2018国家开放大学离散数学本形考任务答案
国家开放大学《离散数学(本)》形考任务1-3参考答案

)。
A.f°g={<a,5>, <b,4>}
B.g° f ={<a,5>, <b,4>}
C.f°g={<5,a >, <4,b >}
D.g° f ={<5,a >, <4,b >}
19.设集合 A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,
(
)个。
A.0
B.2
C.1
D.3
13.设集合 A={1,2,3,4}上的二元关系 R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,
<2,2>,<2,3>,<3,2>,<4,4>},则 S 是 R 的(
)闭包。
A.自反
B.传递
C.对称
D.自反和传递
14.设 A={1,2,3,4,5,6,7,8},R 是 A 上的整除关系,B={2,4,6},则集合 B 的最大元、
(
)。
A.自反的
B.对称的
C.传递且对称的
D.反自反且传递的
11.集合 A={1,2,3,4}上的关系 R={<x,y>|x=y 且 x,y∈A},则 R 的性质为(
A.不是自反的
)。
B.不是对称的
C.传递的
D.反自反
12.如果 R1 和 R2 是 A 上的自反关系,则 R1∪R2,R1∩R2,R1-R2 中自反关系有
国家开放大学(中央广播电视大学)2018年春季学期“开放本科”期末考试试题与答案- 离散数学(本)半开卷

— 1)/2
8.0( 或零)
9. 5
lO.P(2)/\P(3)/\P(4)
三、逻辑公式翻译(每小题 6 分,本题共 12 分)
11. 设 P: 有人来图书馆借书.
则命题公式为: P.
(2 分)
(6 分)
12.
设 P :51 次列车每天上午 10 点发车 (2 分)
Q,51 次列车每天上午 11 点发车
(8 分) (12 分)
因为该关系不满足自反性注:答 Nhomakorabea不满足传递性”也是对的。
16. 解:
(1) 关系图
内
为
(3 分) (2) 邻接矩阵
b
1 1
。
1
。
1 1
。
。
1
。 。
。
1
。
。
1
。
(6 分)
1
。
1
。
Ll
(3)deg(v1)=3 deg(v2)=2 deg(v3)=3 deg(v4)=2 deg(v5)=2
国家开放大学(中央广播电视大学) 2018 年春季学期“开放本科”期末考试
离散数学(本)
试题答案及评分标准(半开卷)
(供参考)
2018 年 7 月
一、单项选择题(每小题 3 分,本题共 15 分)
l.B
2. A
3. B
4.D
5. C
二、填空题(每小题 3 分,本题共 15 分)
6. {5 , 10, 15}
).
B. { 2 , 3 , 4 , 5 } E A D. 5EA
C. {2,3,4,5}~A
2. 若无向图 G 的结点度数之和为 10, 则 G 的边数为(
最新国家开放大学电大《离散数学》形考任务1试题及答案

最新国家开放大学电大《离散数学》形考任务1试题及答案最新国家开放大学电大《离散数学》形考任务1试题及答.形考任务1(集合论部分概念及性质)单项选择.题目.若集合A=.a, {a}, {1, 2}}, 则下列表述正确的是().选择一项:A.{a, {a}}.B..C.{1, 2..D.{a..题目.设函数f: N→N, f(n)=n+1, 下列表述正确的是.).选择一项: A.f是满射.B.f存在反函.C.f是单射函.D.f是双射.题目.设集合A={1, 2, 3, 4, 5}, 偏序关系是A上的整除关系, 则偏序集<A, >上的元素5是集合A的.).选择一项:A.极小.B.极大.C.最大.D.最小.题目.设A={a, b}, B={1, 2}, C={4, 5}, 从A到B的函数f={<a,1>.<b, 2>}, 从B到C的函数g={<1, 5>.<2, 4>}, 则下列表述正确的是.).选择一项:A.g..={<a, 5>.<b, 4>.B.g..={<5, .>.<4, .>.C.f°.={<5, .>.<4, .>.D.f°.={<a, 5>.<b, 4>.题目.集合A={1.2.3.4}上的关系R={<x, y>|x=y且x.yA}, 则R的性质为.).选择一项:A.传递.B.不是对称.C.反自.D.不是自反.题目.设集合..{1..}, 则P(A...).选择一项:A.{{1}.{a}.{1..}.B.{{1}.{a}.C.{,{1}.{a}.D.{,{1}.{a}.{1..}.题目.若集合A={1, 2}, B={1, 2, {1, 2}},则下列表述正确的是.).选择一项:A.AB, 且A.B.AB, 且A.C.BA, 且A.D.AB, 且A.题目.设集合A={1.2.3}, B={3.4.5}, C={5.6.7},则A∪B–.=.).选择一项:A.{1.2.3.4.B.{4.5.6.7.C.{2.3.4.5.D.{1.2.3.5.题目.设集合..{1.2.3.4.5}上的偏序关系的哈斯图如右图所示, 若A的子集..{3.4.5}, 则元素3为B的.).选择一项:A.最小上.B.下.C.最大下.D.最小.题目1.如果R1和R2是A上的自反关系, 则R1∪R2, R1∩R2, R1-R2中自反关系有.)个.选择一项:A..B..C..D..以下资料为赠送资料:《滴水之中见精神》主题班会教案活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
2018年电大离散数学任务6答案-电大期末考试必备小抄 精品

06任务讨论主题树的性质及最小生成树的算法实时讨论
讨论内容
06任务答案
一.解:因为要使有6 个结点的连通图G成为一棵生成树,只能保留6-一=5条边,所以从图G 中删去8-5=3条边后可以确定图G的一棵生成树。
2.解:设有x片树叶,则阶数n=2+4+x=6+ x,边数m=5+ x,利用握手定理得:2m=2×2+4×3+ x×一,2(5+ x)=一6+ x,解得:x=6,所以应该有6片树叶。
3.解:第一次取边ab=一;第二次取边ef=3;第三次取边af=4;第四次取边ad=9;第五次取边bc=23;由这5条边组成最小生成树。
4.(一)B
(2)解:第一次取边ab=一;第二次取边ac=2;第三次取边be=2;第四次取边bd=4;由这4条边组成最小生成树。
其权值为:一+2+2+4=9。
国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={,},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={,,,},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图题目7设图G=,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。
国家开放大学电大本科《离散数学》网络课形考任务1作业及答案

国家开放大学电大本科《离散数学》网络课形考任务1作业及答案形考任务1单项选择题题目1若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:A. 传递B. 对称C. 自反和传递D. 自反题目4设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C =( ).选择一项:A. {1, 2, 3, 5}B. {4, 5, 6, 7}C. {2, 3, 4, 5}D. {1, 2, 3, 4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A. 1B. 3C. 2D. 0题目6集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:A. 不是对称的B. 反自反C. 不是自反的D. 传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A. 3B. 2C. 8D. 6题目9设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:A. 6、2、6、2B. 无、2、无、2C. 8、1、6、1D. 8、2、8、2题目10设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2, 1>,<3, 1>},则h =().选择一项:A. f◦fB. g◦fC. g◦gD. f◦g判断题题目11设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:对错题目14设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>, <3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对错题目18设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )= {{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:对错题目20设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对错。
离散数学(本)2018年10月份试题(含答案)

离散数学(本)2018年10月份试题(含答案)离散数学(本)2018年10月份试题一、单项选择题(每小题3分,本题共15分)1.若集合A={1,2,3},则下列表述不正确的是().A.1ÎAB.{1}ÌAC.ÆÎAD.{2}ÍA2.设A={2,3},B={3,4},A到B的关系R={|xÎA,yÎB,且x不大于y},则R=().A.{<3,3>,<4,4>}B.{<2,3>,<2,4>,<3,3>,<3,4>}C.{<2,3>,<2,4>,<3,4>}D.{<2,2>,<3,3>,<4,4>}3.无向图G的结点的度数之和是24,则图G的边数为().A.12B.24C.48D.234.设连通平面图G有v个结点,e条边,r个面,则().A.v+e–r=–B.v+er=4C.v+er=2D.r+ve=25.设个体域D是实数集合,则命题($x)(“y)(x´y =y)的真值是().A.TB.FC.由y的取值确定D.不确定二、填空题(每小题3分,本题共15分)6.设集合A={a,b},B={b,c},C={c,d},则(AÈB)–(BÇC)=.7.设A={3,6},B={1,6},C={3,5},从A到B的函数f={<3,1>,<6,6>},从B到C的函数g={<1,3>,<6,5>},则Dom(g°f)=.8.结点数相等是两个图同构的条件.9.设G是汉密尔顿图,S是其结点集的一个子集,若S的元素个数为4,则在G-S中的连通分支数不超过.10.设个体域D={a,b},则谓词公式(“x)Q(x)消去量词后的等值式为.三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“昨天是公休日,今天也是公休日.”翻译成命题公式.12.将语句“如果今天是周五,则明天是周四.”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)13.如果A是集合B的元素,则A不可能是B的子集.14.(“x)(A(x)→(B(y)→C(z)))中的约束变元为y.五.计算题(每小题12分,本题共36分)15.设A={1,2,3},R={|xÎA,yÎA且xy},S={|xÎA,yÎA且x£y},试求R,S,R-1,s(S).16.设图G=,其中,结点集V={a,b,c,d,e},边集E={(a,c),(a,e),(b,d),(b,e),(c,e),(d,e)},对应边的权值依次为2、3、3、4、1及5,请画出G的图形、写出G的邻接矩阵并求出G权最小的生成树及其权值.17.画一棵带权为1,2,3,4,5的最优二叉树,并计算该最优二叉树的权.六、证明题(本题共8分)18.试证明:P→QÞP→(P∧Q).离散数学(本)2018年10月份试题参考解答一、单项选择题(每小题3分,本题共15分)1.C2.B3.A4.D5.A二、填空题(每小题3分,本题共15分)6.{a,b}7.{3,6}8.必要9.410.Q(a)∧Q(b)三、逻辑公式翻译(每小题6分,本题共12分)11.设P:昨天是公休日,Q:今天是公休日.(2分)则命题公式为:P∧Q.(6分)12.设P:今天是周五,Q:明天是周四.(2分)则命题公式为:P→Q.(6分)四、判断说明题(每小题7分,本题共14分)13.错误.(3分)反例:设A={1},B={1,{1}},则A是B的元素,也是B的子集.(7分)说明:举出符合条件的反例均给分.14.错误.(3分)(“x)(A(x)→(B(y)→C(z)))中的y是自由变元,约束变元为x.(7分)五.计算题(每小题12分,本题共36分)15.R={<2,1>,<3,1>,<3,2>}(3分)S={<1,1>,<1,2>,<1,3>,<2,2>,<2,3>,<3,3>}(6分)R-1={<1,2>,<1,3>,<2,3>}(9分)s(S)={<1,1>,<2,1>,<1,2>,<3,1>,<1,3>,<2,2>,<3,2>,<2,3>,<3,3>} (12分)说明:对于每一个求解项,如果基本求出了解,可以给对应1分.16.G的图形表示为:(3分)邻接矩阵:(6分)如下为最小的生成树,权为10:(9分)(12分)17.(10分)权为1´3+2´3+3´2+4´2+5´2=33(12分)六、证明题(本题共8分)18.证明:(1)P→QP(1分)(2)PP(附加前提)(3分)(3)QT(1)(2)I(5分)(4)P∧QT(2)(3)I(7分)(5)P→(P∧Q)CP规则(8分)说明1:因证明过程中,公式引用的次序可以不同,一般引用前提正确得1分,利用两个公式得出有效结论得1或2分,最后得出结论得2或1分。
2018秋离散数学形考3(包含四套随机题)

2018秋离散数学形考3(随机试题1)正确获得10.00分中的10.00分标记题目题干无向图G存在欧拉回路,当且仅当().选择一项:A. G连通且所有结点的度数全为偶数B. G中至多有两个奇数度结点C. G连通且至多有两个奇数度结点D. G中所有结点的度数全为偶数反馈你的回答正确正确答案是:G连通且所有结点的度数全为偶数题目2正确获得10.00分中的10.00分标记题目题干如图二所示,以下说法正确的是 ( ).图二选择一项:A. e是割点B. {a,e}是点割集C. {d}是点割集D. {b, e}是点割集反馈你的回答正确正确答案是:e是割点题目3正确获得10.00分中的10.00分标记题目题干无向树T有8个结点,则T的边数为( ).选择一项:A. 9B. 8C. 7D. 6反馈你的回答正确正确答案是:7题目4正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (a)是强连通的B. (b)是强连通的C. (c)是强连通的D. (d)是强连通的反馈你的回答正确正确答案是:(a)是强连通的题目5正确获得10.00分中的10.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是 ( ) .选择一项:A.B. deg(v)=2| E |C.D. deg(v)=| E |反馈你的回答正确正确答案是:题目6正确获得10.00分中的10.00分标记题目题干已知无向图G的邻接矩阵为,则G有().选择一项:A. 5点,8边B. 5点,7边C. 6点,8边D. 6点,7边反馈你的回答正确正确答案是:5点,7边题目7正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 7B. 14C. 1D. 6反馈你的回答正确正确答案是:7题目8正确获得10.00分中的10.00分标记题目题干以下结论正确的是( ).选择一项:A. 有n个结点n-1条边的无向图都是树B. 无向完全图都是欧拉图C. 树的每条边都是割边D. 无向完全图都是平面图反馈你的回答正确正确答案是:树的每条边都是割边题目9正确获得10.00分中的10.00分标记题目题干图G如图三所示,以下说法正确的是 ( ).选择一项:A. {c}是点割集B. {b, d}是点割集C. {b,c}是点割集D. a是割点反馈你的回答正确正确答案是:{b,c}是点割集题目10正确获得10.00分中的10.00分标记题目题干无向简单图G是棵树,当且仅当( ).选择一项:A. G连通且边数比结点数少1B. G中没有回路.C. G的边数比结点数少1D. G连通且结点数比边数少1反馈你的回答正确正确答案是:G连通且边数比结点数少1 2018秋离散数学形考3(随机试题2)题目1正确获得10.00分中的10.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 欧拉图C. 汉密尔顿图D. 非平面图反馈你的回答正确正确答案是:汉密尔顿图题目2正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六选择一项:A. (c)只是弱连通的B. (b)只是弱连通的C. (d)只是弱连通的D. (a)只是弱连通的反馈你的回答正确正确答案是:(d)只是弱连通的题目3正确获得10.00分中的10.00分标记题目题干若G是一个欧拉图,则G一定是( ).选择一项:A. 汉密尔顿图B. 连通图C. 对偶图D. 平面图反馈你的回答正确正确答案是:连通图题目4正确获得10.00分中的10.00分标记题目题干如图一所示,以下说法正确的是 ( ) .选择一项:A. {(d, e)}是边割集B. {(a, e)}是割边C. {(a, e) ,(b, c)}是边割集D. {(a, e)}是边割集反馈你的回答正确正确答案是:{(d, e)}是边割集题目5正确获得10.00分中的10.00分标记题目题干图G如图四所示,以下说法正确的是 ( ) .选择一项:A. {(a, d)}是割边B. {(a, d)}是边割集C. {(b, d)}是边割集D. {(a, d) ,(b, d)}是边割集反馈你的回答正确正确答案是:{(a, d) ,(b, d)}是边割集题目6正确获得10.00分中的10.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 对偶图B. 连通图C. 欧拉图D. 平面图反馈你的回答正确正确答案是:连通图题目7正确获得10.00分中的10.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目8正确获得10.00分中的10.00分标记题目题干设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).选择一项:A. v+e-2B. e+v+2C. e-v+2D. e-v-2反馈你的回答正确正确答案是:e-v+2题目9正确获得10.00分中的10.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 5C. 3D. 4反馈你的回答正确正确答案是:5题目10正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 3B. 6C. 5D. 4反馈你的回答正确正确答案是:52018秋离散数学形考3(随机试题3) 题目1正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).图五选择一项:A. (b)是强连通的B. (d)是强连通的C. (a)是强连通的D. (c)是强连通的反馈你的回答正确正确答案是:(a)是强连通的题目2正确获得10.00分中的10.00分标记题目题干设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G 的一棵生成树.选择一项:A.B.C.D.反馈你的回答正确正确答案是:题目3正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 5B. 4C. 6D. 3反馈你的回答正确正确答案是:5题目4正确获得10.00分中的10.00分标记题目题干如图二所示,以下说法正确的是 ( ).图二选择一项:A. {b, e}是点割集B. {a,e}是点割集C. e是割点D. {d}是点割集反馈你的回答正确正确答案是:e是割点题目5正确获得10.00分中的10.00分标记题目题干无向树T有8个结点,则T的边数为( ).选择一项:A. 6B. 7C. 8D. 9反馈你的回答正确正确答案是:7题目6正确获得10.00分中的10.00分标记题目题干无向图G存在欧拉回路,当且仅当().选择一项:A. G中所有结点的度数全为偶数B. G连通且至多有两个奇数度结点C. G连通且所有结点的度数全为偶数D. G中至多有两个奇数度结点反馈你的回答正确正确答案是:G连通且所有结点的度数全为偶数题目7正确获得10.00分中的10.00分标记题目题干设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).选择一项:A. e+v+2B. e-v-2C. e-v+2D. v+e-2反馈你的回答正确正确答案是:e-v+2题目8正确获得10.00分中的10.00分标记题目题干如图一所示,以下说法正确的是 ( ) .选择一项:A. {(a, e)}是割边B. {(d, e)}是边割集C. {(a, e)}是边割集D. {(a, e) ,(b, c)}是边割集反馈你的回答正确正确答案是:{(d, e)}是边割集题目9正确获得10.00分中的10.00分标记题目题干若G是一个欧拉图,则G一定是( ).选择一项:A. 连通图B. 对偶图C. 汉密尔顿图D. 平面图反馈你的回答正确正确答案是:连通图题目10正确获得10.00分中的10.00分标记题目题干无向简单图G是棵树,当且仅当( ).选择一项:A. G的边数比结点数少1B. G中没有回路.C. G连通且结点数比边数少1D. G连通且边数比结点数少1反馈你的回答正确正确答案是:G连通且边数比结点数少1 2018秋离散数学形考3(随机试题4)题目1正确获得10.00分中的10.00分标记题目题干无向完全图K4是().选择一项:A. 树B. 汉密尔顿图C. 非平面图D. 欧拉图反馈你的回答正确正确答案是:汉密尔顿图题目2正确获得10.00分中的10.00分标记题目题干设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).图六选择一项:A. (d)只是弱连通的B. (a)只是弱连通的C. (b)只是弱连通的D. (c)只是弱连通的反馈你的回答正确正确答案是:(d)只是弱连通的题目3正确获得10.00分中的10.00分标记题目题干设图G=<V, E>,v V,则下列结论成立的是 ( ) .选择一项:A.B.C. deg(v)=2| E |D. deg(v)=| E |反馈你的回答正确正确答案是:题目4正确获得10.00分中的10.00分标记题目题干图G如图三所示,以下说法正确的是 ( ).选择一项:A. a是割点B. {b,c}是点割集C. {c}是点割集D. {b, d}是点割集反馈你的回答正确正确答案是:{b,c}是点割集题目5正确获得10.00分中的10.00分标记题目题干已知无向图G的邻接矩阵为,则G有().选择一项:A. 5点,8边B. 6点,8边C. 5点,7边D. 6点,7边反馈你的回答正确正确答案是:5点,7边题目6正确获得10.00分中的10.00分标记题目题干以下结论正确的是( ).选择一项:A. 树的每条边都是割边B. 无向完全图都是欧拉图C. 无向完全图都是平面图D. 有n个结点n-1条边的无向图都是树反馈你的回答正确正确答案是:树的每条边都是割边题目7正确获得10.00分中的10.00分标记题目题干设无向图G的邻接矩阵为,则G的边数为( ).选择一项:A. 7B. 1C. 14D. 6反馈你的回答正确正确答案是:7题目8正确获得10.00分中的10.00分标记题目题干图G如图四所示,以下说法正确的是 ( ) .选择一项:A. {(a, d) ,(b, d)}是边割集B. {(b, d)}是边割集C. {(a, d)}是割边D. {(a, d)}是边割集反馈你的回答正确正确答案是:{(a, d) ,(b, d)}是边割集题目9正确获得10.00分中的10.00分标记题目题干若G是一个汉密尔顿图,则G一定是( ).选择一项:A. 对偶图B. 欧拉图C. 连通图D. 平面图反馈你的回答正确正确答案是:连通图题目10正确获得10.00分中的10.00分标记题目题干已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:A. 8B. 3C. 4D. 5反馈你的回答正确正确答案是:5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学作业4
离散数学图论部分形成性考核书面作业
本课程形成性考核书面作业共3次,容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业.
要求:学生提交作业有以下三种方式可供选择:
1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.
2. 在线提交word文档
3. 自备答题纸,将答题过程手工书写,并拍照上传.
一、填空题
1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 .
2.设给定图G(如右由图所示),则图G的点割集是
{ f },{ e,c} .
3.设G是一个图,结点集合为V,边集合为E,则
G的结点度数之和等于边数的两倍.
4.无向图G存在欧拉回路,当且仅当G连通且不含奇数度结
点.
5.设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于︱v︱,则在G中存在一条汉密尔顿路.6.若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W ≤S .
7.设完全图K
n
有n个结点(n 2),m条边,当n为奇数时时,
K
n 中存在欧拉回路.
姓名:
学号:
得分:
教师签名:
8.结点数v与边数e满足e=v - 1 关系的无向连通图就是树.
9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去条边后使之变成树.
10.设正则5叉树的树叶数为17,则分支数为i = 4 .
二、判断说明题(判断下列各题,并说明理由.)
1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.
答:错误。
应叙述为:“如果图G是无向连通图,且其结点度数均为偶数,则图G存在一条欧拉回路。
”
2.如下图所示的图G存在一条欧拉回路.
答:错误。
因为图中存在奇数度结点,所以不存在欧拉回路。
3.如下图所示的图G不是欧拉图而是汉密尔顿图.
答:正确。
因为有4个结点的度数为奇数,所以不是欧拉图;而对于图中任意点集V中的非空子集V1,都有P(G-V1)≤V1。
其中P(G-V1)是从图中删除V1结点及其关联的边。
4.设G是一个有7个结点16条边的连通图,则G为平面图.
答:错误。
若G是连通平面图,那么若V≥3,就有e≤3v-6 而16>3×7-6,所以不满足定理条件,叙述错误。
5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.
答:正确。
因为连通平面图满足欧拉公式。
即:v-e+r=2。
由此题条件知6-11+7=2成立
三、计算题
1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试
(1) 给出G的图形表示;(2) 写出其邻接矩阵;
(3) 求出每个结点的度数;(4) 画出其补图的图形.
答:(1)
(2)
(3)
deg(v1)=1, deg(v2)=2 ,deg(v3)=4 ,deg(v4)=3,deg(v5)=2
(4)
2.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试
(1)画出G的图形;(2)写出G的邻接矩阵;
(3)求出G权最小的生成树及其权值.
(2)
(3)
其中权值是:7
3.已知带权图G如右图所示.
(1) 求图G的最小生成树;(2)计算该生成树的权值.
答:(1)
(2)
权值:18
4.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.
权值:65
四、证明题
1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它
的补图G中的奇数度顶点个数相等.
证明:设a为G中任意一个奇数度顶点,由定义,a仍为顶点,为区分起见,记为a’, 则deg(a)+deg(a’)=n-1, 而n为奇数,则a’必为奇数度顶点。
由a的任意性,容易得知结论成立。
k条边才2.设连通图G有k个奇数度的结点,证明在图G中至少要添加
2
能使其成为欧拉图.
证明:由定理推论知:在任何图中,度数为奇数的结点必是偶数个,则k是偶数。
又由欧拉图的充要条件是图G中不含奇数度结点。
因此,只要在每对奇数度结点间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图。
故最少要加条边才能使其成为欧拉图。