北师大版高中数学选修2-1第二章 空间向量与立体几何2.3.1-3三垂线定理教学设计
高中数学北师大版选修2-1 2.3.2空间向量基本定理 课件(26张)

-1-
1.了解空间向量基本定理及其意义,会在简单问题中选用空间三 个不共面的向量作为基底表示其他向量. 2.体会从平面到空间的过程,进一步培养对空间图形的想象能力.
-2-
1.空间向量基本定理 (1)如果向量e1,e2,e3是空间三个不共面的向量,a是空间任一向量, 那么存在唯一一组实数λ1,λ2,λ3,使得a=λ1e1+λ2e2+λ3e3. (2)空间中不共面的三个向量e1,e2,e3叫作这个空间的一个基 底,a=λ1e1+λ2e2+λ3e3表示向量a关于基底e1,e2,e3的分解,e1,e2,e3都叫 作基向量. 当向量e1,e2,e3两两垂直时,就得到这个向量的一个正交分解,当 e1=i,e2=j,e3=k时,a=λ1e1+λ2e2+λ3e3叫作a的标准正交分解.
1 1 1 ①������������ = ������������ + ������������ + ������������ ; ②������������ = ������������ + ������������; 3 3 3
③������������ = ������������ + ������������ + ������������ ; ④������������ = 2������������ − ������������. 解析 :对于 ①,由 ������������ = ������������������ + ������������������ + ������������������ (������ + ������ + ������ = 1), 知M,A,B,C 四点共面 ,则 ������������, ������������ , ������������共面;对于 ②④,易知 ������������, ������������ , ������������ 共面;只有 ③中 ������������, ������������ , ������������不共面. 答案 :③
北师大版高中数学选修2-1第二章《空间向量与立体几何》word整章教案

北师大版高中数学选修2-1第二章《空间向量与立体几何》一、教学目标:复习平面向量的基础知识,为学习空间向量作准备二、教学重点:平面向量的基础知识。
教学难点:运用向量知识解决具体问题三、教学方法:探究归纳,讲练结合四、教学过程(一)、基本概念向量、向量的模、零向量、单位向量、平行向量、相等向量、共线向量、相反向量、向量的加法、向量的减法、实数与向量的积、向量的坐标表示、向量的夹角、向量的数量积。
(二)、基本运算1、向量的运算及其性质运算类型几何方法坐标方法运算性质向量的加法1平行四边形法则2三角形法则),(2121yyxxba++=+abba+=+)()(cbacba++=++ACBCAB=+向量的减法三角形法则),(2121yyxxba--=-)(baba-+=-BAAB-=ABOAOB=-向量的乘法1a是一个向量,满足:2>0时,aλ与a同向;λ<0时,aλ与a异向;λ=0时, aλ=0),(yxaλλλ=aa)()(λμμλ=aaaμλμλ+=+)(babaλλλ+=+)(a∥babλ=⇔向量的ba∙是一个数10=或0=b时,ba∙=02121yyxxba+=∙abba∙=∙)()()(bababa∙=∙=∙λλλcbcacba∙+∙=∙+)(数 量 积20≠且0≠b 时,),cos(||||b a b a b a =∙22||a a =22||y x a +=||||||b a b a ≤∙2、平面向量基本定理:如果21,e e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数21,λλ,使a =; 注意)(21+=,)1(λλ-+=的几何意义 3、两个向量平行的充要条件: ⑴ //a b的充要条件是: ;(向量表示)⑵ 若),(),,(2211y x b y x a ==,则//a b 的充要条件是: ;(坐标表示)4、两个非零向量垂直的充要条件: ⑴ a b ⊥的充要条件是: ;(向量表示)⑵ 若),(),,(2211y x b y x a ==,则a b ⊥ 的充要条件是: ;(坐标表示)(三)、课堂练习1.O 为平面上的定点,A 、B 、C 是平面上不共线的三点,若( OB -OC )·(OB +OC -2OA )=0,则∆ABC 是( )A .以AB 为底边的等腰三角形 B .以BC 为底边的等腰三角形 C .以AB 为斜边的直角三角形D .以BC 为斜边的直角三角形2.P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的( ) A .外心 B .内心 C .重心 D .垂心3.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( ) A . 矩形 B . 菱形 C .直角梯形 D .等腰梯形4.已知||p = ||3q = ,p 、q 的夹角为45︒,则以52a p q =+ ,3b p q =-为邻边的平行四边形的一条对角线长为( ) A .15BC . 14D .165.O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足=)||||AC AB ++λ,),0[+∞∈λ则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 (四)、作业布置1.设平面向量=(-2,1),=(λ,-1),若与的夹角为钝角,则λ的取值范围是( ) A .),2()2,21(+∞- B .),2(+∞ C .),21(+∞- D .)21,(--∞ 2.若()(),0,7,4,3,2=+-==c a b a 方向在则上的投影为 。
数学选修2-1北师大版:第二章 空间向量与立体几何§33-1~3-2

§3向量的坐标表示和空间向量基本定理(一)3.1 空间向量的标准正交分解与坐标表示3.2 空间向量基本定理学习目标1.了解空间向量基本定理.2.了解基底、标准正交基的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.知识点一空间向量的坐标表示空间向量的正交分解及其坐标表示知识点二空间向量基本定理思考平面向量基本定理的内容是什么?答案如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a =λ1e1+λ2e2,其中,不共线的e1,e2叫作表示这一平面内所有向量的一组基底.梳理(1)空间向量基本定理(2)基底条件:三个向量a,b,c不共面.结论:{a,b,c}叫作空间的一个基底.基向量:基底中的向量a,b,c都叫作基向量.1.空间的任何一个向量都可用三个给定向量表示.(×)2.若{a ,b ,c }为空间的一个基底,则a ,b ,c 全不是零向量.(√)3.如果向量a ,b 与任何向量都不能构成空间的一个基底,则一定有a 与b 共线.(√) 4.任何三个不共线的向量都可构成空间的一个基底.(×)类型一 基底的判断例1 下列能使向量MA →,MB →,MC →成为空间的一个基底的关系式是( )A.OM →=13OA →+13OB →+13OC→B.MA →=MB →+MC→ C.OM →=OA →+OB →+OC →D.MA →=2MB →-MC(2)设x =a +b ,y =b +c ,z =c +a ,且{a ,b ,c }是空间的一个基底,给出下列向量:①{a ,b ,x };②{b ,c ,z };③{x ,y ,a +b +c }.其中可以作为空间的基底的有( )A .1个B .2个C .3个D .0个 考点 空间向量基底的概念 题点 空间向量基底的判断答案 (1)C (2)B解析 (1)对于选项A ,由OM →=x OA →+y OB →+z OC →(x +y +z =1)⇔M ,A ,B ,C 四点共面知,MA →,MB →,MC →共面;对于选项B ,D ,可知MA →,MB →,MC →共面,故选C.(2)②③均可以作为空间的基底,故选B. 反思与感悟 基底判断的基本思路及方法(1)基本思路:判断三个空间向量是否共面,若共面,则不能构成基底;若不共面,则能构成基底.(2)方法:①如果向量中存在零向量,则不能作为基底;如果存在一个向量可以用另外的向量线性表示,则不能构成基底.②假设a =λb +μc ,运用空间向量基本定理,建立λ,μ的方程组,若有解,则共面,不能作为基底;若无解,则不共面,能作为基底.跟踪训练1(1)已知a ,b ,c 是不共面的三个非零向量,则可以与向量p =a +b ,q =a -b 构成基底的向量是( )A .2aB .2bC .2a +3bD .2a +5c答案 D。
北师大版高中数学选修2-1第二章 空间向量与立体几何2.3.1-3三垂线定理教学设计

《三垂线定理》教学设计一、教学目标:1.认知目标:(1)使学生掌握三垂线定理及其逆定理的内容,并能从口头上和书面上作出正确的表达;(2)初步掌握运用三垂线定理或逆定理证空间两直线垂直的思考方法。
2.能力目标:通过探索三垂线定理及其证明,培养学生观察问题,发现问题的能力和空间想象能力,培养学生空间计算能力和逻辑思维能力.3.情感目标:激发学生学习兴趣,培养学生不断发现、探索新知的精神;渗透事物相互转化理论联系实际的辩证唯物主义观点,并通过图形的立体美、对称美,培养学生的审美意识。
二、重点、难点:(1)掌握并正确表达定理的内容是本节课的重点;(2)构造运用定理的条件证空间两直线垂直的思维能力是本节课的难点。
三、教材分析:“三垂线定理”是在立体几何中研究了空间直线和平面垂直关系的基础上研究空间两条直线垂直关系的一个重要定理。
它既是线面垂直关系的一个应用,又为以后学习面面垂直,研究空间距离、空间角、多面体与旋转体的性质奠定了基础,同时这节课也是培养学生空间想象能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力都有重要意义四、教法分析建立模型,启发引导,猜想论证,学习应用,发展能力五、教学过程设计与分析:节回顾旧知创设情景分析解决问题问题1 直线与平面垂直的定义教师提问式实施(教师补充说明:定义既是判定又是性质,并板书)如果一条直线和一个平面内的任意一条直线都垂直,则称直线与平面垂直思维从问题开始,点明这节课是研究空间两直线位置关系的继续问题2 直线与平面垂直的判定定理?( 学生回答后教师复述并板书)如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面问题3 PO是平面α的斜线,O为斜足;PA是平面α的垂线,A为垂足;AO是PO在平面α内的射影.(1)如果a⊂α,a与PO的位置关系如何?为什么?(2)如果a⊂α,a与PO能垂直吗?谁能将以上问题写成一个命题?你能证明吗?(教师板书)好!根据刚才同学们的回答可知这是一个真命题,这就是我们这节课要学的一个重要定理,从而引入。
高二数学选修2-1第二章 空间向量与立体几何复习(北师大版)精选教学PPT课件

3 3 a.
BS·数学 选修2-1
如图 2-5 所示的多面体是由底面为 ABCD 的长方体被截 面 AEC1F 所截而得到的,其中 AB=4,BC=2,CC1=3,BE =1.求点 C 到平面 AEC1F 的距离.
图 2-5
BS·数学 选修2-1
【解】 建立如图所示的空间直角坐标系,则 D(0,0,0),
图 2-6
BS·数学 选修2-1
【思路点拨】 建立适当的坐标系,设出 M 点的坐标, 由点到平面的距离的向量公式列方程,若方程有解可求 M 点 坐标,无解则不存在 M.
【规范解答】 根据图形的结构特点,可建立如图空间 直角坐标系.
则 A(0,0,0),P(0,0,2),C(1,1,0),D(0,2,0).
平面 EDB.
BS·数学 选修2-1
(2)依题意得 B(a,a,0),P→B=(a,a,-a),又D→E=(0,a2, a2),故P→B·D→E=0+a22-a22=0,所以 PB⊥DE.
由已知 EF⊥PB,且 EF∩DE=E,所以 PB⊥平面 EFD.
BS·数学 选修2-1
如图 2-2,在三棱锥 P-ABC 中,AB⊥BC,AB=BC, 点 O、D 分别是 AC、PC 的中点,且 OA=OP,OP⊥平面 ABC.
BS·数学 选修2-1
如图 2-3,在空间直角坐标系中,已知 E,F 分别是正方体 ABCD-A1B1C1D1 的棱 BC 和 CD 的中点,求:
(1)A1D 与 EF 所成角的大小; (2)A1F 与平面 B1EB 所成角的正弦值; (3)平面 CD1B1 与平面 D1B1B 夹角的余弦值.
图 2-3
-34a2 =-
22a×
6 2a
3 2.
高中数学 第二章 空间向量与立体几何 2.4 用向量讨论垂直与平行课件 北师大版选修21

探究二
探究三
思维辨析
利用向量方法证明空间中的平行关系
【例2】 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别为
BB1,DD1的中点,求证:
(1)FC1∥平面ADE;
(2)平面ADE∥平面B1C1F.
思维点拨:画出示意图后用常规的方法也能将问题得以解决,但
不如用向量法处理直接简单,因此本题可以通过建立空间直角坐标
∴=(1,-2,-4), =(2,-4,-3).设平面 α 的法向量是 n=(x,y,z),依题
-2-4 = 0,
解得 z=0,且 x=2y.令
2-4-3 = 0,
y=1,则 x=2.故 n=(2,1,0)是平面 α 的一个法向量.
意,应有 n·=0,且 n· =0,即
探究一
一
二
三
思考辨析
一、空间中的垂直关系
1.线面垂直判定定理
若一条直线垂直于一个平面内的两条相交直线,则该直线与此平
面垂直.
2.面面垂直判定定理
若一个平面经过另一个平面的一条垂线,则这两个平面垂直.
3.三垂线定理
若平面内的一条直线垂直于平面外的一条直线在该平面上的投
影,则这两条直线垂直.
4.三垂线定理的逆定理
设平面HMN的法向量为n=(x2,y2,z2),
则 n· =(x2,y2,z2)·(0,-1,1)=-y2+z2=0,
n·=(x2,y2,z2)·(1,1,0)=x2+y2=0,
从而得x2=-y2=-z2,设x2=-1,则n=(-1,1,1),
∴m∥n,∴平面EFG∥平面HMN.
探究一
探究二
∴ =(0,-1,1),=(1,1,0),
高中数学选修2-1三垂线定理及逆定理(一)

[思考2]:
在四面体A-BCD中
A
若AB CD, BC AD, 求证:AC BD.
D
B
O
C
[思考3]:
D1 A1
P
C1 B1
O M N
若O为 B1 BCC1中心, P为 D1 D 上一点, 求证:PO⊥AM
C
D A
B
[思考4]:
D1 A1 G D A B1 F B C1 E C
设正方体 ABCD A1B1C1D1 的 棱长为2, 若E为 C1C 的中点,
A
o
a
理解和深化
⒈为什么称为“三垂线”定理?
P α A o
a
三种垂直关系: ①线面垂直②线射垂直③线斜垂直 ⒉这个定理的作用是什么? 三垂线定理实质是平面内的直线和平面的斜线垂直 的判定定理.
3.如果将定理中“在平面内”的条件去掉,结 论成立吗?
P
α A
o
a
直线a必须要在平面内,如果a 不在平面内,定理就不一定成 立.
三垂线定理及逆定理
P
α
A
o
a
[思考]
如图, l 是平面α的一条斜线,如何在α内画一 l垂直? 条直线与
l
α
a
涉及到三对垂直关系
l P
A a
: PO , OA a , PA a
其中 : PO PA a OA a A - - - - - - - -三垂线定理 . PO OA a PA a - - - - - - - -三垂线逆定理 .
D1 A1 B1 D A B
C1 练习: (1)求证: D1 B B1C (2)求证: D1 B 平面AB1C C
2.3.1,2向量的坐标表示和空间向量基本定理课件(北师大版选修2-1)

→ → ∵ CA1 =a+b+c, C1D =b-c,∴(a+b+c)· (b-c)=0⇒a·b +|b|2+c· b-a· c-b· c-|c|2=0. 1 2 1 1 1 2 ∴2m +m +2m-2m-2m-1=0⇒3m2-m-2=0, 2 解得:m=1或m=- (舍去). 3 → → 当m=1时,由 CA1 · BD =(a+b+c)· (b-a)⇒a·b+|b|2+c· b- |a|2-a· b-a· c=0,∴CA1⊥BD. CD 综上,当CC =1时,A1C⊥平面C1BD. 1
1 1 1 1+1- + -1= . 2 2 2
→ → 1 EF·AC 2 2 → → 则有:cos〈EF,AC〉= = =2, → → 2 |EF||AC| 2 π → → → → ∵〈EF,AC〉∈[0,π ],∴〈EF,AC〉= 4 .(12分) → → → 【题后反思】 用已知模和夹角的基底 OA 、 OB 、 OC 表示目标 向量是解决本题的关键.
→ → → [规范解答] 设 OA =a, OB =b, OC =c,则|a|=|b|=|c|=1, π 〈a,b〉=〈b,c〉=〈a,c〉= 3 , 1 ∴a·b=a· c=b· c=2.(3分) 1→ → → → 1 → → (1)EF=OF-OE= (OB+OC)- OA 2 2 1 1 1 1 =- a+ b+ c=- (a-b-c), 2 2 2 2
解
→ → → → 2 → 1→ 2 → → OG=OM+MG=OM+ MN= OA+ (ON-OM) 3 2 3
1 → 2 1→ → → 1 =2OA+3 (OB+OC)- OA 2 2 1→ 1 → → 1→ 1→ 1→ 1→ =2OA+3(OB+OC)-3OA=6OA+3OB+3OC, → 1→ 1→ 1→ ∴OG= OA+ OB+ OC. 6 3 3 规律方法 利用向量加减法,把目标向量用已知的基底表示,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三垂线定理》教学设计
一、教学目标:
1.认知目标:
(1)使学生掌握三垂线定理及其逆定理的内容,并能从口头上和书面上作出正确的表达;
(2)初步掌握运用三垂线定理或逆定理证空间两直线垂直的思考方法。
2.能力目标:
通过探索三垂线定理及其证明,培养学生观察问题,发现问题的能力和空间想象能力,培养学生空间计算能力和逻辑思维能力.
3.情感目标:
激发学生学习兴趣,培养学生不断发现、探索新知的精神;渗透事物相互转化理论联系实际的辩证唯物主义观点,并通过图形的立体美、对称美,培养学生的审美意识。
二、重点、难点:
(1)掌握并正确表达定理的内容是本节课的重点;
(2)构造运用定理的条件证空间两直线垂直的思维能力是本节课的难点。
三、教材分析:
“三垂线定理”是在立体几何中研究了空间直线和平面垂直关系的基础上研究空间两条直线垂直关系的一个重要定理。
它既是线面垂直关系的一个应用,又为以后学习面面垂直,研究空间距离、空间角、多面体与旋转体的性质奠定了基础,同时这节课也是培养学生空间想象能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力都有重要意义
四、教法分析
建立模型,启发引导,猜想论证,学习应用,发展能力
五、教学过程设计与分析:
回顾旧知
创设情景
分析解决问题问题1 直线与平面垂
直的定义
教师提问式实施
(教师补充说明:定
义既是判定又是性
质,并板书)
如果一条直线
和一个平面内
的任意一条直
线都垂直,则
称直线与平面
垂直
思维从问
题开始,点
明这节课是
研究空间两
直线位置关
系的继续问题2 直线与平面垂
直的判定定理?( 学生回答后教师复
述并板书)
如果一条直线
和一个平面内
的两条相交直
线都垂直,那
么这条直线垂
直于这个平面
问题3 PO是平面α的
斜线,O为斜足;PA是
平面
α的垂线,A为垂足;
AO是
PO在平面α内的射影.
(1)如果a⊂α,a与PO
的位置关系如何?为什
么?
(2)如果a⊂α,a与PO
能垂直吗?
谁能将以上问题写成一
个命题?
你能证明吗?
(教师板书)
好!根据刚才同学们
的回答可知这是一个
真命题,这就是我们
这节课要学的一个重
要定理,从而引入。
a⊥PO,根据线
面垂直的定义.
能,当a⊥AO
时
在平面内的一
条直线,如果
和这个平面的
一条斜线的射
影垂直,那么
它也和这条斜
线垂直.
让学生养成
严格论证问
题的习惯和
正确的书写
格式,培养
学生思维的
严谨性。
板书设计:
1.本堂课尝试运用“问题解决”的教学模式,力图通过发现问题、分析问题和
解决问题的过程,让学生主动参与,始终处于积极地操作和思考的动态活动之中,形成以学生为中心的探索性学习活动。
2.本节课力求体现出以教师为主导、学生为主体的教育思想。
引导学生利用数
学知识去分析问题和解决问题,开拓学生的思维,培养学生的创新精神和实践能力。