中央电大离散数学任务02全10套

合集下载

国家开放大学《离散数学(本)》形考任务1-3参考答案

国家开放大学《离散数学(本)》形考任务1-3参考答案
到 C 的函数 g={<1,5>,<2,4>},则下列表述正确的是(
)。
A.f°g={<a,5>, <b,4>}
B.g° f ={<a,5>, <b,4>}
C.f°g={<5,a >, <4,b >}
D.g° f ={<5,a >, <4,b >}
19.设集合 A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,

)个。
A.0
B.2
C.1
D.3
13.设集合 A={1,2,3,4}上的二元关系 R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,
<2,2>,<2,3>,<3,2>,<4,4>},则 S 是 R 的(
)闭包。
A.自反
B.传递
C.对称
D.自反和传递
14.设 A={1,2,3,4,5,6,7,8},R 是 A 上的整除关系,B={2,4,6},则集合 B 的最大元、

)。
A.自反的
B.对称的
C.传递且对称的
D.反自反且传递的
11.集合 A={1,2,3,4}上的关系 R={<x,y>|x=y 且 x,y∈A},则 R 的性质为(
A.不是自反的
)。
B.不是对称的
C.传递的
D.反自反
12.如果 R1 和 R2 是 A 上的自反关系,则 R1∪R2,R1∩R2,R1-R2 中自反关系有

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。

电大离散数学作业2电子教案

电大离散数学作业2电子教案
因为AB = AC,故<x,y> AC,则有yC,
所以B C.
设xA,zC,则<x,z> AC,
因为AB = AC,故<x,z>AB,则有zB,所以CB.
故得B=C.
.试证明集合等式A (BC)=(AB) (AC).
证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C), 若x∈S,则x∈A且x
B∪C,即 x∈A且x∈B 或 x∈A且x∈C,
也即x∈A∩B 或 x∈A∩C ,即 x∈T,所以ST.
反之,若x∈T,则x∈A∩B 或 x∈A∩C,
1,2,3},{1,2}AB,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 },
,A B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .
.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .
.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,
A且x+y<0},试求R,S,R?S,S?R,R-1,S-1,r(S),s(R).
{<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \
-1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>}
, S-1 =
(S)={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}

电大离散数学作业

电大离散数学作业

电大离散数学作业 RUSER redacted on the night of December 17,2020离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,则P(A)-P(B )= {{3}, {1,2,3}, {1, 3 }, {2,3}} ,A B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2, 2>,<2, 3>,<3, 2>},<3, 3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈<>=y{B,,x,2yAx那么R-1= {<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性,反对称性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c, b>, <d, c> ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1, 1>, <2, 2>, <3, 3> 等元素.10.设A={1,2},B={a,b},C={3,4,5},从A到B的函数f ={<1, a>, <2,b>},从B到C的函数g={< a,4>, < b,3>},则Ran(g f)= {3,4} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1)错误,R 不是自反关系,因为没有有序对<3,3>.(2)错误,R 不是对称关系,因为没有有序对<2,1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:错误, 即R 不是等价关系.因为等价关系要求有自反性x R x, 但<3, 3>不在R 中.3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在. 解:错误. 集合A 的最大元不存在,a 是极大元.4.设集合A ={1, 2, 3, 4},B ={2, 4, 6, 8},,判断下列关系f 是否构成函数f :B A →,并说明理由.(1) f ={<1, 4>, <2, 2,>, <4, 6>, <1, 8>}; (2) f ={<1, 6>, <3, 4>, <2, 2>};(3) f ={<1, 8>, <2, 6>, <3, 4>, <4, 2,>}.解:(1) f 不能构成函数.因为A 中的元素3在f 中没有出现.(2) f 不能构成函数.因为A 中的元素4在f 中没有出现.(3) f 可以构成函数.因为f 的定义域就是A ,且A 中的每一个元素都有B 中的唯一一个元素与其对应,满足函数定义的条件.三、计算题1.设}4,2{},5,2,1{},4,1{},5,4,3,2,1{====C B A E ,求:(1) (AB )~C ; (2) (AB )- (BA ) (3) P (A )-P (C ); (4) AB .解:(1)因为A ∩B={1,4}∩{1,2,5}={1},~C={1,2,3,4,5}-{2,4}={1,3,5}所以 (A ∩B ) ~C={1}{1,3,5}={1,3,5}(2)(AB )- (BA )= {1,2,4,5}-{1}={2,4,5}(3)因为P(A)={,{1}, {4}, {1,4}}P(C)={,{2},{4},{2,4}}所以 P(A)-P(C)={ ,{ 1},{ 4},{ 1,4}}-{,{ 2},{ 4},{2,4 }}(4) 因为 AB={ 1,2,4,5}, AB={ 1}所以 AB=AB-AB={1,2,4,5}-{1}={2,4,5}a b c d 图一g e f h2.设A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(AB ); (2)(A ∩B ); (3)A ×B .解:(1)AB ={{1},{2}}(2)A ∩B ={1,2}(3)A ×B={<{1},1>,<{1},2>,<{1},{1,2}>,<{2},1>,<{2},2>,<{2},{1,2}>,<1,1>,<1,2>,<1, {1,2}>,<2,1>,<2,2>,<2, {1,2}>}3.设A ={1,2,3,4,5},R ={<x ,y >|xA ,yA 且x +y 4},S ={<x ,y >|xA ,yA 且x +y <0},试求R ,S ,RS ,SR ,R -1,S -1,r (S ),s (R ).解:R={<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}, \R -1={<1,1>,<2,1>,<3,1>,<1,2 >,<2,2>,<1, 3>}S=φ, S -1 =φr (S )={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s (R )= {<1,1>,<1,2>,<1,3>,<2,1>,<2,2>,<3,1>}RS=φSR=φ4.设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6}.(1) 写出关系R 的表示式; (2 )画出关系R 的哈斯图;(3) 求出集合B 的最大元、最小元.解:R={<1,1>,<1,2>,<1,3>,<1,4,<1,5>,<1,6>,<1,7>,<1,8>,<2,2>,<2,4>,<2,6>,<2,8>,<3,3>,<3,6>,<4,4>,<4,8>,<5,5>,<6,6>,<7,7>,<8,8>}(2)关系R 的哈斯图如图(3)集合B 没有最大元,最小元是:2 四、证明题1.试证明集合等式:A (BC )=(AB ) (AC ).证明:设,若x ∈A (BC ),则x ∈A 或x ∈BC ,即 x ∈A 或x ∈B 且 x ∈A 或x ∈C .即x ∈AB 且 x ∈AC ,即 x ∈T =(AB ) (AC ),所以A (BC ) (AB ) (AC ).反之,若x ∈(AB ) (AC ),则x ∈AB 且 x ∈AC ,即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈BC ,即x ∈A (BC ),所以(AB ) (AC ) A (BC ).因此.A (BC )=(AB ) (AC ).72.试证明集合等式A (BC)=(AB) (AC).证明:设S=A∩(B∪C),T=(A∩B)∪(A∩C),若x∈S,则x∈A且x∈B∪C,即x∈A且x∈B或 x∈A且x∈C,也即x∈A∩B或x∈A∩C,即x∈T,所以ST.反之,若x∈T,则x∈A∩B或x∈A∩C,即x∈A且x∈B 或x∈A且x∈C也即x∈A且x∈B∪C,即x∈S,所以TS.因此T=S.3.对任意三个集合A, B和C,试证明:若A B = A C,且A,则B = C.证明:设xA,yB,则<x,y>AB,因为AB = AC,故<x,y> AC,则有yC,所以B C.设xA,zC,则<x,z> AC,因为AB = AC,故<x,z>AB,则有zB,所以CB.故得B=C.4.试证明:若R与S是集合A上的自反关系,则R∩S也是集合A上的自反关系.证明:R1和R2是自反的,x A,<x, x> R1,<x, x> R2,则<x, x> R1∩R2,所以R1∩R2是自反的.。

电大离散数学(本)形考任务2知识讲解

电大离散数学(本)形考任务2知识讲解

离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}A B==,P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}},A⨯B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,∈xyR⋂<且=且>∈∈{B,,xAyAyBx}则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}yyx∈=<那么R-1={<6,3>,<8,4>}.>∈A2,x,,xy{B5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是没有任何性质.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b> <d,c> ,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|x∈A,y∈A, x+y =10},则R的自反闭包为<1,1>,<2,2> .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g ︒ f )= {<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则 (1) R 是自反的关系; (2) R 是对称的关系.解:(1)错误。

国家开放大学《离散数学》形考任务2

国家开放大学《离散数学》形考任务2

《离散数学》形考任务二一、单项选择题图G如图三所示,以下说法正确的是( ).A.{c}是点割集B.a是割点C.{b, c}是点割集D.{b, d}是点割集正确答案是:{b, c}是点割集图G如图四所示,以下说法正确的是( ) .A.{(a, d)}是割边B.{(a, d) ,(b, d)}是边割集C.{(b, d)}是边割集D.{(a, d)}是边割集正确答案是:{(a, d) ,(b, d)}是边割集如图一所示,以下说法正确的是( ) .A.{(a, e)}是边割集B.{(a, e) ,(b, c)}是边割集C.{(a, e)}是割边D.{(d, e)}是边割集正确答案是:{(d, e)}是边割集如图二所示,以下说法正确的是( ).A.{a, e}是点割集B.{d}是点割集C.e是割点D.{b, e}是点割集正确答案是:e是割点设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2B.v+e-2C.e+v+2D.e-v-2正确答案是:e-v+2设图G=<V, E>,v∈V,则下列结论成立的是( ) .A.B.deg(v)=2| E |C.D.deg(v)=| E |正确答案是:已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).A.4B.5C.3D.8正确答案是:5若G是一个欧拉图,则G一定是( ).A.汉密尔顿图B.连通图C.平面图D.对偶图正确答案是:连通图设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.m-nB.m-n+1C.n-m+1D.m+n+1正确答案是:m-n+1无向树T有8个结点,则T的边数为( ).A.6B.9C.7D.8正确答案是:7设无向图G的邻接矩阵为则G的边数为( ).A.5B.4C.3D.6正确答案是:5无向图G存在欧拉回路,当且仅当().A.G连通且所有结点的度数全为偶数B.G连通且至多有两个奇数度结点C.G中所有结点的度数全为偶数D.G中至多有两个奇数度结点正确答案是:G连通且所有结点的度数全为偶数以下结论正确的是( ).A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.无向完全图都是欧拉图D.树的每条边都是割边正确答案是:树的每条边都是割边已知无向图G的邻接矩阵为则G有().A.6点,8边B.5点,7边C.6点,7边D.5点,8边正确答案是:5点,7边设无向图G的邻接矩阵为则G的边数为( ).A.14B.1C.7D.6正确答案是:7若G是一个汉密尔顿图,则G一定是( ).A.连通图B.欧拉图C.对偶图D.平面图正确答案是:连通图设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六A.(c)只是弱连通的B.(a)只是弱连通的C.(b)只是弱连通的D.(d)只是弱连通的正确答案是:(d)只是弱连通的无向完全图K4是().A.汉密尔顿图B.树C.欧拉图D.非平面图正确答案是:汉密尔顿图设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).A.(d)是强连通的B.(c)是强连通的C.(b)是强连通的D.(a)是强连通的正确答案是:(a)是强连通的无向简单图G是棵树,当且仅当( ).A.G的边数比结点数少1B.G连通且结点数比边数少1C.G中没有回路.D.G连通且边数比结点数少1正确答案是:G连通且边数比结点数少1二、判断题设G是一个连通平面图,且有6个结点11条边,则G有7个面.( )正确答案是“对”。

最新电大《离散数学》形考作业任务01-07网考试题及答案-

最新电大《离散数学》形考作业任务01-07网考试题及答案:最新电大《离散数学》形考作业任务01-07网考试题及答案 100%通过考试说明:《离散数学》形考共有7个任务。

任务3、任务5、任务7是主观题,任务2、任务4、任务6是客观题,任务2、任务4、任务6需在考试中多次抽取试卷,直到出现02任务_0001或02任务_0009、04任务_0001或04任务_0009、06任务_0001或06任务_0009试卷,就可以按照该套试卷答案答题。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他教学考一体化答案,敬请查看。

01任务一、单项选择题(共 8 道试题,共 80 分。

)1. 本课程的教学内容分为三个单元,其中第三单元的名称是(). A. 数理逻辑 B. 集合论 C. 图论 D. 谓词逻辑 2. 本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(). A. 函数 B. 关系的概念及其运算 C. 关系的性质与闭包运算 D. 几个重要关系 3. 本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有()讲. A. 18 B. 20 C. 19 D. 17 4. 本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是(). A. 集合恒等式与等价关系的判定 B. 图论部分书面作业 C. 集合论部分书面作业 D. 网上学习问答 5. 课程学习平台左侧第1个版块名称是:(). A. 课程导学 B. 课程公告 C. 课程信息 D. 使用帮助 6. 课程学习平台右侧第5个版块名称是:(). A. 典型例题 B. 视频课堂 C. VOD点播 D. 常见问题7. “教学活动资料”版块是课程学习平台右侧的第()个版块. A. 6 B. 7 C. 8 D. 9 8. 课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(). A. 复习指导 B. 视频 C. 课件 D. 自测二、作品题(共 1 道试题,共 20 分。

离散数学形考任务2概率部分例题及解答

离散数学形考任务2概率部分例题及解答
1. 问题描述
某电商平台上,用户购买商品的方式有两种:直接购买和加入购物车后购买。

已知用户购买方式的概率如下:
- 直接购买的概率为0.3;
- 加入购物车后购买的概率为0.7。

现有一个用户,他进行了10次购买行为,请根据上述概率回答以下问题。

2. 问题解答
2.1 直接购买次数
直接购买的概率为0.3。

用户进行10次购买行为,因此直接购买的次数可以用10乘以0.3得出。

直接购买次数 = 10 * 0.3 = 3
2.2 加入购物车后购买次数
加入购物车后购买的概率为0.7。

用户进行10次购买行为,因此加入购物车后购买的次数可以用10乘以0.7得出。

加入购物车后购买次数 = 10 * 0.7 = 7
2.3 直接购买和加入购物车后购买次数之和
直接购买次数加上加入购物车后购买次数,就是用户总共购买的次数。

用户总共购买次数 = 直接购买次数 + 加入购物车后购买次数 = 3 + 7 = 10
3. 总结
根据已知的购买方式概率,我们计算出了用户进行10次购买行为时的直接购买次数和加入购物车后购买次数。

通过总和计算,我们得出用户总共购买的次数为10次。

国家开放大学电大本科《离散数学》网络课形考任务2作业及答案

国家开放大学电大本科《离散数学》网络课形考任务2作业及答案此任务2 g选择题题目1 无向完全图K4是()、选择一项:A、树 B、欧拉图 C、汉密尔顿图 D、非平面图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为()、选择一项: A、4 B、8 C、3 D、5 题目3 设无向图G的邻接矩阵为 011111 0 0111 0 0 0 011 0 011 01 0 则G 的边数为( 选择一项: A、7 B、14 C、6 D、1 题目4 如图一所示,以下说法正确的是()、选择一项: A、 ((a, e), (b, c)}是边割集 B、{(a, e)}是边割集 C、{(d, e)}是边割集 D、((a, e)}是割边题目5 以下结论正确的是()、选择一项: A、有n个结点n-l条边的无向图都是树B、无向完全图都是平面图 C、树的每条边都是割边 D、无向完全图都是欧拉图题目6 若G是一个欧拉图,则G一定是()、选择一项: A、汉密尔顿图 B、连通图 C、平面图 D、对偶图题目7 设图G=, vGV,则下列结论成立的是()、选择一项:A、云 d做、)=2|% B、2>“ = |司 w C、 deg(v)=2|S| D、deg(v)=|E| 题目8 图G如图三所示,以下说法正确的是()、选择一项: A、(b, d}是点割集 B、{c}是点割集 C、{b, c}是点割集 D、 a是割点题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是()、选择一项: (a)是费连通的 B、 (d)是强连通的 C、 (c)是强连通的D、 (b)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是()、选择一项: A、 (b)只是弱连通的 B、 (c)只是弱连通的 C、 (a)只是弱连通的 D、 (d)只是弱连通的判断逝题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树、()选择一项:对错题目12 汉密尔顿图一定是欧拉图、()选择一项:对错题目13 设连通平面图G的结点数为5,边数为6,则面数为4、()选择一项:对错题目14 设G是一个有7个结点16条边的连通图,则G为平面图、()选择一项:对错题目15 如图八所示的图G存在一条欧拉回路、()选择一项:对错题目16 设图G如图七所示,则图G的点割集是{f}、()选择一项:对错题目172>瞒)=2圜设G是一个图,结点集合为V,边集合为E,则代衫()选择一项:对错题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树、()选择一项:对错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图、()选择一项:对错题目20 若图 G=,其中 V=( a, b, c, d }, E={ (a, b), (a, d), (b, c), (b, d)},则该图中的割边为(b, c)、()选择一项:对。

2离散数学

三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“尽管他接受了这个任务,但他没有完成好.”翻译成命题公式.12.将语句“今天没有下雨.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.下面的推理是否正确,试予以说明.(1) (∀x)F(x)→G(x)前提引入(2) F(y)→G(y)US(1).14.若偏序集<A,R>的哈斯图如图二所示,则集合A的最大元为a,最小元不存在.图二五.计算题(每小题12分,本题共36分)15.求(P∨Q)→(R∨Q)的合取范式.16.设A={0,1,2,3,4},R={<x,y>|x∈A,y∈A且x+y<0},S={<x,y>|x∈A,y∈A 且x+y≤3},试求R,S,R∙S,R-1,S-1,r(R).17.画一棵带权为1, 2, 2, 3, 4的最优二叉树,计算它们的权.六、证明题(本题共8分)18.设G是一个n阶无向简单图,n是大于等于2的奇数.证明G与G中的奇数度顶点个数相等(G是G的补图).三、逻辑公式翻译(每小题6分,本题共12分)11.设P:他接受了这个任务,Q:他完成好了这个任务,(2分)P∧⌝Q.(6分)12.设P:今天下雨,(2分)⌝P.(6分)四、判断说明题(每小题7分,本题共14分)13.错误.(3分)(2)应为F(y)→G(x),换名时,约束变元与自由变元不能混淆.(7分)14.错误.(3分)集合A的最大元不存在,a是极大元.(7分)五.计算题(每小题12分,本题共36分)15.(P∨Q)→(R∨Q)⇔⌝(P∨Q)∨(R∨Q)(4分)⇔(⌝P ∧⌝Q )∨(R ∨Q )⇔(⌝P ∨R ∨Q )∧(⌝Q ∨R ∨Q )⇔(⌝P ∨R ∨Q ) ∧R 合取范式(12分)16.R =∅, (2分) S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} (4分) R ∙S =∅,(6分)R -1=∅,(8分) S -1= S ,(10分) r (R )=I A .(12分) 17.(10分)权为1⨯3+2⨯3+2⨯2+3⨯2+4⨯2=27 (12分)六、证明题(本题共8分)18.证明:因为n 是奇数,所以n 阶完全图每个顶点度数为偶数,(3分) 因此,若G 中顶点v 的度数为奇数,则在G 中v 的度数一定也是奇数,(6分) 所以G 与G 中的奇数度顶点个数相等.(8分)三、逻辑公式翻译(每小题6分,本题共12分) 11.将语句“今天考试,明天放假.”翻译成命题公式. 12.将语句“我去旅游,仅当我有时间.”翻译成命题公式.四、判断说明题(每小题7分,本题共14分)判断下列各题正误,并说明理由.13.如果图G 是无向图,且其结点度数均为偶数,则图G 是欧拉图.14.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元是f .图二五.计算题(每小题12分,本题共36分)15.设谓词公式)),,()(),()((z x y B z y x A x ∀→∃,试ο οο ο ο ο ο ο ο1 2 23 34 75 12(1)写出量词的辖域;(2)指出该公式的自由变元和约束变元. 16.设集合A ={{1},1,2},B ={1,{1,2}},试计算(1)(A -B );(2)(A ∩B );(3)A ×B .17.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4 },E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4) },试 (1)给出G 的图形表示;(2)写出其邻接矩阵; (3)求出每个结点的度数;(4)画出其补图的图形.六、证明题(本题共8分)18.设A ,B 是任意集合,试证明:若A ⨯A=B ⨯B ,则A=B .三、逻辑公式翻译(每小题4分,本题共12分) 11.设P :今天考试,Q :明天放假.(2分) 则命题公式为:P ∧Q .(6分)12.设P :我去旅游,Q :我有时间,(2分)则命题公式为:P →Q .(6分)四、判断说明题(每小题7分,本题共14分) 13.错误.(3分)当图G 不连通时图G 不为欧拉图.(7分) 14.错误.(3分)集合A 的最大元与最小元不存在, a 是极大元,f 是极小元,.(7分) 五.计算题(每小题12分,本题共36分)15.(1)∃x 量词的辖域为)),,()(),((z x y B z y x A ∀→,(3分)∀z 量词的辖域为),,(z x y B , (6分) (2)自由变元为)),,()(),((z x y B z y x A ∀→中的y ,(9分)约束变元为x 与z .(12分) 16.(1)A -B ={{1},2} (4分)(2)A ∩B ={1} (8分) (3)A ×B={<{1},1>,<{1},{1,2}>,<1,1>,<1, {1,2}>,<2,1>,<2, {1,2}>} (12分)17.(1)G 的图形表示为(如图三):(3分)图三(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110101111000100(6分) (3)v 1,v 2,v 3,v 4结点的度数依次为1,2,3,2 (9分)(4)补图如图四所示:(12分)图四六、证明题(本题共8分)18.证明:设x ∈A ,则<x ,x >∈A ⨯A ,(1分) 因为A ⨯A=B ⨯B ,故<x ,x >∈B ⨯B ,则有x ∈B ,(3分) 所以A ⊆B .(5分)设x ∈B ,则<x ,x >∈B ⨯B ,(6分)因为A ⨯A=B ⨯B ,故<x ,x >∈A ⨯A ,则有x ∈A ,所以B ⊆A .(7分) 故得A=B .(8分)试卷代号:1009国家开放大学(中央广播电视大学)2014年春季学期“开放本科”期末考试离散数学(本)试题(半开卷)一、单项选择题(每小题3分,本题共15分)一、单选题:在下列各题的备选答案中选择一个正确的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任务20011. 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( D ).A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、22.设集合A={1 , 2, 3}上的函数分别为:f= {<1, 2>,<2, 1>,<3, 3>},g= {<1, 3>,<2, 2>,<3, 2>},h= {<1, 3>,<2, 1>,<3, 1>},则h=(A ).A. f◦gB. g◦fC. f◦fD. g◦g3. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的( C )闭包.A. 自反B. 传递C. 对称D. 自反和传递4. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y A},则R的性质为( B ).A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的5. 设集合A= {1, a },则P(A) = ( D ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}6. 设集合A={a},则A的幂集为( C ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}7. 若集合A的元素个数为10,则其幂集的元素个数为( A ).A. 1024B. 10C. 100D. 18. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为( C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反9. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为 D .A. 2B. 3C. 6D. 810. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B0021. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为 D .A. 2B. 3C. 6D. 82. 若集合A的元素个数为10,则其幂集的元素个数为( A).A. 1024B. 10C. 100D. 13. 设集合A= {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B={3, 4, 5},则元素3为B的(B ).A. 下界B. 最小上界C. 最大下界D. 最小元4. 设集合A={1 , 2, 3}上的函数分别为:f= {<1, 2>,<2, 1>,<3, 3>},g= {<1, 3>,<2, 2>,<3, 2>},h= {<1, 3>,<2, 1>,<3, 1>},则h=( A ).A. f◦gB. g◦fC. f◦fD. g◦g5. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B6. 若集合A={ a,{a}},则下列表述正确的是( A ).A. {a}AB. {{{a}}}AC. {a,{a}}AD. A7. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为( C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反8. 设集合A={a},则A的幂集为( C ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}9. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.A. 自反B. 传递C. 对称D. 自反和传递10. 设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>,<b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则( B )不是从A到B的函数.A. R1B. R2C. R3D. R1和R30031. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为(C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反2. 设集合A={a},则A的幂集为( C ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}3. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为 D .A. 2B. 3C. 6D. 84. 若集合A的元素个数为10,则其幂集的元素个数为( A ).A. 1024B. 10C. 100D. 15. 若集合A={ a,{a},{1,2}},则下列表述正确的是( C ).A. {a,{a}}AB. {1,2}AC. {a}AD. A6. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B7. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y A},则R的性质为( B ).A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的8. 若集合A={ a,{a}},则下列表述正确的是( A ).A. {a}AB. {{{a}}}AC. {a,{a}}AD. A9.设集合A= {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B= {3, 4,5},则元素3为B的( B ).A. 下界B. 最小上界C. 最大下界D. 最小元10. 设集合A= {1, a },则P(A) = ( D ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}0041. 设集合A={a},则A的幂集为( C ).A. {{a}}B. {a,{a}}C. {,{a}}D. {,a}2.设集合A={1 , 2, 3}上的函数分别为:f= {<1, 2>,<2, 1>,<3, 3>},g= {<1, 3>,<2, 2>,<3, 2>},h= {<1, 3>,<2, 1>,<3, 1>},则h=( A ).A. f◦gB. g◦fC. f◦fD. g◦g3. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( B )个.A. 0B. 2C. 1D. 34. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B5. 设A={a, b},B={1, 2},R1,R2,R3是A到B的二元关系,且R1={<a,2>,<b,2>},R2={<a,1>, <a,2>, <b,1>},R3={<a,1>, <b,2>},则( B )不是从A到B的函数.A. R1B. R2C. R3D. R1和R36. 若集合A的元素个数为10,则其幂集的元素个数为( A ).A. 1024B. 10C. 100D. 17. 设集合A= {1, a },则P(A) = ( D ).A. {{1}, {a}}B. {,{1}, {a}}C. {{1}, {a}, {1, a }}D. {,{1}, {a}, {1, a }}8. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的( C )闭包.A. 自反B. 传递C. 对称D. 自反和传递9. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为( C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反10. 若集合A={ a,{a},{1,2}},则下列表述正确的是( C ).A. {a,{a}}AB. {1,2}AC. {a}AD. A0051. 若集合A={ a,{a},{1,2}},则下列表述正确的是( C ).A. {a,{a}}AB. {1,2}AC. {a}AD. A2. 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的( C )闭包.A. 自反B. 传递C. 对称D. 自反和传递3. 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为( D ).A. 8、2、8、2B. 8、1、6、1C. 6、2、6、2D. 无、2、无、24. 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y A},则R的性质为( C ).A. 不是自反的B. 不是对称的C. 传递的D. 反自反5. 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为 D .A. 2B. 3C. 6D. 86.设集合A={1 , 2, 3}上的函数分别为:f= {<1, 2>,<2, 1>,<3, 3>},g= {<1, 3>,<2, 2>,<3, 2>},h= {<1, 3>,<2, 1>,<3, 1>},则h=(A ).A. f◦gB. g◦fC. f◦fD. g◦g7.设集合A= {1, 2, 3, 4, 5}上的偏序关系的哈斯图如右图所示,若A的子集B= {3, 4,5},则元素3为B的( B ).A. 下界B. 最小上界C. 最大下界D. 最小元8. 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有( B )个.A. 0B. 2C. 1D. 39. 集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y A},则R的性质为( B ).A. 自反的B. 对称的C. 传递且对称的D. 反自反且传递的10. 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( A ).A. A B,且A BB. B A,且A BC. A B,且A BD. A B,且A B∙02任务_0006∙一、单项选择题(共 10 道试题,共 100 分。

相关文档
最新文档