第一章电路分析的基本定律
电路分析基础第一章 电路模型和电路定律

+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
电路分析基础第1章 电路的基本概念与定律

第1章电路的基本概念和定律 (1) (2)按选定的参考方向分析电路,求解电流。若计算结 果为正(i>0),说明电流的参考方向与实际方向相同;若计 算结果为负值(i<0),说明电流的参考方向与实际方向相反, 如图1-3 (3)若没有设定参考方向,则电流的正、负没有意义。 在电路中,元件的电流参考方向可用箭头表示,如图14所示;在文字叙述时可用电流符号加双字母构成的下标表 示,如iab,它表示电流由a流向b,并有iab=-ib方向与实际方向的关系
16
第1章电路的基本概念和定律
图1-4 电流参考方向的表示
17
第1章电路的基本概念和定律 【例1-1】 图1-5中,1、2、3三个方框表示三个元件或 电路,箭头表示电流的参考方向,i1、i2、i3表示电路中的电 流。说明当i1=i2=i3=1A和当i1=i2=i3=-1A时各电路电流 的真实方向。 解 (1)当电流大小均为1A时,由于电流大于零,故其真 实方向与参考方向相同。即i2真实方向由c流向d;i3真实方 向由f流向e;而i1由于没有参考方向而无法确定其实际方向。
6
第1章电路的基本概念和定律 为了便于对电路进行分析与计算,对复杂的实际问题进 行研究,在理论分析中常常把实际电路中的各种设备和电路 元(器)件用能够表征电路主要电磁性质的理想化的电路元件 来表示。例如,电阻具有消耗电能的特性,我们就可以将具 有这一特性的电灯、电炉等用电器都用电阻来代替,虽然这 种替代会带来一定的误差,但在一定条件下是可以忽略的。 在实际工程问题中,若需要更精密地做研究时,可再考虑由
20
第1章电路的基本概念和定律
1.2.2 1. 一般情况下,导体中的电荷无规则的自由运动不能形成
在匀强电场中,正电荷Q在电场力的作用下,由a点移
第一章电路的基本概念和基本定律

开关
实际电路
电源
电路模型 3
(1)电源:供给电能的设备。
把其它形式的能量转换为电能。
(2)负载: 消耗电能的设备。
把电能转换为其它形式的能量
(3)中间环节(又称传输控制环节):
各种控制电器和导线,起传输、分 配、控制电能的作用。
4
1.1.2 电路中的物理量 1、电流
定义 电荷有规律的定向运动即形成电流
(2) 列电路方程:
Uab UR E
UR Uab E
IR
UR R
Uab E R
15Leabharlann R aIR E UR
b U
IR
U
R
E
(3) 数值计算
U 3V
IR
3-2 1
1A
(实际方向与假设方向一致)
U 1V
IR
1 2 1
1A
(实际方向与假设方向相反)
16
(共7 个)
31
(一) 克氏电流定律(KCL)
对任何节点,在任一瞬间,流入节点的电流等于由节点
流出的电流, 即: I 入= I 出 或者说,在任一瞬 间,一个节点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I1 I3 I2 I4 0
(二) 克氏电压定律(KVL)
对电路中的任一回路,沿任意循行方向转一周,其 电位升等于电位降。或各电压的代数和为 0。
I1
a
I2
即: U 0
R1
R2
例如: 回路 #3
电路的基本原理(第一章)

参考方向 实际方向
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UIa 0
I
+ + “发出功率”
-
U_ b
(电源)
(2)当U和I参考方向选择不一致的前提下
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UI 0
I
+
-
+
U_
“发出功率” (电源)
中间环节:连接电源和负载的部分,其传输和分 配电能的作用。例如:输电线路
举例:(电子电路,即信号电路)
放 大 器
电源 (信号源) 中间环节
负载
电路的作用之二:传递和处理信号。
1.2 电路模型
I
电 池
灯 泡
+ E
_
+
RU
_
电源
负载
理想电路元件:在一定条件下,突出其主要电磁性能, 忽略次要因素,将实际电路元件理想化
对任何节点,在任一瞬间,流入节点的电流等于 由节点流出的电流。或者说,在任一瞬间,一个节
点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I I I I 0
1
3
2
4
克氏电流定律的依据:电流的连续性
克氏电流定律的扩展
电流定律还可以扩展到电路的任意封闭面。
例 I1 A
I
a
+
RO
+
U
E_
-
b
I=0
第一章(二) 电路的基本定律

第一章 电路的三大定律一、欧姆定律欧姆定律是电路分析中的重要定律之一,主要用于进行简单电路的分析,它说明了流过线性电阻的电流与该电阻两端电压之间的关系,反映了电阻元件的特性。
遵循欧姆定律的电路叫线性电路,不遵循欧姆定律的电路叫非线性电路。
1、部分电路的欧姆定律定律: 在一段不含电源的电路中,流过导体的电流与这段导体两端的电压成正比,与这段导体的电阻成反比。
其数学表示为:RUI =(1-1) 式中 I ——导体中的电流,单位)(A ;U ——导体两端的电压,单位)(V ; R ——导体的电阻,单位)(Ω。
电阻是构成电路最基本的元件之一。
由欧姆定律可知,当电压U 一定时,电阻的阻值R 愈大,则电流愈小,因此,电阻R 具有阻碍电流通过的物理性质。
例1:已知某灯泡的额定电压为V 220,灯丝的电阻为Ω2000,求通过灯丝的电流为多少?解: 本题中已知电压和电阻,直接应用欧姆定律求得:A R U I 11.02000220===例2:已知某电炉接在电压为V 220的电源上,正常工作时通过电炉丝的电流为A 5.0,求该电炉丝的电阻值为多少?解: 本题中已知电压和电流,将欧姆定律稍加变换求得:Ω===4405.0220I U R欧姆定律的几种表现形式:电压和电流是具有方向的物理量,同时,对某一个特定的电路,它又是相互关联的物理量。
因此,选取不同的电压、电流参考方向,欧姆定律的表现形式便可能不同。
1) 在图1.1 a.d 中,电压参考方向与电流参考方向一致,其公式表示为: RI U = (1-2)2) 在图1.1 b.c 中,电压参考方向与电流参考方向不一致,其公式表示为:RI U -= (1-3)3) 无论电压、电流为关联参考方向还是非关联参考方向,电阻元件的功率为:RU R I P RR22== (1-4)上式表明,电阻元件吸收的功率恒为正值,而与电压、电流的参考方向无关。
因此,电阻元件又称为耗能元件。
例3:应用欧姆定律求图1.1所示电路中的电阻R图1.1 电路中的电阻解:在图1.1.a 中,电压和电流参考方向一致,根据公式RI U =得: Ω===326I U R 在图1.1.b 中,电压和电流参考方向不一致,根据公式RI U -=得: Ω=--=-=326I U R(a ) (b) (c) (d)在图1.1.c 中,电压和电流参考方向不一致,根据公式RI U -=得: Ω=--=-=326I U R 在图1.1.d 中,电压和电流参考方向一致,根据公式RI U =得: Ω=--==326I U R 结论:在运用公式解题时,首先要列出正确的计算公式,然后再把电压或电流自身的正、负取值代入计算公式进行求解。
电路基本分析 主编石生 第1章 电路分析的基本概念及定律

Chapter 1 电阻、电容、 1-3 电阻、电容、电感元件及其特性
一、电阻元件 1.定义:由u-i 平面的一条曲线确定的二端元件在任一时刻 的电压电流关系,此二端元件称为二端电阻元件。 表为: f(u,i)=0 此曲线称为伏安特性曲线。
Chapter 1
2.分类:
时变 线性电阻 时不变 电阻元件 非线性电阻 时变 时不变
u
e
u
e
u
(b) u=e
e
(a)
(b)
(c)
电压和电动势的参考方向
(c) u=-e
Chapter 1
四、电功率与电能 1.电功率:单位时间电路消耗的能量。表为 1. 直流时
P = W t
功率随时间变化时,则有 即
dw p (t ) = dt
∆w dw p (t ) = lim = ∆t → 0 ∆ t dt
Chapter 1
三、电压电流的关联参考方向 电压电流的参考方向关系共4种:
a
a
a
a
(a)关联参考方向
u
i
u i
u
i
u
(b)关联参考方向
i
(c)非关联参考方向
b (d)
b (a)
b (b)
b (c)
(d)非关联参考方向
分两类:(1)一致方向称为关联参考方向; (2)不一致方向称为非关联参考方向。
Chapter 1
将dw=udq,且dq=idt 代入得: 单位换算:
p=ui
3
单位:瓦特(W)
1MW = 10 kW,
3
1kW = 10 W,
1W = 10 mW
3
Chapter 1
电路分析重点内容 (1)

第一章电路分析的基本概念和定理(主要知识点)1.电路理论主要研究电路的基本规律和分析方法,包括电路分析和电路综合二个内容电路分析:指在给定电路结构和元件参数的条件下,求解电路在特定激励下的响应电路综合:在给定电路技术指标的情况下,设计出电路并确定元件参数。
2.实际电路的基本功能概括为两种:(1)实现电能的产生,传输,分配,和转换,如电力系统(2)实现电信号的处理,如语音信号,图像信号和控制信号等。
3.实际电路通常由电源,负载和中间环节三部分组成。
4.关联参考方向:指电压和电流的参考方向一致。
即电流的参考方向是从电压的“+”端流入,“-”端流出。
5.元件的功率:当电压电流取关联参考方向时,P(t)=U(t)×I(t),当P>0,元件吸收功率(或消耗功率),反之,P<0,元件发出功率(或产生功率)6.对一个完整的电路来说,任一时刻电路中各元件吸收的功率总和应等于发出的功率总和,或者说总功率的代数和为零,即必须遵守功率守恒定律。
7.电阻元件:任一时刻,如果一个二端元件电压U与电流I的关系可以用U-I平面上的唯一一条曲线确定,则称该元件为电阻。
电容元件:任一时刻,如果一个二端元件电荷Q与电压U的关系可以用U-Q平面上的一条曲线确定,则称该二端元件为电容元件。
电感元件:任一时刻,如果一个二端元件磁通链(磁链)与电流的关系可以用i-φ平面上的一条曲线确定,则称二端该元件为电感元件。
8.理想电压源:其端电压与流过的电流无关,不受外电路影响。
电压源可以开路(电流I=0),理想电压源不允许短路。
9.理想电流源:其电流与端电压无关,不×受外电路影响。
电流源可以短路(电流U=0),理想电流源不允许开路。
10.受控电源:受控电源是一种非独立电源,受控源不是激励。
11.电路分析遵循两类约束:元件约束和拓扑约束元件约束:由元件的特性,即元件的电压,电流关系形成的约束。
如欧姆定律拓扑约束:由元件在电路中的连接关系形成的约束,由基尔霍夫电流定律和电压定律体现。
(大学物理电路分析基础)第1章电路分析的基本概念和定律

当电容并联时,总电容 等于各电容之和,总电 流等于各电容电流之和。
电感的并联
当电感并联时,总电感 为各电感倒数之和,总 电压等于各电感电压之
和。
05
非线性电阻电路的分析简介
非线性电阻元件的特点
伏安特性曲线
非线性电阻元件的伏安特性曲线不是一条直线,而是随着电压的 变化而变化。
电流与电压不成正比
非线性电阻元件的电流与电压不成正比,即不满足欧姆定律。
大学物理电路分析基础 第1 章 电路分析的基本概念和定
律
目录
• 电路分析的基本概念 • 电路分析的几个重要定律 • 线性电阻电路的分析方法 • 含电容和电感的电路分析 • 非线性电阻电路的分析简介
01
电路分析的基本概念
电路的定义与组成
总结词
电路是由若干个元件按照一定的方式连接起来,用于实现电能或信号传输的闭 合回路。
动态特性
非线性电阻元件的动态特性是指其阻值随时间、温度等因素的变化 而变化。
非线性电阻电路的分析方法
解析法
通过建立数学模型,利用数学工具求解非线性电 阻电路的电压、电流等物理量。
实验法
通过实验测量非线性电阻电路的电压、电流等物 理量,并进行分析。
仿真法
利用电路仿真软件对非线性电阻电路进行模拟, 得到电路的电压、电流等物理量。
电流源
电流源是一种理想电源,能够保持输出电流恒定,不受输出电压变 化的影响。
等效变换
对于线性电阻电路,电压源和电流源可以通过适当的等效变换进行相 互转换。等效变换是指两种电路在端口处具有相同的电压和电流。
支路电流法与节点电压法
支路电流法
支路电流法是一种通过设定支路电流变量,然后根据基尔霍夫定律建立方程组求解的方法。该方法适 用于支路数较少、节点数较多的电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I=0
二、 基尔霍夫电压定律(KVL定律)
1.定律 在任一时刻,沿电路中的任一回路的绕行方向 (顺时针或逆时针),回路中所有支路电压的 代数和恒等于零。
对回路abca: US1 = I1 R1 +I3 R3 或 I1 R1 +I3 R3 –US1 = 0
对回路 abda:I2 R2+I3 R3=US2 或 I2 R2+I3 R3 –US2 = 0
? 计算:当一个元件上的电流、电压满足关联参考方
向时,功率计算为
p ? ui
而当一个元件上的电流、电压为非关联参考
方向时,功率计算为
p ? ?ui
? 判别:元件上的功率有吸收和发出两种可能,用功
率计算值的正负相区别。当 p>0时表示元件
吸收功率,起负载的作用;当 p<0时表示元
件发出功率,起电源的作用。
US1–
+ US2
–
B +
1 UBE
R1
R2
I2
_
E
结论:
(1)电位值是相对的,参考点选取的不同,电路中 各点的电位也将随之改变;
(2) 电路中两点间的电压值是固定的,不会因参考 点的不同而变, 即与零电位参考点的选取无关。
? 借助电位的概念可以简化电路作图
c 20? a 5?
c 20? d
E1
? 4A 6?
有
I
源
+
电
U
路
–
2. 短路处的电流 I 视电路情况而定。
1. 5 基尔霍夫定律
支路:电路中的每一个分支。 一条支路流过一个电流,称为支路电流。
结点:三条或三条以上支路的联接点。 回路:由支路组成的闭合路径。 网孔:内部不含支路的回路。
例1: d
a
I1
I2
IG
G
I3 b I4 I
+U –
支路:ab、bc、ca、… (共6条)
为直流电动势,用大写字母 E表示。大小和方向随 时间变化的电动势称为交变电动势,用小写字母 e
表示。 ? 电动势的实际方向与电压实际方向相反,规定在
电源内部由低电位指向高电位。电动势的参考方 向也可用箭头、双下标或“ +、-”极性表示。
四、电功率
? 定义:电场力在单位时间内所做的功称为电功率,
简称功率。
内阻 消耗 功率
负载大小的概念 : 负载增加指负载取用的
电流和功率增加 (电压一定 )。
电气设备的额定值
额定值: 电气设备在正常运行时的规定使用值 1. 额定值反映电气设备的使用安全性;
2. 额定值表示电气设备的使用能力。 例:灯泡:UN = 220V ,PN = 60W
电阻: RN = 100? ,PN =1 W 电气设备的三种运行状态
u
(2)用正、负极性表示:
+u
(3)用双下标表示:
A
uAB
B
3、关联参考方向
元件或支路的 u,i 采用相同的参考方向称为关联 参考方向。反之,称为非关联参考方向。
i
+
u
关联参考方向
i
--
u
+
非关联参考方向
例1
i
+
AuB
-
电压、电流参考方向如图中所标, 问:对A、B两部分电路电压、电 流参考方向是否关联?
1 ? A=10-6A
规定正电荷的 运动方向为电流的实际 方向
?参考方向
任意假定一个电流的方向即为 电流的参考方向。
注意:电流 (代数量)
大小 方向(正负)
电流的参考方向与实际方向的关系:
i 参考方向
i 参考方向
A
实际方向 B A
实际方向 B
i>0
i< 0
电流参考方向的两种表示:
? 用箭头表示:箭头的指向为电流的参考方向 。
1. 开路处的电流等于零;
有I
源
+
电
U
路
–
I =0
2. 开路处的电压 U 视电路情况而定。
三、短路工作状态
电源外部端子被短接
特征
??U ? 0
? ?
I
?
?
I SC
?
US RO
?? PS ? PO ? RO I SC 2 , P ? 0
电路中某处短路时的特征 : 1. 短路处的电压等于零; U =0
1.3 欧姆定律
U、I 参考方向相同时, U、I 参考方向相反时,
+
U=IR +
U = – IR
U IR
U IR
–
–
表达式中有两套正负号:
① 式前的正负号由 U、I 参考方向的关系确定;
② U、I 值本身的正负则说明实际方向与参考 方向之间的关系。
通常取 U、I 参考方向相同。
例:应用欧姆定律对下图电路列出式子,并求电阻 R。
I
++
U–S U
Ro
–
电池
S 开关
导线
R 灯泡
特点: 1、每一个电路模型都可以用
确切的数学表达式描述。 2、同一部件,不同的外部工
作条件,电路模型不同。
电池是电源元件,
灯泡主要具有消耗电 能的性质,是电阻元件, 其参数为电阻 R;
筒体用来连接电池和 灯泡,其电阻忽略不计, 认为是无电阻的理想导体。
开关用来控制电路的 通断。
额定工作状态: I = IN ,P = PN (经济合理安全可靠 )
过载(超载): I > IN ,P > PN (设备易损坏 )
欠载(轻载): I < IN ,P < PN (不经济)
二、开路工作状态
开关 断开 特征:
I=0
U =UOC= Us 电源端电压 ( 开路电压 )
P = 0 负载功率 电路中某处断开时的特征 :
+
UI 6V 2A
R
– (a)
+
U 6V
I R
–2A
–
(b)
解:对图(a)有, U = IR 所以 : R ? U ? 6 ? 3Ω I2
对图(b)有, U = – IR 所以 : R ? ? U ? ? 6 ? 3Ω I ?2
线性电阻的概念:
遵循欧姆定律的电阻称为线性电阻,它表示该 段电路电压与电流的比值为常数。
降压 变压器
电灯 电动机 电炉
...
(2)实现信号的传递与处理(信号电路)
信号处理:
信号源:
放大、调谐、检波等
提供信息 话筒
放 扬声器
大
器
直流电源 :
负载
提供能源
直流电源
电源或信号源的电压或电流称为激励,它推动电路 工作;由激励所产生的电压和电流称为响应。
二、电路模型
为了便于用数学方法分析电路 ,一般要将实际电路模
1.1 电路和电路模型
一. 电路的功能和组成 1、组成 电源: 提供
电能的装置
发电机
升压 输电线 变压器
负载: 取用 电能的装置
降压 变压器
电灯 电动机 电炉
...
中间环节: 传递、分 配和控制电能的作用
2. 电路的分类与作用 (1) 实现电能的传输、分配与转换 (电力电路)
发电机
升压 变压器
输电线
或 I1+I2–I3= 0
? 实质: 电流连续性的体现。
基尔霍夫电流定律 (KCL)反映了电路中任一 结点处各支路电流间相互制约的关系。
2.推广
电流定律可以推广应用于包围部分电路的任一 假设的闭合面。
例:
IA
A
广义结点
I =? I
IB IC B
C
5?
6V+_ 1?
2?
+_12V 1? 5?
IA + IB + IC = 0
型化,用足以反映其电磁性质的理想电路元件或其组合 来模拟实际电路中的器件,从而构成与实际电路相对应 的电路模型。
理想电路元件主要有 手电筒的电路模型
电阻元件、电感元件、电
I
容元件和电源元件等。 例:手电筒
++
U–S U
手电筒由电池、灯泡、 Ro
开关和筒体组成。
–
电池
S 开关
导线
R 灯泡
手电筒的电路模型
即: ? U = 0 基尔霍夫电压定律 (KVL) 反映了电路中任一 回路中各段电压间相互制约的关系。
注意:
1.列方程前 标注回路循行方向;
2.应用 ? U = 0列方程时,项前符号的确定:
如果规定电位降取正号,则电位升就取负号。
3. 开口电压可按回路处理
对回路1:
+
-US2 +UBE + I2R2 =0
? 单位 V (伏[特])、kV、mV、? V
在复杂电路或交变电路中,两点间电压的 实际方向往往不易判别,给实际电路问题的分 析、计算带来困难。
? 电压的参考方向
参考方向
+
u
–
+ 实际方向 –
假设高电位指向低电 位的方向。
参考方向
+
u
–
– 实际方向 +
u >0
u <0
电压参考方向的三种表示方式: (1) 用箭头表示:
–12V
I R1 A RP B
R2
–? 12V
零电位参考点为 +12V 电源的“ –”端与–12V 电源的“ +”端的联接处。
(2) VA = – IR1 +12 VB = IR2 – 12