北师大版数学八年级上7.3平行线的判定同步测试
【习题】《平行线的判定》同步练习2北师大版八年级数学上册

7.3平行线的判定、选择题1•下列关于两直线平行的叙述不正确的是() A.同位角相等,两直线平行; B .内错角相等,两直线平行C.同旁内角不互补,两直线不平行;D.如果a// b,b 丄c,那么a II c2. 如图1,下列推论及所注理由正确的是()A. I /仁/ B 「. DE // BC (两直线平行,同位角相等)B. vZ 2=/C,二DE // BC (两直线平行,同位角相等)C. v/ 2+/3+/ B=180°,・・. DE // BC (同旁内角互补,两直线平行)D. T/ 4=/ 1,二 DE // BC (对顶角相等)5. 如图4,要使DE // BC,可根据()对角的关系得出4.如图3,当/ 1等于( )时,AB 不平行于CD ( / 1工90 A. / 2B./3C./4的同位角D./5C./4D. / 5A. / 2B. / 3A.1B.2C.3D.4ab46. 如图5,已知直线a b 被直线c 所截,/仁/2,你有()种证明a// b 的方法1. ___________ 补,两直线平行.2•内错角 __________ 同位角 ________ 两直线平行.3. _________________________ 如图 6,7 1=60°当/2= 时,直线 a / b.4. 根据图7及上下文的含义推理并填空: (1) vZ DAC= _______ (已知)••• AD // BC()(2) vZ B+ _______ =180°已知)5. 如图8,已知7 ABC= 7 ADC, 7仁7 2,则AB 与CD 的关系是 _____________6. _________________________________ 如图 9,7 仁7 2,7 3=120°,则7 4= __________________________________ . 三、计算题1. 如图,AC 平分7 BAD, 7 1 = 72.求证:DC // AB.2. 如图,已知:AB 丄EF,垂足为E,CD 丄EF,垂足为F 求证:AB // CD.A.3B.4 二、填空题C. 5D.6••• AD // BC (⑺ (8)ab3. 已知:如图,/3与/ 1互余,/3与/ 2互余.求证:AB // CD.四、如图,已知/ ECD= / BDC, / B+ / ECD=180 ,求证:AB // CD.AB D五、如图,直线EF 交AB 于E,交CD 于F,EG 平分/ AEF,FG 平分/ EFC ,它们 相交于G?若/ EGF=90,求证:AB // CD.六、小明创造了利用圆规和直尺作平行线的方法:①任意画一个/ AOB,②以OEB DCG D为圆心,任意长为半径画弧,交OA、OB于C、D.③以O为圆心,取大于OC?的长为半径画弧,交OA、OB于E、F连接CD、EF则CD // EF.如图,你能解释为什么CD // EF 吗?七、如图,直线a,b相交于点O,以O为圆心的圆分别交a,b于A、B和C、D,则AD?和BC有怎样的位置关系?BO4参考答案一、 1.D 2.C 3.A 4.D 5.D 6.D二、 1.同旁内角互补 2.相等;相等 3.120 °4. (1)/ BCA;内错角相等,两直线平行⑵/ BAD;同旁内角互补,两直线平行5. 平行6.120°三、1证明:T AC平分/ BAD/•/ 1 = / 3又•••/仁/ 2•••/ 2=/3••• DC // AB2. 证明::AB丄EF CD丄EF•••/ AEF=/ CFG=90••• AB // CD3. t/ 3 与/ 2互余,/3与/ 1 互余•••/ 仁/2••• AB // CD四、•••/ ECD= / BDC / B+ / ECD=180•••/ B+/ BDC=180••• AB // CD五、••• EG 平分/ AEF,FG 平分/ EFC•••/仁/2 / 3=/ 4•••/ AEF=2/2 / EFC=2 / 3又•••/ EGF=90•••/ 2+/3=90°•••/ AEF+ / EFC=2 / 2+2/ 3=2(/2+ / 3)=2 >90°=180°••• AB // CD六、••• OC=OD,OE=OF:丄 OCD= / ODC / OEF=Z OFE又•••/ OCD+Z ODC+ / O=Z OEF+Z OFE+Z O=180••• 2/OCD=2/OEF•••/ OCD= / OEF•••CD // EF七、平等;v OA=OD OC=OB•/ OAD= / ODA, / OCB= / OBC又v/ OAD+ / ODA+ / AOD= / OCB+ / OBC+ / BOC, / AOD= / BOC •2/OAD=2 / OBC•/ OAD=/ OBC•AD / BC.。
北师大新版八年级数学(上)《7.3 平行线的判定》同步练习卷

10.平行;内错角相等,两直线平行; 11.合格; 12.75°; 13.∠CBA;∠CBA;CD;
14.∠EAD=∠B 或∠DAC=∠C 或∠DAB+∠B=180°;
三、解答题(共 5 小题,满分 46 分)
15.
; 16.
; 17.
; 18.
; 19.
;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
A.AD∥BC
B.AB∥CD
C.AD∥EF
3.(3 分)如图,以下条件能判定 GE∥CH 的是( )
D.EF∥BC
A.∠FEB=∠ECD B.∠AEG=∠DCH C.∠GEC=∠HCF D.∠HCE=∠AEG 4.(3 分)如图,下列条件中,不能判断直线 l1∥l2 的是( )
A.∠1=∠3
B.∠2=∠3
A.4 组
B.3 组
C.2 组
第2页(共6页)
D.1 组
二、填空题(共 5 小题,每小题 6 分,满分 27 分)
10.(6 分)如图是一条街道的两个拐角,∠ABC 与∠BCD 均为 140°,则街道 AB 与 CD 的
关系是
,这是因为
.
11.(3 分)如图,某工件要求 AB∥ED,质检员小李量得∠ABC=146°,∠BCD=60°,
弯的角度( )
A.先向左转 130°,再向左转 50°
B.先向左转 50°,再向右转 50°
C.先向左转 50°,再向右转 40°
D.先向左转 50°,再向左转 40°
7.(3 分)如图,在下列条件中,能判断 AD∥BC 的是( )
A.∠DAC=∠BCA
B.∠DCB+∠ABC=180°
2022-2023学年北师大版八年级数学上册《7-3平行线的判定》同步练习题(附答案)

2022-2023学年北师大版八年级数学上册《7.3平行线的判定》同步练习题(附答案)一.选择题1.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行2.下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.13.在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直4.如果a∥b,b∥c,那么a∥c,这个推理的依据是()A.等量代换B.两直线平行,同位角相等C.平行公理D.平行于同一直线的两条直线平行5.下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6.如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE7.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°8.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条9.如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c10.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°11.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°二.填空题12.在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是.13.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是.14.如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由.15.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.16.如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.三.解答题17.如图,已知∠1=∠2,CD、EF分别是∠ACB、∠AED的平分线.求证:BC∥DE.18.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.19.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.20.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.21.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.22.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF(等量代换)∴∥()∴∠3+∠=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴∥()∴∠A=∠F()23.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.又∵∠1+∠2=90°,且∠2=∠3,∴=.理由是:.∴BE∥DF.理由是:.24.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.25.已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.26.如图,已知∠A=∠EDF,∠C=∠F.求证:BC∥EF.27.如图,已知直线c和a、b分别交于A、B两点,点P在直线c上运动.(1)若P点在AB两点之间运动,试探究:当∠1、∠2和∠3之间满足什么数量关系时,a∥b?(2)若P点在AB两点外侧运动,试探究:当∠1、∠2和∠3之间满足什么数量关系时,a∥b?(直接写出结论即可)28.如图,已知∠1=∠2+∠3,试判断CD是否平行于BE,写出你的理由.参考答案一.选择题1.解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.2.解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;故选:D.3.解:在同一平面内,不重合的两条直线只有两种位置关系,是平行或相交,所以在同一平面内,不重合的两条直线的位置关系是:平行或相交.故选:C.4.解:∵a∥b,b∥c,a、c不重合,∴a∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故选:D.5.解:A、∠1=∠2,可得∠1=∠2的对顶角,根据同位角相等两直线平行可得AB∥CD,故此选项正确;B、∠1和∠2互补时,可得到AB∥CD,故此选项错误;C、∠1=∠2,根据内错角相等两直线平行可得AC∥BD,故此选项错误;D、∠1=∠2不能判定AB∥CD,故此选项错误.故选:A.6.解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.7.解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.8.解:由题意知,在长方体中,对任意一条棱,与它平行的棱共有3条,故选:C.9.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选:C.10.解:如图所示(实线为行驶路线):A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选:A.11.解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.二.填空题12.解:∵a⊥b,b⊥c,∴a∥c.故答案为a∥c.13.解:∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.14.解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.15.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.16.解:当∠2=50°时,a∥b;理由如下:如图所示:∵∠1=40°,∴∠3=180°﹣90°﹣40°=50°,当∠2=50°时,∠2=∠3,∴a∥b;故答案为:50.三.解答题17.证明:∵∠1=∠2,∴EF∥CD,∴∠3=∠4,∵CD、EF分别是∠ACB、∠AED的平分线,∴∠ACB=2∠3,∠AED=2∠4,∴∠AED=∠ACB,∴BC∥DE.18.证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.19.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.20.证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=180﹣(∠1+∠2)=90°=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∴∠C=∠AMN,∵∠3=∠C,∴∠3=∠AMN,∴AB∥MN.22.解:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等);故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.23.解:BE∥DF,∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠4,理由是:等角的余角相等,∴BE∥DF.理由是:同位角相等,两直线平行.故答案为:90;90;∠1,∠4;等角的余角相等;同位角相等,两直线平行.24.解:解法一:延长MF交CD于点H,∵∠1=90°+∠CHF,∠1=140°,∠2=50°,∴∠CHF=140°﹣90°=50°,∴∠CHF=∠2,∴AB∥CD.解法二:过点F作直线FL∥AB,∵FL∥AB,∴∠MFL=∠2=50°,∵∠MFN=90°,∴∠NFL=40°,∵∠1=140°,∴∠1+∠NFL=140°+40°=180°,∴CD∥FL,∴CD∥AB.25.证明:∵AB⊥BC,BC⊥CD,∴∠ABC=∠DCB=90°,∵∠1=∠2,∴∠ABC﹣∠1=∠DCB﹣∠2,∴∠CBE=∠BCF,∴BE∥CF.26.证明:∵∠A=∠EDF(已知),∴AC∥DF(同位角相等,两直线平行),∴∠C=∠CGF(两直线平行,内错角相等).又∵∠C=∠F(已知),∴∠CGF=∠F(等量代换),∴BC∥EF(内错角相等,两直线平行).27.解:(1)∠1+∠3=∠2时,a∥b;过P作MP∥a,∵MP∥a,∴∠1=∠DPM,∵∠1+∠3=∠2,∴∠3=∠MPC,∴MP∥BC,∴a∥b;(2)若P点在A点上部运动时,∠3﹣∠1=∠2时,a∥b;若P点在B点下部运动时,∠1﹣∠3=∠2时,a∥b.28.解:CD∥BE.理由:延长AC交BE于点F,∵∠CFE是△ABF的外角,∴∠CFE=∠2+∠3,∵∠1=∠2+∠3,∴∠1=∠CFE,∴CD∥BE.。
北师大版初中数学八年级上册《7.3 平行线的判定》同步练习卷(含答案解析

北师大新版八年级上学期《7.3 平行线的判定》同步练习卷一.选择题(共20小题)1.如图,点在延长线上,下列条件中不能判定BD∥AC的是()A.∠1=∠2B.∠3=∠4C.∠5=∠C D.∠C+∠BDC=180°2.下列结论正确的是()A.同位角相等B.同一平面内,不相交的两条直线叫做平行线C.过一点有且只有一条直线与已知直线平行D.垂直于同一条直线的两条直线互相平行3.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°4.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°5.在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是()A.B.C.D.6.如图,下列说法中,正确的是()A.若∠3=∠8,则AB∥CDB.若∠1=∠5,则AB∥CDC.若∠DAB+∠ABC=180°,则AB∥CDD.若∠2=∠6,则AB∥CD7.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3C.∠4=∠5D.∠4=∠6 8.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°9.如图,已知∠1=68°,要使AB∥CD,则须具备另一个条件()A.∠2=112°B.∠2=122°C.∠2=68°D.∠3=112°10.如图,下列条件能判定AB∥CD的是()A.∠1=∠2B.∠1=∠4C.∠2=∠3D.∠2+∠3=180°11.在下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.12.下列说法:①用两根钉子固定一根木条,体现数学事实是两点之间线段最短;②射线AB与射线BA表示同一条射线;③若AB=BC,则B为线段AC的中点;④不相交的两条直线叫做平行线;⑤过一点有且只有一条直线与已知直线垂直,其中正确的有()A.0个B.1个C.2个D.3个13.如图,∠1=50°,则下列条件中,能使AB∥CD的是()A.∠A=130°B.∠C=130°C.∠B=50°D.∠D=50°14.如图所示,由已知条件推出结论错误的是()A.由∠1=∠5,可以推出AB∥CDB.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BCD.由AD∥BC,可以推出∠3=∠715.如图,能判定a∥b的条件是()A.∠1=∠5B.∠2+∠4=180°C.∠3=∠4D.∠2+∠1=180°16.如图,能判定AD平行于BC的条件是()A.∠BAD=∠BCD B.∠BAD=∠ABC C.∠1=∠2D.∠3=∠4 17.如图,由下列条件,不能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠B+∠BCD=180°D.∠BAD+∠D=180°18.如图,能判断AB∥DC的是()A.∠ABC=∠CDA B.∠ADB=∠CBDC.∠ABD=∠CDB D.∠BAD+∠ABC=180°19.如图,在下列条件中,能判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠ABC=∠ADC D.∠ABC+∠BCD=180°20.如图,直线a、b被直线c所截,∠1=55°,下列条件中能判定a∥b的是()A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=65°二.填空题(共10小题)21.如图,两直线a、b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a、b的位置关系是,理由是.22.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是(填序号)23.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠AOD=100°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转.24.已知三条不同的直线a、b和c,a∥b,c∥b,则a和c位置关系是.25.对于同一平面内的直线a、b、c,如果a与b平行,c与a平行,那么c与b 的位置关系是.26.如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺另一边过点B画直线,若所画直线与BA重合,则这块木板的对边MN与PQ是平行的,其理论依据是.27.如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠BCD+∠D=180°.其中能够得到AB∥CD的条件有.(填序号)28.如图,若满足条件,则有AB∥CD,理由是.(要求:不再添加辅助线,只需填一个答案即可)29.如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠5=∠8;④∠4+∠7=180°.其中能判定直线a∥b的条件有.30.如图,下列能判定AB∥CD的条件有个(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5三.解答题(共20小题)31.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.32.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.33.如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.34.将一副直角三角尺BAC和ADE如图放置,其中∠BAC=∠ADE=90°,∠BCA=30°,∠AED=45°,若∠AFD=75°,试判断AE与BC的位置关系,并说明理由.35.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.36.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.37.如图,在△ABC中,AD⊥BC于点D,点E在AB边上,点G在AC边上EF ⊥BC于点F,若∠BEF=∠ADG.求证:AB∥DG38.已知:如图,直线AB与CD被EF所截,∠1=∠2,求证:AB∥CD.39.已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.40.如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.41.已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.42.已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.43.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH 平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,44.在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴.()∴∠1=∠3.()又∵∠1=∠2,(已知)∴.()∴EF∥DB.()45.如图,已知∠A=∠F,∠C=∠D,请问BD与CE平行吗?并说明理由.46.如图所示,已知∠EPM=∠FQM,∠AEP=∠CFQ.求证:AB∥CD.47.如图,已知点E在AB上,CE平分∠ACD,∠ACE=∠AEC.求证:AB∥CD.48.如图,已知∠1=∠2,∠B=∠C,求证:AB∥CD.49.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.50.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.北师大新版八年级上学期《7.3 平行线的判定》同步练习卷参考答案与试题解析一.选择题(共20小题)1.如图,点在延长线上,下列条件中不能判定BD∥AC的是()A.∠1=∠2B.∠3=∠4C.∠5=∠C D.∠C+∠BDC=180°【分析】根据平行线的判定方法直接判定即可.【解答】解:选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A选项不合题意.选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),不能判定BD ∥AC,所以B选项符合题意;选项C中,∵∠5=∠C,∴BD∥AC (内错角相等,两直线平行),所以C选项不合题意;选项D中,∵∠C+∠BDC=180°,∴BD∥AC(同旁内角互补,两直线平行),所以D选项不合题意;故选:B.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2.下列结论正确的是()A.同位角相等B.同一平面内,不相交的两条直线叫做平行线C.过一点有且只有一条直线与已知直线平行D.垂直于同一条直线的两条直线互相平行【分析】根据平行线的定义、性质,即可解答.【解答】解:A、两直线平行,同位角相等,故错误;B、同一平面内,不相交的两条直线叫做平行线,正确;C、过直线外一点有且只有一条直线与这条直线平行,故错误;D、在同一平面内,垂直于同一直线的两条直线互相平行,故错误;故选:B.【点评】本题考查了平行线,解决本题的关键是熟记相关性质,注意强调同一平面内.3.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【解答】解:A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断;故选:A.【点评】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.4.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°【分析】根据平行线的判定定理即可直接作出判断.【解答】解:A.根据内错角相等,两直线平行即可证得AB∥BC;B.根据内错角相等,两直线平行即可证得BD∥AC,不能证AB∥CD;C.根据内错角相等,两直线平行即可证得BD∥AC,不能证AB∥CD;D.根据同旁内角互补,两直线平行,即可证得BD∥AC,不能证AB∥CD.故选:A.【点评】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是()A.B.C.D.【分析】根据两条直线被第三条所截,如果同位角相等或内错角相等或同旁内角互补,那么这两条直线平行.【解答】解:A.由∠1=∠2,能判定AB∥CD,故本选项正确;B.由∠1=∠2,不能判定AB∥CD,故本选项错误;C.由∠1=∠2,不能判定AB∥CD,故本选项错误;D.由∠1=∠2,只能判定AD∥CB,故本选项错误;故选:A.【点评】此题主要考查了平行线的判定,关键是掌握内错角相等,两直线平行.6.如图,下列说法中,正确的是()A.若∠3=∠8,则AB∥CDB.若∠1=∠5,则AB∥CDC.若∠DAB+∠ABC=180°,则AB∥CDD.若∠2=∠6,则AB∥CD【分析】同位角相等,两直线平行;内错角相等,两直线平;同旁内角互补,两直线平行;依据平行线的判定方法得出结论.【解答】解:A.由∠3=∠8,不能得到AB∥CD,故本选项错误;B.若∠1=∠5,则AD∥CB,故本选项错误;C.若∠DAB+∠ABC=180°,则AD∥CB,故本选项错误;D.若∠2=∠6,则AB∥CD,故本选项正确;故选:D.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题关键.7.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3C.∠4=∠5D.∠4=∠6【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.【点评】本题考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.8.如图,下列条件不能判定直线a∥b的是()A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.根据平行线的判定定理进行解答.【解答】解:A、∵∠1=∠2,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选:C.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,当同位角相等、内错角相等、同旁内角互补,能推出两被截直线平行.9.如图,已知∠1=68°,要使AB∥CD,则须具备另一个条件()A.∠2=112°B.∠2=122°C.∠2=68°D.∠3=112°【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知∠1=68°,故可按同旁内角互补,两直线平行补充条件.【解答】解:∵∠1=68°,∴只要∠2=180°﹣68°=112°,即可得出∠1+∠2=180°.故选:A.【点评】本题主要考查了判定两直线平行的问题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.10.如图,下列条件能判定AB∥CD的是()A.∠1=∠2B.∠1=∠4C.∠2=∠3D.∠2+∠3=180°【分析】根据平行线的判定定理,对各选项进行逐一判断即可.【解答】解:A、∠2=∠1不符合三线八角,不能判定AB∥CD;B、∠1与∠4不是直线AB、CD构成的内错角,不能判定AB∥CD;C、∠3=∠2,根据内错角相等,两直线平行,可以判定AB∥CD;D、∠2+∠3=180°,不能判定AB∥CD.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.11.在下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.【解答】解:A、∠1=∠AEF,∠2=∠EFD,∠AEF于∠DFE是内错角,由∠1=∠2能判定AB∥CD,故本选项正确;B、∠1、∠2是内错角,由∠1=∠2能判定AC∥BD,故本选项错误;C、由∠1=∠2不能判定AB∥CD,故本选项错误;D、∠1、∠2是四边形中的对角,由∠1=∠2不能判定AB∥CD,故本选项错误;故选:A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.12.下列说法:①用两根钉子固定一根木条,体现数学事实是两点之间线段最短;②射线AB与射线BA表示同一条射线;③若AB=BC,则B为线段AC的中点;④不相交的两条直线叫做平行线;⑤过一点有且只有一条直线与已知直线垂直,其中正确的有()A.0个B.1个C.2个D.3个【分析】根据平行线、相交线等相关知识解答.【解答】解:①用两根钉子固定一根木条,体现数学事实是两点确定一条直线,此结论错误;②射线AB与射线BA的起点不同、方向不同,不是同一射线,此结论错误;③若AB=BC,则B不一定是线段AC的中点,此结论错误;④同一平面内不相交的两条直线叫做平行线,此结论错误;⑤过一点有且只有一条直线与已知直线垂直,此结论正确;故选:B.【点评】本题主要考查了射线,垂线与平行线,解题的关键是熟记平行线与射线的定义及垂线的性质.13.如图,∠1=50°,则下列条件中,能使AB∥CD的是()A.∠A=130°B.∠C=130°C.∠B=50°D.∠D=50°【分析】两条直线被第三条所截,如果内错角相等,那么这两条直线平行.【解答】解:∵AB与CD被AD所截,∴∠1和∠D是内错角,∴当∠1=∠D=50°时,可得AB∥CD,故选:D.【点评】本题主要考查了平行线的判定,解题时注意:内错角相等,两直线平行.14.如图所示,由已知条件推出结论错误的是()A.由∠1=∠5,可以推出AB∥CDB.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BCD.由AD∥BC,可以推出∠3=∠7【分析】根据平行线的判定以及性质,对各选项分析判断即可利用排除法求解.【解答】解:A、由∠1=∠5,可以推出AB∥CD,故本选项正确;B、由AB∥CD,可以推出∠4=∠8,故本选项错误;C、由∠2=∠6,可以推出AD∥BC,故本选项正确;D、由AD∥BC,可以推出∠3=∠7,故本选项正确.故选:B.【点评】本题主要考查了平行线的判定与性质,找准构成内错角的截线与被截线是解题的关键,本题容易出错.15.如图,能判定a∥b的条件是()A.∠1=∠5B.∠2+∠4=180°C.∠3=∠4D.∠2+∠1=180°【分析】根据已知条件,利用平行线判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,对4个条件逐一进行分析即可.【解答】解:A.由∠1=∠5,不能得到a∥b;B.由∠2+∠4=180°,可得a∥b;C.由∠3=∠4,不能得到a∥b;D.由∠2+∠1=180°,不能得到a∥b;故选:B.【点评】此题主要考查学生对平行线判定定理的理解和掌握,解题时注意:同旁内角互补,两直线平行.16.如图,能判定AD平行于BC的条件是()A.∠BAD=∠BCD B.∠BAD=∠ABC C.∠1=∠2D.∠3=∠4【分析】内错角相等,两直线平行.由平行线的判定方法判断即可.【解答】解:∵∠3=∠4(已知),∴AD∥BC(内错角相等,两直线平行).故选:D.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.17.如图,由下列条件,不能判断AB∥CD的是()A.∠1=∠4B.∠2=∠3C.∠B+∠BCD=180°D.∠BAD+∠D=180°【分析】根据平行线的判定定理即可直接作出判断.【解答】解:A、根据内错角相等,两直线平行即可证得,故选项错误;B、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确;C、根据同旁内角互补,两直线平行,即可证得,故选项错误;D、根据同旁内角互补,两直线平行,即可证得,故选项错误.故选:B.【点评】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.18.如图,能判断AB∥DC的是()A.∠ABC=∠CDA B.∠ADB=∠CBDC.∠ABD=∠CDB D.∠BAD+∠ABC=180°【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.依据平行线的判定方法进行分析即可.【解答】解:由∠ABC=∠CDA,不能得到AB∥DC;由∠ADB=∠CBD或∠BAD+∠ABC=180°,可得AD∥BC;由∠ABD=∠CDB,可得AB∥DC(内错角相等,两直线平行);故选:C.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.19.如图,在下列条件中,能判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠ABC=∠ADC D.∠ABC+∠BCD=180°【分析】根据内错角相等,两直线平行解答.【解答】解:∵∠1=∠2,∴AD∥BC.故选:A.【点评】本题考查了平行线的判定,是基础题,准确识图是解题的关键.20.如图,直线a、b被直线c所截,∠1=55°,下列条件中能判定a∥b的是()A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=65°【分析】同位角相等,两直线平行,根据平行线的判定定理进行解答.【解答】解:如图,若∠2=55°,则∠3=55°,∴∠1=∠3,∴a∥b,故选:C.【点评】本题考查了平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二.填空题(共10小题)21.如图,两直线a、b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a、b的位置关系是a∥b,理由是同位角相等,两直线平行.【分析】因为∠2与∠3是邻补角,由已知便可求出∠3=∠1,利用同位角相等,两直线平行即可得出a,b的位置关系.【解答】解:∵∠2+∠3=180°,∠2=130°,∴∠3=50°,∵∠1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:a∥b;同位角相等,两直线平行.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角22.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是①③④⑤(填序号)【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:①∵∠1=∠2,∴a∥b,故此选项正确;②∠3=∠6无法得出a∥b,故此选项错误;③∵∠4+∠7=180°,∴a∥b,故此选项正确;④∵∠5+∠3=180°,∴∠2+∠5=180°,∴a∥b,故此选项正确;⑤∵∠7=∠8,∠6=∠8,∴∠6=∠7,∴a∥b,故此选项正确;综上所述,正确的有①③④⑤.故答案为:①③④⑤.【点评】此题主要考查了平行线的判定,正确把握平行线的几种判定方法是解题关键.23.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠AOD=100°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转10°.【分析】根据平行线的性质,求得∠AOD′的度数,即可确定旋转的角度,即∠DOD′的大小.【解答】解:∵OD′∥AC,∴∠AOD′=180°﹣∠A=110°,∴∠DOD′=∠AOD′﹣∠AOD=110°﹣100°=10°.故答案为:10°.【点评】考查了平行线的判定,在旋转变换中,正确认识旋转角是解题关键,同时本题运用了平行线的性质,两直线平行,同旁内角互补.24.已知三条不同的直线a、b和c,a∥b,c∥b,则a和c位置关系是平行.【分析】根据平行于同一条直线的两直线也平行可得答案.【解答】解:∵a∥b,c∥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线,关键是掌握平行公理的推论.25.对于同一平面内的直线a、b、c,如果a与b平行,c与a平行,那么c与b 的位置关系是平行.【分析】根据平行于同一条直线的两直线也平行可得答案.【解答】解:如果a与b平行,c与a平行,那么b与c平行,故答案为:平行.【点评】此题主要考查了平行线,关键是掌握平行公理的推论.26.如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺另一边过点B画直线,若所画直线与BA重合,则这块木板的对边MN与PQ是平行的,其理论依据是内错角相等,两条直线平行.【分析】依据∠ABM=90°,∠BAQ=90°,即可得到∠MAB=∠QAB,进而得出MN ∥PQ.【解答】解:∵∠ABM=90°,∠BAQ=90°,∴∠MAB=∠QAB,∴MN∥PQ(内错角相等,两条直线平行),故答案为:内错角相等,两条直线平行.【点评】本题考查了平行线的判定;熟记内错角相等,两直线平行是解决问题的关键.27.如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠BCD+∠D=180°.其中能够得到AB∥CD的条件有①②.(填序号)【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠D+∠BCD=180°,∴AD∥CB,故本小题错误.故答案为:①②.【点评】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.28.如图,若满足条件∠A=∠3,则有AB∥CD,理由是同位角相等,两直线平行.(要求:不再添加辅助线,只需填一个答案即可)【分析】依据平行线的判定进行添加即可,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.【解答】解:若∠A=∠3,则同位角相等,两直线平行,故答案为:∠A=∠3,同位角相等,两直线平行.(答案不唯一)【点评】本题主要考查了平行线的判定,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.29.如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠5=∠8;④∠4+∠7=180°.其中能判定直线a∥b的条件有①②④.【分析】在复杂的图形中具有相等关系或互补关系的两角,首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:①∵∠1=∠2,∴a∥b(同位角相等,两直线平行).②∵∠3=∠6,∴a∥b(内错角相等,两直线平行).③由∠5=∠8,不能得到直线a∥b;④∵∠4+∠7=180°,∵∠4=∠6(对顶角相等),∴∠6+∠7=180°,∴a∥b(同旁内角互补,两直线平行).故答案为:①②④.【点评】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.30.如图,下列能判定AB∥CD的条件有3个(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5【分析】依据平行线的判定方法进行判断:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.【解答】解:(1)由∠B+∠BCD=180°可得AB∥CD;(2)由∠1=∠2可得AD∥BC;(3)由∠3=∠4可得AB∥CD;(4)由∠B=∠5可得AB∥CD;故答案为:3.【点评】本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三.解答题(共20小题)31.如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.【分析】过C作CF∥AB,据此得∠BCF=∠B=25°,从而知∠DCF=∠BCD﹣∠BCF=42°=∠D,依据平行线判定得CF∥ED,继而知AB∥ED.【解答】解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.【点评】本题主要考查平行线的判定,解题的关键是掌握内错角相等两直线平行及平行于同一直线的两直线平行的判定.32.如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.【分析】根据角平分线的定义求出∠ADC=2∠1,∠BCD=2∠2,然后求出∠ADC+∠BCD=180°,再根据同旁内角互补,两直线平行,求出AD∥BC即可.【解答】解:BC∥AD.理由如下:∵DE平分∠ADC,CE平分∠BCD,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC.【点评】本题考查了平行线的判定与性质,角平分线的定义的运用,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.33.如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.【分析】(1)利用基本作图(作已知角的平分线)作∠BDC的平分线DE;(2)先根据角平分线的定义得到∠BDE=∠CDE,再利用三角形外角性质得∠BDC=∠A+∠ACD,加上∠ACD=∠A,则∠BDE=∠A,然后根据平行线的判定方法可判断DE∥BC.【解答】解:(1)如图,DE为所作;(2)DE∥AC.理由如下:∵DE平分∠BDC,∴∠BDE=∠CDE,而∠BDC=∠A+∠ACD,即∠BDE+∠CDE=∠A+∠ACD,∵∠ACD=∠A,∴∠BDE=∠A,∴DE∥BC.【点评】本题考查了平行线的判定,基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).34.将一副直角三角尺BAC和ADE如图放置,其中∠BAC=∠ADE=90°,∠BCA=30°,∠AED=45°,若∠AFD=75°,试判断AE与BC的位置关系,并说明理由.【分析】根据三角形外角性质,可得∠EAF=30°,再根据∠C=30°,可得∠EAF=∠C,进而判定AE∥BC.【解答】解:AE与BC平行.理由:∵∠AFD是△AEF的外角,∴∠EAF=∠AFD﹣∠E=75°﹣45°=30°,又∵∠C=30°,∴∠EAF=∠C,∴AE∥BC.【点评】本题考查了平行线的判定与性质及三角形的外角的性质的运用,平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.35.已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.【分析】推出DG∥AC,根据平行线性质得出∠2=∠ACD,求出∠1=∠DCA,根据平行线判定推出即可.【解答】证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).【点评】本题考查了平行线性质和判定的应用,主要考查学生的推理能力.36.已知:DE⊥AO于E,BO⊥AO,∠CFB=∠EDO,证明:CF∥DO.【分析】先由垂直的定义可得:∠AED=∠AOB=90°,然后根据同位角相等,两条直线平行,可得:DE∥BO,进而根据两直线平行,内错角相等,可得∠EDO=∠BOD,然后由等量代换可得:∠BOD=∠CFB,进而由同位角相等,两条直线平行可得:CF∥DO.【解答】证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO(同位角相等,两条直线平行),∴∠EDO=∠BOD(两直线平行,内错角相等),∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO(同位角相等,两条直线平行).【点评】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键.37.如图,在△ABC中,AD⊥BC于点D,点E在AB边上,点G在AC边上EF ⊥BC于点F,若∠BEF=∠ADG.求证:AB∥DG【分析】依据AD∥EF即可得到∠BEF=∠BAD,再根据∠BEF=∠ADG,即可得出∠ADG=∠BAD,进而得到AB∥DG.【解答】证明:∵AD⊥BC,EF⊥BC∴AD∥EF∴∠BEF=∠BAD(两直线平行,同位角相等)又∵∠BEF=∠ADG∴∠ADG=∠BAD∴AB∥DG(内错角相等,两直线平行)【点评】此题主要考查了平行线的判定与性质定理,关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.38.已知:如图,直线AB与CD被EF所截,∠1=∠2,求证:AB∥CD.。
八年级数学上册7.3平行线的判定练习题北师大版(new)

平行线的判定班级:___________姓名:___________得分:__________一.选择题(每小题5分,共35分)1.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠72.在长方体ABCD﹣EFGH中,与面ABCD平行的棱共有()A.1条 B.2条 C.3条D.4条3.如图,四边形纸片ABCD,以下测量方法,能判定AD∥BC的是()A.∠B=∠C=90° B.∠B=∠D=90°C.AC=BD D.点A,D到BC的距离相等4.如图,在四边形ABCD中,若∠1=∠2,则AD∥BC,理由是()A.两直线平行,内错角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.同位角相等,两直线平行5.过一点画已知直线的平行线()A.有且只有一条B.不存在 C.有两条 D.不存在或有且只有一条6.如图,下列条件中,能判定DE∥AC的是( )A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4 D.∠1=∠27.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180° C.∠4=∠5 D.∠2=∠3二.填空题(每小题5分,共20分)1.如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有个.2.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是.3.如图所示,请你填写一个适当的条件:,使AD∥BC.4.如图,是小明学习三线八角时制作的模具,经测量∠2=100°,要使木条a与b平行,则∠1的度数必须是.三.解答题(每小题15分,共45分)1.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.2.如图,∠BAF=46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?3.如图,若∠EFD=110°,∠FED=35°,ED平分∠BEF,那么AB与CD平行吗?请说明你的理由.参考答案一.选择题(每小题5分,共35分)1.B【解析】∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B2.D【解析】∵面EFGH与面ABCD平行;∴EF、FG、GH、EH四条棱与面ABCD平行.故选:D.3.D【解析】A、∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,A不可以;B、∠B=∠D=90°,无法得出边平行的情况,B不可以;C、AC=BD,无法得出边平行的情况,C不可以;D、∵点A,D到BC的距离相等,且A、D在直线BC的同侧,∴AD∥BC,D可以.故选D.4.C【解析】∵∠1与∠2是内错角,∴若∠1=∠2,则AD∥BC.故选C.5.D【解答】若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.故选D.6.C【解析】∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选C.7.D【解析】A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.二.填空题(每小题5分,共20分)1.3.【解析】(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为:3.2.同位角相等,两直线平行【解析】如图所示,过直线外一点作已知直线的平行线,只有满足同位角相等,才能得到两直线平行.由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.3.添加∠FAD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°.【解析】∵∠FAD=∠FBC∴AD∥BC(同位角相等两直线平行);∵∠ADB=∠DBC∴AD∥BC(内错角相等两直线平行);∵∠DAB+∠ABC=180°∴AD∥BC(同旁内角互补两直线平行)4.80°【解析】如图,∵∠2=100°,∴∠3=∠2=100°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣100°=80°.故答案为:80°.三.解答题(每小题15分,共45分)1.答案见解析.【解析】BE∥DF.理由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的定义).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(同角的余角相等).∴BE∥DF(同位角相等,两直线平行).2.答案见解析.【解析】CD∥AB.证明:∵CE⊥CD,∴∠DCE=90°,∵∠ACE=136°,∴∠ACD=360°﹣136°﹣90°=134°,∵∠BAF=46°,∴∠BAC=180°﹣∠BAF=180°﹣46°=134°,∴∠ACD=∠BAC,∴CD∥AB.3.AB与CD平行.理由如下:∵ED平分∠BEF,∴∠FED=∠BED=35°,∴∠BEF=70°.∵∠BEF+∠EFD=70°+110°=180°,∴AB∥CD.【解析】由ED为∠BEF的平分线,根据角平分线的定义可得,∠FED=∠BED=35°,进而得出∠BEF=70°,然后根据同旁内角互补两直线平行,即可AB与CD平行.AB与CD平行.理由如下:∵ED平分∠BEF,∴∠FED=∠BED=35°,∴∠BEF=70°.∵∠BEF+∠EFD=70°+110°=180°,∴AB∥CD.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
北师大版八年级数学上册《7.3平行线的判定》同步测试题带答案

北师大版八年级数学上册《7.3平行线的判定》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1下列关于两直线平行的叙述不正确的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角不互补,两直线不平行D.如果a∥b,b∥c,那么a∥c2如图,直线a、b被直线c所截,根据内错角相等判断两直线平行的是()A.∵∥1=∥7,∵a∥bB.∵∥4=∥6,∵a∥bC.∵∥3+∥6=180°,∵a∥bD.∵∥2=∥6,∵a∥b3如图,已知∥ABC=∥ADC,∥1=∥2,则AB与CD的关系是.4一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时∥B=140°,那么∥C= .5如图,已知∥A=∥EDF,∥C=∥F.求证:BC∥EF.【能力巩固】6如图,下列条件能推出AB∥CD的是()A.∥1=∥2B.∥3=∥4C.∥5=∥6D.∥4=∥57下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∥BEC=∥B+∥C.求证:AB∥CD.证明:延长BE交于点F,则∥BEC= +∥C.又∵∥BEC=∥B+∥C∵∥B=▲∵AB∥CD(相等,两直线平行).A.∥代表∥FECB.□代表同位角C.▲代表∥EFCD.∥代表AB8如图,在条件:∵∥A=∥ACE;∵∥A=∥ECD;∵∥B=∥ECD;∵∥B=∥ACE中,能判断AB∥CE 的条件是.9如图,已知AB∥EF,垂足为E,CD∥EF,垂足为F.求证:AB∥CD.10如图,已知∥ECD=∥BDC,∥B+∥ECD=180°,求证:AB∥CD.【素养拓展】11如图,点B、E分别在AC、DF上,BD、CE均与AF相交,∥1=∥2,∥C=∥D.求证:AC∥DF.12如图,直线EF交AB于点E,交CD于点F,EG平分∥AEF,FG平分∥EFC,它们相交于点G,若∥EGF=90°,求证:AB∥CD.参考答案基础达标作业1.D2.B3.平行4.140°5.证明:∵∥A=∥EDF(已知)∵AC∥DE(同位角相等,两直线平行)∵∥C=∥CGF(两直线平行,内错角相等).又∵∥C=∥F(已知)∵∥CGF=∥F(等量代换)∵BC∥EF(内错角相等,两直线平行).能力巩固作业6.A7.C8.∵∵9.证明:∵AB∥EF,CD∥EF∵∥AEF=∥CFG=90°.∵AB∥CD.10.证明:∵∥ECD=∥BDC,∥B+∥ECD=180°.∵∥B+∥BDC=180°,∵AB∥CD.素养拓展作业11.证明:∵∥2=∥3,∥1=∥2∵∥1=∥3∵BD∥CE∵∥C=∥ABD.又∵∥C=∥D∵∥D=∥ABD∵AC∥DF.12.证明:∵EG平分∥AEF,FG平分∥EFC∵∥1=∥2,∥3=∥4∵∥AEF=2∥2,∥EFC=2∥3.又∵∥EGF=90°,∵∥2+∥3=90°.∵∥AEF+∥EFC=2∥2+2∥3=2(∥2+∥3)=180°∵AB∥CD.。
北师大版八年级上册数学73平行线的判定同步练习题
7.3 平行线的判定1.如图,下列说法中,正确的是( ).A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD2.如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.3.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).4.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.5.如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD 与BC的位置关系,并说明理由.6.工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。
高效学习经验——把数学的知识点都结合起中考状元XX平日里爱打篮球、爱看球赛,XX给人的第一印象很阳光。
在他看来,他取得高分的最大秘诀就是:基础知识掌握得非常牢固。
在所有学科中,XX认为自己的理科和英语还算不错。
他说他最擅长的是用知识网络法来归纳知识,让零散的知识变得系统、有条理,具体如何做呢?以数学为例,XX会首先联想一个数学关键词比如说一元二次方程,然后围绕着这个关键词想一想,什么叫做一元次方程,一元二次方程有哪些解法,解答一元二次方程的步骤是什么等等,然后再将这些间题的答案写在笔记本中,这样知识就变得非常清晰了。
7.3平行线的判定同步练习北师大版2024—2025学年八年级上册
7.3平行线的判定同步练习北师大版2024—2025学年八年级上册一、夯实基础:1、平行线的判定:⑴同位角,两条直线平行.⑵内错角,两条直线平行.⑶同旁内角,两条直线平行.2、如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行3、如图,直线a,b被直线c,d所截.下列条件能判定a∥b的是()A.∠1=∠3B.∠2+∠4=180°C.∠4=∠5D.∠1=∠24、如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠2+∠3=180°C.∠1=∠4D.∠5+∠6=180°5、如图,点E在CD延长线上,下列条件中能判定AB∥CE的是()A.∠5=∠C B.∠1=∠2C.∠B=∠C D.∠C+∠CAB=180°二、例题精讲:例1、如图,点D在△ABC的边AB上,DF经过边AC的中点E,且EF=DE.求证:CF ∥AB.变式1、如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.变式2、如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,证明:AB∥CD.变式3、如图,∠1=∠2,∠3=∠4.试说明AB∥CD.变式4、如图,点A,B,C在同一条直线上,∠1=∠2,∠A=∠E,求证:AD∥BE.变式5、如图,已知∠1=∠ACB,∠2=∠3,求证:FH∥CD.例2、将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.变式1、如图所示,在四边形ABCD中,已知∠A=∠C=90°,BE平分∠ABC交CD于点E,DF平分∠ADC交AB于点F.(1)求证:∠ABC+∠ADC=180°;(2)求证:BE∥DF.变式2、如图,已知△ABC,∠ACB=80°,点E,F分别在AB,AC上,ED交AC于点G,交BC的延长线于点D,∠FEG=32°,∠CGD=48°.求证:EF∥BC.变式3、如图,点G在AB上,点E在CD上,连接BE,CG,DG,BE与DG交于点F,∠2=∠C.(1)若∠1=60°,求∠ABF的度数;(2)若∠GBF+∠BFG=152°,∠D=28°,求证:AB∥CD.例3、根据图形填空:如图所示,完成推理过程.(1)∵∠1=∠3(已知),∴∥().(2)∵∠2=∠3(已知),∴EF∥AD().(3)∵∠DGA+∠BAC=180°(已知),∴DG∥BA().(4)∵∠B=∠CDG(已知),∴∥().变式1、已知:如图,EF⊥FG,垂足为F,且点F在直线CD上,FE与直线AB相交于点H,∠1+∠2=90°.求证:AB∥CD.(请完成下面的证明过程)证明:∵EF⊥FG(已知),∴∠EFG=°(垂直的定义),即∠EFD+=90°.又∵∠1+∠2=90°(已知),∴∠EFD=(),∴AB∥CD().变式2、按要求完成下列证明:已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点,且∠1+∠2=90°.求证:DE∥BC.证明:∵CD⊥AB(已知),∴∠1+=90°().∵∠1+∠2=90°(已知),∴=∠2().∴DE∥BC().变式3、如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,试说明:CE∥DF.请完成下面的解题过程.解:∵BD平分∠ABC,CE平分∠ACB(已知),∴∠,(角平分线的定义),又∵∠ABC=∠ACB(已知)∴∠=∠.又∵∠F=∠DBF(已知)∴∠F=∠,∴CE∥DF().三、能力提升:1、如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,且∠1+∠2=90°.(1)求证:AB∥CD;(2)若∠2:∠3=2:5,求∠AOF的度数.2、已知:如图所示,直线AB、直线DE被直线l所截,分别交直线AB、DE于点A、D.点C为其内部一点,连结AC,CD,且满足∠1+∠2=∠ACD.(1)求证:AB∥DE;(2)若∠ACD=90°,且AC平分∠BAD,说明∠1和∠ADC的数量关系.。
北师大版八年级(上)数学《平行线的判定》同步练习3(含答案)
G F E 21D C B A 7.3 平行线的判定一、选择题1.如图,下列推理中正确的有( )①因为∠1=∠2,所以BC ∥AD ;②因为∠2=∠3,所以AB ∥CD ;③因为∠BCD +∠ADC =180°,所以BC ∥AD ;④ 因为∠BCD +∠ABC =1800,所以BC ∥AD .A .1个B .2个C .3个D .4个第1题 第2题 第3题2.如图,能判定AB ∥CE 的是( )A .∠B =∠ACE B .∠A =∠ECDC .∠B =∠ACBD .∠A =∠ACE3、如图,下列条件中,不能判定直线l 1∥l 2的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180°二、填空题4.如图,一个合格的变形管道ABCD 需要AB 边与CD 边平行,若一个拐角∠ABC =72°,则另一个拐角∠BCD =_______时,这个管道符合要求.第5题 第6题5.如图,点E 在CD 上,点F 在BA 上,G 是AD 延长线上一点. (1 )若∠A =∠1,则可判断_______∥_______,因为________. (2 )若∠1=∠_________,则可判断AG ∥BC ,因为_________. (3 )若∠2+∠______=180°,则可判断CD ∥AB ,因为______6.如图,光线AB 、CD 被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么1l 252341D C AAB和CD的位置关系是,BE和DF的位置关系是.三、解答题7.如图,在三角形ABC中,CD⊥AB于D,FG⊥AB于G,∠1=∠2,试问ED∥BC吗?说说你的理由.7.3 平行线的判定1.A 2.D 3.B4.108°5.(1)AB,DC,同位角相等,两直线平行(2)C,内错角相等,两直线平行(3)EFB,同旁内角互补,两直线平行6.AB∥CD,BE∥DF.7.解:ED∥BC理由是:∵CD⊥AB,FG⊥AB∴CD∥FG∴∠DCE=∠2∵∠1=∠2∴∠DCE=∠1∴ED∥BC。
北师大版初中八年级数学上册第7章3平行线的判定练习含答案
3平行线的判定
知能提升训练
1.如图所示,过点P画直线a的平行线b的作法的依据是().
A.两直线平行,同位角相等
B.同位角相等,两直线平行
C.两直线平行,内错角相等
D.内错角相等,两直线平行
2.下列选项中,哪个不可以得到l1∥l2?().
A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°
3.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().
A.如图①,展开后测得∠1=∠2
B.如图②,展开后测得∠1=∠2且∠3=∠4
C.如图③,测得∠1=∠2
D.如图④,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
4.如图,下列能判定AB∥EF的条件有().
①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
A.1个
B.2个
C.3个
D.4个
5.如图,∠A=70°,O是AB上一点,直线OD与AB所夹角∠BOD=82°,要使OD∥AC,直线OD 绕点O按逆时针方向至少旋转度.
6.(2021兰州)将一副三角板如图摆放,则BC∥,理由是.
7.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.求证:AB∥CD.
8.如图,∠BAF=46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册第七章平行线的证明 7.3平行线的判定同步测试
1.(1)如图,若∠CBE=∠A,则____∥____,理由是____________________________________.
(2)若∠CBE=∠C,则____∥____,理由是________________________.
(3)若∠CDB+∠DBE=180°,则____∥____,理由是__________________________________.
2. 如图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为_______.
3.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠5=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判定a∥b的是( )
A.①②③④ B.①③④ C.①③ D.②④
4.如图,∠1=∠2,则下列结论正确的是( )
A.AD∥BC B.AB∥CD C.AD∥EF D.EF∥BC
5.如图所示,以下条件能判定GE∥CH的是( )
A.∠FEB=∠ECD B.∠AEG=∠DCH C.∠GEC=∠HCF D.∠HCE=∠AEG
6. 如图,下列条件中,不能判断直线l1∥l2的是( )
A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°
7.两条直线被第三条直线所截,有一对同位角相等,则这一对同位角的角平分线( ) A.互相垂直 B.互相平行 C.相交但不垂直 D.不能确定
8.如图,下列推理中,正确的是( )
A.∵∠2=∠4,∴AD∥BC B.∵∠1=∠3,∴AD∥BC
C.∵∠4+∠D=180°,∴AD∥BC D.∵∠4+∠B=180°,∴AB∥CD
9.如图,已知直线EF⊥MN,垂足为F,且∠1=140°,则当∠2等于多少时,AB∥CD.( )
A.50° B.40° C.30° D.60°
10.如图,若将木条a绕点O旋转后与木条b平行,则旋转的最小角度为( )
A.65° B.85° C.95° D.115°
11.如果一个角的两边与另一个角的两边分别平行,那么这两个角( )
A.相等 B.互补 C.相等或互补 D.不能确定
12.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向和原来的方向相同,这两次拐的角度可能是( )
A.第一次向左拐30°,第二次向右拐30°
B.第一次向左拐50°,第二次向右拐130°
C.第一次向右拐30°,第二次向右拐130°
D.第一次向左拐50°,第二次向左拐130°
13.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC,DB中,相互平行的线段有( )
A.4组 B.3组 C.2组 D.1组
14.如图,已知AB⊥AD,CD⊥AD,∠1=∠2,完成下列推理过程:
证明:∵AB⊥AD,CD⊥AD(已知),
∴________=________=90°(垂直定义),
又∵∠1=∠2(已知),
∴∠BAD-∠1=∠CDA-______(等式的性质),即:∠DAE=∠ADF.
∴DF∥____(内错角相等,两直线平行).
答案:
1. (1) AD BC 同位角相等,两直线平行
(2) CD AE 内错角相等,两直线平行
(3) CD AE 同旁内角互补,两直线平行
2. 平行
3. B
4. C
5. C
6. B
7. B
8. B
9. A
10. B
11. C
12. A
13. B
14. ∠DAB ∠ADC
∠2
AE。