北师大版八年级数学上册知识点归纳总结
全面的北师大版数学八年级上册知识点总结

八年级上册知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即a 2 +b 2=c 22、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系,a 2 +b 2=c 2那么这个三角形是直角三角形。
3、勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数。
常见的勾股数(3,4,5),(6,8,10),(5,12,13),(8,15,17),(7,24,25)第二章 实数一、实数的概念及分类1、实数的分类 整数(包括正整数,0,负整数)有理数实数 分数(包括正分数和负分数)正无理数无理数 无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”,归纳起来有三类:(1)开方开不尽的数,如32,7等;(2)化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;注意:分数是有理数,32不是分数。
二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a +b =0,a =—b ,反之亦成立。
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a |≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a |=a ,则a ≥0;若|a |=-a ,则a ≤0。
3、倒数:如果a 与b 互为倒数,则有ab =1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
北师大版八年级上册数学知识点归纳总结

北师大版八年级上册数学知识点归纳总结一、整数1.整数的概念整数包括正整数、负整数和零,用于表示不同方向的数值,可以表示纯数量也可以表示位置;整数的计算规律包括加法、减法、乘法和除法,要注意正负数的运算规则和加减法规则;2.整数的比较整数大小的比较可以利用数轴进行表示,也可以通过大小比较的规则进行判断;二、分式1.分式的概念分式是含有分数的数值表达式,由分子和分母组成,分式中有约分和通分的概念;2.分式的加减法分式的加减法需要通分后进行计算,要注意计算过程中保持分母一致;3.分式的乘除法分式的乘法即将分子和分母分别相乘,分式的除法即将分子和分母倒置后相乘,也需要注意进行约分和化简;三、一元一次方程1.一元一次方程的概念一元一次方程是指只含有一个未知数,并且未知数的最高次幂为1的方程,通常可以用字母表示;2.一元一次方程的解法解一元一次方程的方法有加减消元法、倍加消元法和代入法,在解题中要注意整理方程和验证解;3.一元一次方程及其实际问题一元一次方程可以用来解决诸如商场打折、运动比赛、等时速运动等实际问题,需要根据实际情况建立方程并解决;四、图形的性质1.四边形的性质四边形包括矩形、正方形、菱形、平行四边形等,各种四边形有不同的性质和判定条件;2.三角形的性质三角形包括等边三角形、等腰三角形、直角三角形等,要掌握不同三角形的性质和判定条件;3.图形的面积和周长计算计算不同图形的周长和面积需要掌握相应的公式和计算方法,如正方形、矩形、三角形、圆等;五、比例与相似1.比例的概念比例是指两个量之间的对应关系,可以表示为两个有理数的比,也可以用分式、百分数等形式表示;2.比例的性质和应用比例的求解和应用涉及到多种问题,如物品的混合、速度、面积比等实际问题,需要掌握不同解法和计算方法;3.相似三角形的性质和判定相似三角形有相似的对应边和角,可以利用辅助线、相似三角形的相似定理等方法判定相似三角形;六、二次根式1.二次根式的概念与性质二次根式包括平方根和立方根,具有乘方和开方的性质,要注意二次根式的运算和化简;2.二次根式的运算二次根式的运算包括加减乘除、化简、估算等,需要掌握不同的运算方法和技巧;3.二次根式及其应用二次根式在实际中有广泛的应用,如水果的分割、建筑物的设计等,需要掌握相关的计算方法和应用技巧;七、平面直角坐标系1.平面直角坐标系的概念与性质平面直角坐标系是利用两条相互垂直的坐标轴来定位点的位置,可以表示平面上的任意点;2.点的坐标和点的对称点的坐标可以通过与坐标轴的交点来确定,点的对称包括关于x 轴、y轴和原点的对称,需要掌握坐标的计算和点的对称性质;3.直线的方程和性质直线的方程可以表示为一般式、斜截式、截距式、点斜式等形式,需要根据条件确定直线的方程和性质;八、统计与概率1.统计的概念与方法统计是指收集、整理和分析数据的方法,包括频数分布、频率分布、累计频率分布、频数直方图、频率多边形等;2.概率的概念与计算概率是指某一事件发生的可能性,可以通过实验、频率和古典概率进行计算,需要掌握计算概率的方法和技巧;以上就是北师大版八年级上册数学知识点的归纳总结,希望对你有所帮助。
新版北师大数学八年级上册各章节知识点总结

第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方与等于斜边c的平方,即222a b c+=2、勾股定理的逆定理假如三角形的三边长a,b,c有关系,222+=,那么这个三角a b c形是直角三角形。
勾股数:满意222+=的三个正整数,称为勾股数。
a b c第二章实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数与无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3等;(3)有特定构造的数,如0.1010010001…等;二、实数的倒数、相反数与肯定值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、肯定值在数轴上,一个数所对应的点与原点的间隔,叫做该数的肯定值。
(|a|≥0)。
零的肯定值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数假如a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1与-1。
零没有倒数。
4、数轴规定了原点、正方向与单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。
5、估算三、平方根、算数平方根与立方根1、算术平方根:一般地,假如一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特殊地,0的算术平方根是0。
表示方法:记作“a”,读作根号a。
性质:正数与零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,假如一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:正数a的平方根记做“a”,读作“正、负根号a”。
北师大版八年级数学上册知识点梳理

第一章 三角形初步[定义与命题]定义:规定某一名称或术语的意义的句子。
命题:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
命题一般由条件和结论组成,可以改为“如果……”,“那么……”的形式。
正确的命题叫真命题,不正确的命题叫假命题。
基本事实:人们在长期反复实践中证明是正确的,不需要再加证明的命题。
定理:用逻辑的方法判断为正确并作为推理的根据的真命题。
注意:基本事实和定理一定是真命题。
[证明]在一个特定的公理系统中,根据一定的规则或标准,由公理和定理推导出某些命题的过程。
[三角形]由三条不在同一直线上的线段首尾顺次相接组成的图形叫做三角形 [三角形按边分类]三角形()⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形底边和腰不相等的等腰三角形等腰三角形等边三角形正三角形[三角形按内角分类]三角形 锐角三角形:三个内角都是锐角直角三角形:有一个内角是直角 钝角三角形:有一个内角是钝角 [三角形的性质]三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形三内角和等于180°。
三角形的一个外角等于与它不相邻的的两个内角之和。
[三角形的三种线]顶角的角平分线:三条,交于一点 三角形的中线:三条,交于一点 三角形的高线:三条,交于一点。
思考:锐角、直角、钝角三角形高线的交点分别在什么位置[全等形]能够完全重合的两个图形叫做全等形. [全等三角形]能够完全重合的两个三角形叫做全等三角形.重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. [全等三角形的性质]全等三角形的对应边相等,全等三角形的对应角相等。
还有其它推出来的性质:全等三角形的周长相等、面积相等。
全等三角形的对应边上的对应中线、角平分线、高线分别相等。
[三角形全等的证明]边边边:三边对应相等的两个三角形全等.(SSS)边角边:两边和它们的夹角对应相等的两个三角形全等.(SAS)角边角:两角和它们的夹边对应相等的两个三角形全等.(ASA)角的内部到角的两边的距离相等的点在角的平分线上。
八年级上册数学北师大版知识点总结

第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
北师大版八年级数学上册知识点总结

北师大版八年级数学上册知识点总结北师大版八年级上册数学整理总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算(4))0,0(>≥=b a bab a ()0,0(>≥=b a baba ) 3、运算结果若含有“a ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式 六、实数的运算(1)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
北师大版八年级上册数学知识点归纳总结

北师大版八年级上册数学知识点归纳总结一、有理数1.有理数的认识有理数包括自然数、整数、分数和负数。
有理数在数轴上可以用点表示。
2.有理数的加法和减法有理数的加法和减法遵循符号相同的两数加减法则,符号不同的两数加减法则。
3.有理数的乘法和除法有理数的乘法和除法遵循符号相同的两数乘除法则,符号不同的两数乘除法则。
4.有理数的绝对值有理数的绝对值是该数到0的距离,大于等于0。
5.有理数的比较比较有理数大小时,可以先化为相同分母的分数,再进行比较。
6.有理数的混合运算有理数的混合运算包括加、减、乘、除,需要按照运算规则进行计算。
二、代数方程1.代数方程的认识代数方程是指含有未知数的数学式子,可以根据方程求未知数的值。
2.一元一次方程一元一次方程是指未知数的最高次幂为1的方程,可以用反运算法则解方程。
3.一元一次方程组一元一次方程组是指含有两个未知数的方程组,可以通过消元法或代入法解方程。
4.整式的加减整式的加减需要先合并同类项,再按照加减法则进行计算。
5.一元一次方程的应用一元一次方程可以用来解决各种实际问题,如关于速度、距离、工作等的问题。
三、平面图形1.直角三角形直角三角形是指其中一个角为90°的三角形,可以利用勾股定理求解边长和斜边长。
2.平行四边形平行四边形的对边相等、对角线相等,可以利用性质求解其周长和面积。
3.面积和周长计算平面图形的面积和周长需要根据不同图形的性质使用相应的公式计算。
4.圆的性质圆的直径和半径的关系、圆心角和弧的关系、圆的面积和周长的计算。
5.圆的应用圆的应用包括解决相关问题,如环形的面积和周长、圆形公园的设计等。
6.平面图形的综合应用综合运用平面图形的性质和计算方法,解决各种相关问题。
四、统计与概率1.统计调查进行统计调查可以根据需要选择抽样调查或全面调查,收集数据用各种图表表示。
2.统计中的分析问题对收集的数据进行分析,可以通过频数分布表、频数分布直方图和频数分布折线图进行展示。
八年级数学上册知识点总结北师大版

八年级数学上册知识点总结北师大版一、勾股定理。
1. 勾股定理内容。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。
例如,一个直角三角形的两条直角边分别为3和4,那么斜边c=√(3^2) + 4^{2}=√(9 + 16)=√(25) = 5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
例如,三角形三边为5、12、13,因为5^2+12^2=25 + 144=169 = 13^2,所以这个三角形是直角三角形。
3. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数。
常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。
二、实数。
1. 无理数的概念。
- 无限不循环小数叫做无理数。
例如√(2),π等。
2. 实数的分类。
- 实数包括有理数和无理数。
有理数又分为整数和分数。
整数包括正整数、零和负整数;分数包括有限小数和无限循环小数。
无理数就是无限不循环小数,如√(3)、π等。
3. 实数的运算。
- 实数的运算顺序:先算乘方和开方,再算乘除,最后算加减。
如果有括号,先算括号里面的。
例如计算√(4)+2×3 - 5,先算√(4)=2,然后按照顺序计算2 + 2×3-5=2 + 6 - 5=3。
4. 平方根和立方根。
- 平方根:如果x^2=a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。
例如,9的平方根是±3,因为(±3)^2=9。
- 立方根:如果x^3=a,那么x叫做a的立方根,记作x=sqrt[3]{a}。
例如,8的立方根是2,因为2^3=8。
三、位置与坐标。
1. 确定位置。
- 在平面内,确定一个物体的位置一般需要两个数据。
例如在电影院中确定座位的位置,需要知道排数和列数这两个数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上册数学整理总结
第一章勾股定理
1、勾股定理
直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即2
2
2c
b a 2、勾股定理的逆定理
如果三角形的三边长a ,b ,c 有关系2
2
2c b
a ,那么这个三角形是直角三角形。
3、勾股数:满足2
2
2
c b
a 的三个正整数,称为勾股数。
第二章实数
一、实数的概念及分类
1、实数的分类
正有理数有理数
零
有限小数和无限循环小数
实数
负有理数正无理数
无理数
无限不循环小数
负无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如
3
2,7等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如
3
π+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数值,如sin60o
等二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数
如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算
三、平方根、算数平方根和立方根
1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2
=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2
=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“
a ”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
a
注意a 的双重非负性:
a
3、立方根
一般地,如果一个数x 的立方等于a ,即x 3
=a 那么这个数x 就叫做 a 的立方根(或三次
方根)。
表示方法:记作
3
a
性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:
3
3
a a
,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较
1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,
,0b a b a ,
b a
b
a
b
a b a 0(3)求商比较法:设a 、b 是两正实数,;
1;
1;
1
b a b
a b a
b a b a b
a (4)绝对值比较法:设a 、
b 是两负实数,则b a
b
a 。
(5)平方法:设a 、b 是两负实数,则b a
b a 2
2。
五、算术平方根有关计算(二次根式)
1、含有二次根号“
”;被开方数a 必须是非负数。
2、性质:(1))
0()
(2
a a a )
0(a
a (2)
a
a 2
)0(a
a (3))0,0(b
a b a ab (
)0,0(b
a
ab b
a
)
(4)
)
0,0(b a b
a b
a (
)0,0(b
a b
a b
a )
3、运算结果若含有“a ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算
(1)六种运算:加、减、乘、除、乘方、开方(2)实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律
加法交换律a
b b a 加法结合律)
()
(c b
a
c
b a
乘法交换律ba
ab 乘法结合律)()(bc a c ab 乘法对加法的分配律
ac
ab
c b
a )
(第三章图形的平移与旋转
一、平移1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。