久磁铁与驱动轴相连。

在表壳上装有刻度为公里/小时的表盘。

永久磁铁的磁感线一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。

当驱动轴带动永久磁铁转动时,则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方,磁感线的数目逐渐增加,而后方则逐渐减少。

由法拉第电磁感应原理知道,通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。

又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。

用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方向与磁铁产生的磁感线方向相同,因此它们之间相互吸引。

由于这种吸引作用,速度盘被磁铁带着转动,同时轴及指针也随之一起转动。

3.7发电机发电机通常由定子、转子、端盖及轴承等部件构成。

定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。

转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。

由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。

从物理结构来说,发电机的定子和转子除了是一个原动力的拖动外,是完全独立、互不干扰的两部分;发电机的定子是有功源,产生感应电动势、电流,在原动力的拖动下,向外输出交流电的有功,由原动力(油量、气量、风量、水量等)决定有功功率的大小。

发电机的转子是无功源、绕组从外部引入直流电建立磁场,在原动力的拖动下,向外输送交流电的无功,由外部输入(多数用发电机自发的交流电整流而得)的直流电决定无功功率的大小。

从电磁原理来说,转子和定子又是精密联系的,发电机的有功和无功都是由定子输出的,转子的力矩决定有功功率的大小,转子线圈的直流电流决定无功功率的大小。

四.未来发展电磁感应的应用多不胜举,今天所能提到的也只是其中极小的的一部分,却已经能够体现其它对人类历史发展的深远意义。

磁悬浮列车,电视,示波器,接触器线圈,电视手机收音机等的信号收发,感应磁卡的信号传输,霍尔开关,雷达等等可以说在我们生活的每个环节都有应用。

由电磁感应现象发生发展及应用的过程,也可以看出,科学理论的产生一直在推动者社会的发展和进步。

相关文档
最新文档