七年级代数式易错题

合集下载

苏科版七年级数学上册(代数式)期末易错题练习-带有答案

苏科版七年级数学上册(代数式)期末易错题练习-带有答案

苏科版七年级数学上册(代数式)期末易错题练习-带有答案学校: 班级: 姓名: 考号:一、单选题1.下列代数式的书写,正确的是( ) A .5nB .n5C .1500÷tD .114 x 2y2.若长方形长是2a+3b ,宽为a+b ,则其周长是( ) A .6a+8bB .12a+16bC .3a+8bD .6a+4b3.若﹣3x 2m y 3与2x 4y n 是同类项,那么m ﹣n=( ) A .0B .1C .﹣1D .﹣24.已知a 2+a −5=0,代数式(a 2−5)(a +1)的值是( ) A .4B .-5C .5D .-45.下列各式:﹣x+1,π+3,9>2与x−yx+y ,s=12ab ,其中代数式的个数是( ) A .5B .4C .3D .26.已知一个多项式与 2x 3−8x 2+5x −3 的和等于 2x 3−14x 2+5x −2 ,则这个多项式为( ) A .4x 3+6x 2+1B .6x 2+1C .−6x 2+1D .−6x 2−57.为庆祝战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( ) A .a -10% B .a •10% C .a (1-10%)D .a (1+10%)8.如图,两个长方形的面积分别为20,6,两阴影部分的面积分别为a ,b ,且 a >b ,则 (a −b) 等于( )A .6B .7C .14D .16二、填空题9.若2x+2y-5=0,则4-x-y= 。

10.已知a +2b =3,则代数式4−a −2b 的值是 .11.观察下列单项式:x,﹣4x2,9x3,﹣16x4,25x5…根据这个规律,第10个式子应为.12.小明父亲拟用不锈钢制造一个上部是一个长方形,下部是一个正方形的窗户,相关数据(单位:米)如图所示,则制造这个窗户所需不锈钢的总长是米.13.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4…则第2017输出的结果为;三、解答题14.化简(1)−4x2y+9xy2−9x2y−21xy2(2)(2xy−y)−(−y+xy)(3)4(x2+xy−5)−3(2x2−xy)(4)3x2−[7x−3(4x−3)−2x2]15.已知a、b互为相反数,c、d互为倒数,m的绝对值是5,求|a+b|+4m﹣3cd的值.2m2+116.一位同学做一道题:“已知两个多项式A、B,计算A-B”.他误将“A-B”看成“A+B”,求得的结果为5 x2-2 x+4.已知B=2x2-3 x+7,求A-B的正确答案.17.如图,在一块边长为acm的正方形纸片的四角,各剪去一个边长为bcm的正方形,求剩余部分的面积.如果a=3.6,b=0.8呢?.18.当冰融化成水时,其体积大约会比之前减少1,现有一块体积为(x+20)的冰块.10(1)求该冰块融化成水后的体积.(用含x的式子表示)(2)当x=30时,求(1)中冰融化成水的体积.19.7月9日,滴滴发布北京市滴滴网约车价格调整,公布了新的滴滴快车计价规则,车费由“总里程费+总时长费”两部分构成,不同时段收费标准不同,具体收费标准如下表,如果车费不足起步价,则按起步价收费.时间段里程费(元/千米)时长费(元/分钟)起步价(元)06:00-10:00 1.80 0.80 14.0010:00-17:00 1.45 0.40 13.0017:00-21:00 1.50 0.80 14.0021:00-6:00 2.15 0.80 14.00(1)小明早上 7:10 乘坐滴滴快车上学,行车里程 6 千米,行车时间 10 分钟,则应付车费多少元? (2)小云 17:10 放学回家,行车里程 1 千米,行车时间 15 分钟,则应付车费多少元?(3)下晚自习后小明乘坐滴滴快车回家,20:45 在学校上车,由于堵车,平均速度是 a 千米/小时,15 分钟后走另外一条路回家,平均速度是 b 千米/小时,5 分钟后到家,则他应付车费多少元?答案1.A2.A3.C4.B5.C6.C7.C8.C9.3210.111.﹣100x1012.(5a+2b)13.114.(1)解:原式=(−4−9)x2y+(9−21)xy2=−13x2y−12xy2(2)解:原式=2xy−y+y−xy=xy(3)解:原式 =4x 2+4xy −20−6x 2+3xy =−2x 2+7xy −20(4)解:原式 =3x 2−(7x −12x +9−2x 2)=3x 2−7x +12x −9+2x 2=5x 2+5x −9 15.解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是5 ∴a+b=0,cd=1,m=±5 ∴原式=|0|2×25+4m ﹣3×1=4m ﹣3当m=5 时,原式=4×5﹣3=17; 当 m=﹣5 原式=4×(﹣5)﹣3=﹣23 即|a+b|2m 2+1+4m ﹣3cd 的值为17或﹣2316.解:根据题意得:A+B=5x 2-2x+4,B=2x 2-3x+7 ∴A=5x 2-2x+4-(2x 2-3x+7) =5x 2-2x+4-2x 2+3x-7 =3x 2+x-3 则A-B=(3x 2+x-3)-(2x 2-3x+7) =3x 2+x-3-2x 2+3x-7 =x 2+4x-10.17.解:由题意可得:剩余部分的面积为:a 2−4×b 2=a 2−4b 2;当a =3.6,b =0.8时,a 2−4b 2 =(a +2b )(a −2b )=(3.6+2×0.8)(3.6−2×0.8) =10.4即剩余部分的面积是10.4cm 2.18.(1)解:(x +20)(1−110)=910(x +20)=910x +18 (2)解:当x =30时910x +18=910×30+18=27+18=45.19.(1)解:根据表格中的06:00-10:00的收费标准计算:6×1.8+10×0.8=18.8元.(2)解:根据表格中的17:00-21:00的收费标准计算:1×1.5+15×0.8=13.5元,但是13.5<14,则应付车费14元.(3)解:前15分钟的路程为: 1560×a =14a 后5分钟的路程为: 560×b =112b . 则前15分钟按17:00-21:00收费标准计算: 14a ×1.5+15×0.8=38a +12后5分钟按21:00-6:00收费标准计算:112b×2.15+5×0.8=43240b+4则应付车费为38a+12+43240b+4=38a+43240b+16。

七年级数学代数式易错题(Word版 含答案)

七年级数学代数式易错题(Word版 含答案)

3.某校要将一块长为 a 米,宽为 b 米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图 1,在空地上横、竖各铺一条宽为 4 米的石子路,其余空地种植花草. 方案二:如图 2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地 铺筑成石子路.
(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有 π,则保留) (2)若 a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π 取 3.14). 【答案】 (1)解:方案一:∵ 石子路宽为 4, ∴ S 石子路面积=4a+4b-16,
与 的差一定是 9 的倍数
(4)解:∵ + + + + + =3470+
∴ 222(a+b+c)=222×15+140+
∵ 100< <1000, ∴ 3570<222(a+b+c)<4470, ∴ 16<a+b+c≤20. 尝试发现
只有 a+b+c=19,此时 =748 成立, 这个三位数为 748.
一、初一数学代数式解答题压轴题精选(难)
1.任何一个整数 N,可以用一个的多项式来表示:
N=
.
例如:325=3×102+2×10+5. 一个正两位数的个位数字是 x,十位数字 y. (1)列式表示这个两位数; (2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明 新数与原数的和能被 11 整除. (3)已知 是一个正三位数.小明猜想:“ 与 的差一定是 9 的倍数。”请你帮助
2.|a|的几何意义是数轴上表示数 a 的点与原点 O 的距离,例如:|3|=|3﹣0|,即|3﹣0| 表示 3、0 在数轴上对应两点之间的距离.一般地,点 A、B 在数轴上分别表示数 a、b,那 么 A、B 之间的距离可表示为|a﹣b|,解决下面问题: (1)数轴上表示﹣1 和 2 的两点之间的距离是________;数轴上 P、Q 两点的距离为 6, 点 P 表示的数是 2,则点 Q 表示的数是________; (2)点 A 在数轴上表示数为 x,点 B、C 在数轴上表示的数分别为多项式 2m2n+mn﹣2 的 常数项和次数.________ ①若 B、C 两点分别以 3 个单位长度/秒和 2 个单位长度/秒的速度同时向右运动 t 秒.当 OC =2OB 时,求 t 的值;________ ②用含 x 的绝对值的式子表示点 A 到点 B、点 A 到点 C 的距离之和为________,直接写出

七年级数学代数式求值易错题总结(含答案)

七年级数学代数式求值易错题总结(含答案)

七年级数学代数式求值易错题总结(含答案)一、选择题(本大题共2小题,共6.0分)1.代数式x2+ax+7−(bx2−2x−1)的值与x的取值无关,则a+b的值为()A. −1B. 1C. −2D. 2【答案】A【解析】略2.按如图所示的程序计算,若开始输入的x值为22,我们发现第1次输出结果为11,第2次输出结果为14,….请你探索第2020次输出的结果为()A. 1B. 2C. 4D. 8【答案】C【解析】略二、填空题(本大题共6小题,共18.0分)3.平面内三条直线两两相交,最多有a个交点,最少有b个交点,则a+b=.【答案】4【解析】【分析】本题考查与直线、线段、射线有关知识,平面内三条直线两两相交,最多有3个交点,最少有1个交点,则即可求得a+b的值.【解答】解:∵平面内三条直线两两相交,最多有3个交点,最少有1个交点,∴a+b=4.故答案为4.4.已知当x=2时,ax5+bx5+cx5+5=9,则当x=−2时,ax5+bx5+cx5+5的值是_____.【答案】1【解析】略5.设代数式A=2x+a2+1,代数式B=ax−22,a为常数.观察当x取不同值时,对应A的值,并列表如下(部分):当x=1时,B=________;若A=B,则x=________.【答案】1;4.【解析】【分析】本题考查代数式的值以及解一元一次方程,关键是求出a的值.先根据表格求出a的值,再将a的值代入求出B的值,将a的值分别代入A、B中得出含有x的方程,解含有x的一元一次方程即可.【解答】解:当x=1,A=4,∴2×1+a2+1=4,解得a=4,∴B=4×1−22=1,∵A=B,∴2x+42+1=4x−22,解得x=4,故答案是1;4.6.有三个互不相等的有理数,既可表示为−1,a+b,a的形式,又可表示为0,−ba,b的形式,则b2021a2020的值为.【答案】−1【解析】略7.若等式13+6(3x−4y)=7(4y−3x)成立,则代数式4y−3x的值为______.【答案】1【解析】解:∵13+6(3x−4y)=7(4y−3x)∴13−6(4y−3x)=7(4y−3x)∴13(4y−3x)=13,∴4y−3x=1,故答案为1.将13+6(3x−4y)=7(4y−3x)变形13−6(4y−3x)=7(4y−3x),移项得13(4y−3x)=13,求出4y−3x=1.本题考查了代数式的值,正确提取负号进行式子变形是解题的关键.8.已知3x−2y+1=0,则代数式9x−6y−2的值为__________.【答案】−5【解析】略三、解答题(本大题共3小题,共24.0分)9.2019年双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过300元,其中300元按九五折优惠,超过300元的部分按八折优惠.(1)设一次性购买的书箱原价是a元,当a超过300时,实际付款为______元;(用含a的代数式表示,并化简)(2)若小明购书时一次性付款365元,则所购书籍的原价是多少元?(3)小冬在促销期间先后两次下单购买书箱,两次所购书籍的原价之和为600元(第一次所购书籍的原价高于第二次),两次实际共付款555元,则小冬两次购物所购书籍的原价分别是多少元?【答案】(0.8a+45)【解析】解:(1)由题意知,300×0.95+0.8(a−300)=0.8a+45故答案是:(0.8a+45);(2)设所购书籍的原价是x元,由题意知,x>300.故0.8x+45=365.解得x=400答:若小明购书时一次性付款365元,则所购书籍的原价是400元;(3)∵第一次所购书籍的原价高于第二次,∴第一次所购书籍的原价超过300元,第二次所购书籍的原价低于300元.设第一次所购书籍的原价是b元,则第二次所购书籍的原价是(600−b)元,由题意知,0.8b+45+0.95(600−b)=555解得b=450,则600−b=150.答:第一次所购书籍的原价是450元,则第二次所购书籍的原价是150元.(1)付费由两部分组成:(300×0.95)元+0.8(a−300)元;(2)设所购书籍的原价是x元,根据销售优惠方案列出方程并解答;(2)由第一次所购书籍的原价高于第二次,可得出第一次所购物品的原价超过300元且第二次所购物品的原价低于300元,设小冬第一次所购书籍的原价是b元,则第二次所购物品的原价是(600−b)元,根据促销方案列出关于z的一元一次方程,解之即可得出结论.考查了一元一次方程的应用,解题的关键是读懂题意,找到关键描述语,得到等量关系,列出方程.10.(1)求整式3a2−12a与整式−a2+12a−1的差;(2)先化简,再求值:3(x2−2xy)−(3x2−y)+12(5xy−2y+14),其中x=12,y=−4;(3)已知一个四位数M的千位数字是a、百位数字是b、十位数字是4、个位数字是c,另有一个三位数N的百位数字是(b+1)、十位数字是a、个位数字是(c−2),请说明在所有符合要求的数中,M与N的差与b、c的取值无关,并直接写出M−N 的最小值.【答案】解:(1)(3a2−12a)−(−a2+12a−1)=3a2−12a+a2−12a+1=4a2−a+1,∴整式3a2−12a与整式−a2+12a−1的差为4a2−a+1;(2)原式=3x2−6xy−3x2+y+52xy−y+7=−72xy+7,当x =12,y =−4时,原式=−72×12×(−4)+7=7+7=14;(3)∵M =1000a +100b +40+c ,N =100(b +1)+10a +(c −2),∴M −N =(1000a +100b +40+c)−[100(b +1)+10a +(c −2)]=1000a +100b +40+c −100b −100−10a −c +2=990a −58,∴M 与N 的差与b ,c 的取值无关,当a =1时,M −N 的最小值为932.【解析】本题考查了整式的加减,列代数式相关知识,熟练掌握整式的加减是解题的关键.(1)本题考查了整式的加减,掌握整式的加减运算法则是解题的关键.根据题意可得整式3a 2−12a 与整式−a 2+12a −1的差为(3a 2−12a)−(−a 2+12a −1),然后求解即可;(2)本题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.原式去括号合并得到最简结果,代入x 与y 的值计算即可求出值;(3)本题考查了整式的加减以及列代数式,解决本题的关键是进行整式的加法计算.根据数的表示方法:千位数字×1000+百位数字×100+十位数字×10+个位数字,表示出M 与N ,作差即可.11. 图1为奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为m ,其它四个数分别记为a ,b ,c ,d(如图2);图3为按某一规律排成的另一数表,用十字框任意框出5个数,记框内中间这个数为n ,其它四个数分别记为e ,f ,g ,ℎ(如图4).(1)请用含m的代数式表示b.(2)请用含n的代数式表示e.(3)若a+b+c+d=km,e+f+g+ℎ=pn,求k+3p的值.【答案】解:(1)由图1和图2得:b=m−18;(2)当n>0时,e=2−n;当n<0时,e=−2−n;(3)∵a=m−2,b=m−18,c=m+2,d=m+18,∵a+b+c+d=km,∴m−2+m−18+m+2+m+18=km,4m=km,k=4,当n>0时,e=2−n,f=18−n,g=−n−2,ℎ=−n−18,∵e+f+g+ℎ=pn,∴2−n+18−n−n−2−n−18=−4n,则此时p=−4,当n<0时,e=−n−2,f=−n−18,g=2−n,ℎ=18−n,∵e+f+g+ℎ=pn,∴−n−2−n−18−n+2−n+18=−4n,则此时p=−4,∴p=−4,∴k+3p=4+3×(−4)=−8.【解析】本题考查数式规律问题,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.(1)上下相邻的数相差18,可得结论;(2)分n>0和n<0两种情况讨论;(3)先根据前面的结论求得k和p的值,代入k+3p可得值.。

初一上册数学代数易错题整理

初一上册数学代数易错题整理

初一上册数学代数易错题整理
引言
本文档旨在整理初一上册数学代数部分中容易出错的题目,帮助学生加深对该知识点的理解和掌握。

本文将分为以下几个部分:
1. 式子求值
2. 方程的解法
3. 几何中的代数问题
式子求值
1. 问题描述:
已知 $a=3$,$b=4$,求以下式子的值:$2a^2+3b-1$。

2. 解析:
将 $a$ 和 $b$ 的值代入式子中,得到:$2 \times 3^2+3 \times 4-1$。

按照运算顺序计算,最终得到式子的值为 35。

方程的解法
1. 问题描述:
求解方程 $3x+5=20$。

2. 解析:
将方程改写为 $3x=20-5$,再计算得到 $3x=15$。

最后,将$x$ 的值计算出来,$x=\frac{15}{3}=5$。

几何中的代数问题
1. 问题描述:
已知线段 $AB$ 的长度为 5,$AC$ 的长度为 3,求线段
$BC^2$ 的长度。

2. 解析:
根据勾股定理,$BC^2=AB^2-AC^2$。

将已知的值代入,即可计算出 $BC^2$ 的长度为 $5^2-3^2=16$。

总结
本文整理了初一上册数学代数部分容易出错的题目,并提供了解析和答案。

希望通过学习这些问题,学生们可以更好地掌握数学代数知识点,提高解题能力。

代数式易错题(Word版 含答案)

 代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。

(易错题精选)初中数学代数式难题汇编附答案

(易错题精选)初中数学代数式难题汇编附答案

(易错题精选)初中数学代数式难题汇编附答案一、选择题1.下列运算正确的是()A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.4.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.5.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.6.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .7.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】 根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-,23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误;C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.10.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.13.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.14.将(mx+3)(2﹣3x)展开后,结果不含x的一次项,则m的值为()A.0 B.92C.﹣92D.32【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m的值.【详解】解:(mx+3)(2-3x)=2mx-3mx2+6-9x=-3mx2+(2m-9)x+6由题意可知:2m-9=0,∴m=9 2故选:B.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.17.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.18.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A,2m2+m2=3m2,故此选项错误;选项B,(mn2)2=m2n4,故此选项错误;选项C,2m•4m2=8m3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.。

最新七年级上册数学 代数式易错题(Word版 含答案)

最新七年级上册数学 代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.3.某超市在春节期间对顾客实行优惠,规定如下:(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他实际付款________元,当x大于或等于500元时,他实际付款________元.(用含x的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a的代数式表示:两次购物王老师实际付款多少元?【答案】(1)530(2)0.9x;0.8x+50(3)解:0.9a+0.8(820﹣a﹣500)+450=0.1a+706【解析】【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;【分析】(1)王老师一次性购物600元,超过500元,因此得出其中500元给予九折优惠,100元给予八折优惠,列式计算即可。

(易错题精选)初中数学代数式知识点总复习有答案

(易错题精选)初中数学代数式知识点总复习有答案

(易错题精选)初中数学代数式知识点总复习有答案一、选择题1.下列计算正确的是( )A .2x 2•2xy =4x 3y 4B .3x 2y ﹣5xy 2=﹣2x 2yC .x ﹣1÷x ﹣2=x ﹣1D .(﹣3a ﹣2)(﹣3a +2)=9a 2﹣4【答案】D【解析】A 选项:2x 2·2xy =4x 3y ,故是错误的;B 选项:3x 2y 和5xy 2不是同类项,不可直接相加减,故是错误的;C.选项:x -1÷x -2=x ,故是错误的;D 选项:(-3a -2)(-3a +2)=9a 2-4,计算正确,故是正确的.故选D.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.4.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.5.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.8.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A 共爬行了8cm (称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm ,所以它停的位置是F 点.详解:一只电子甲虫从点A 开始按ABCDAEFGAB …的顺序沿菱形的边循环爬行,从出发到第1次回到点A 共爬行了8cm ,而2014÷8=251……6,所以当电子甲虫爬行2014cm 时停下,它停的位置是F 点.故选A .点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A .(a +b )(a ﹣b )=a 2﹣b 2B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a (a ﹣b )=a 2﹣ab【答案】A【解析】【分析】 分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a 2﹣b 2,图2阴影部分面积:(a +b )(a ﹣b ),由此验证了等式(a +b )(a ﹣b )=a 2﹣b 2,故选:A .【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.12.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .13.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a -÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.14.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( ) A .0B .92C .﹣92D .32 【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B .【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.15.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B.【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.16.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.17.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.18.若(x+4)(x﹣1)=x2+px+q,则()A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

代数式数学组卷一.选择题(共22小题)1.(2008•益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()A.60n厘米B.50n厘米C.(50n+10)厘米D.(60n﹣10)厘米2.(2007•台湾)张老板以每颗a元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b元的价格将剩下的30颗卖出,则全部水蜜桃共卖()A.70a+30(a﹣b)元B.70×(1+20%)×a+30b元C.100×(1+20%)×a﹣30(a﹣b)元D.70×(1+20%)×a+30(a﹣b)元3.(2006•遂宁)某种手机卡的市话费上次已按原收费标准降低了m元/分钟,现在再次下调20%,使收费标准为n 元/分钟,那么原收费标准为()A.(n﹣m)元/分钟B.(n+m)元/分钟C.(n﹣m)元/分钟D.(n+m)元/分钟4.一个两位数,十位数字是x,个位数字是y,如果把它们的位置交换得到的数是()A.y+x B.y x C.10y+x D.10x+y5.一本词典售价a元,利润是成本的20%;如果把利润提高到成本的30%,那么应提高售价为()A.元B.元C.元D.元6.己知|x|=2,|y|=5,且xy>0,则x+y的值为()A.3B.7C.±3 D.±77.商店分别以相同的价格n元卖出两件不同品牌的衬衣,其中一件盈利20%,另一件亏本20%,该商店在这次买卖中()A.不亏不赚B.亏了C.赚了D.不能确定8.已知a+b+c=0,则代数式(a+b)(b+c)(c+a)+abc的值为()A.﹣1 B.1C.0D.29.若|a|=2,|b|=3,且a>b,则|a﹣b|的值为()A.﹣5或﹣1 B.1或﹣1 C.5或3 D.5或110.当x=6,y=﹣1时,代数式的值是()A.﹣5 B.﹣2 C.D.11.当x=1,y=﹣1时,ax+by﹣3=0,那么,当x=﹣1,y=1时,ax+by﹣3=()A.﹣6 B.﹣5 C.﹣4 D.﹣312.a与﹣b是互为相反数,则的值等于()A.0B.1C.﹣1 D.199713.设a是最小的自然数,b是最大的负整数,c,d分别是单项式﹣xy2的系数和次数,则a,b,c,d四个数的和是()A.﹣1 B.0C.1D.314.在代数式x﹣y,3a,a2﹣y+,,xyz,,中有()A.5个整式B.4个单项式,3个多项式C.6个整式,4个单项式D.6个整式,单项式与多项式个数相同15.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于516.已知代数式,其中整式有()A.5个B.4个C.3个D.2个17.若多项式y2+(m﹣3)xy+2x|m|是三次三项式,则m的值为()A.﹣3 B.3C.﹣2 D.218.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式19.下列说法正确的是()A.B.22xy3z的次数是5是单项式C.单项式ab2系数为0 D.x4﹣1的常数项是120.下列计算正确的是()A.2a+b=2ab B.﹣5a2+3a2=﹣2C.3x2y﹣3xy2=0 D.21.已知2x6y2和﹣是同类项,则9m2﹣5mn﹣17的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣422.已知x>0,xy<0,则|x﹣y+4|﹣|y﹣x﹣6|的值是()A.﹣2 B.2C.﹣x+y﹣10 D.不能确定二.填空题(共6小题)23.(2007•漳州质检)已知2x2+x﹣1=0,则代数式6x2+3x﹣5的值是_________.24.单项式﹣的系数是_________,次数是_________;多项式x2y+2x+5y﹣25是_________次多项式.25.若单项式是同类项,则n=_________.26.m和n均不为零,3x2y3和﹣5x2+2m+n y3是同类项,则=_________.27.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=_________.28.计算m+n﹣(m﹣n)的结果为_________.三.解答题(共2小题)29.计算:(1)9a﹣11a;(2);(3)6ab﹣3a2b2+7+8a2b+3a2b2﹣6ab﹣3.30.化简求值:2a+(a+4b)﹣(3a﹣6b),其中a=﹣2,b=.2013年11月安琪儿的初中数学组卷参考答案与试题解析一.选择题(共22小题)1.(2008•益阳)有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为()A.60n厘米B.50n厘米C.(50n+10)厘米D.(60n﹣10)厘米考点:列代数式.专题:压轴题.分析:本题的关键是弄清n块石棉瓦重叠了(n﹣1)个10厘米,再依题意列代数式求出结果.解答:解:根据题意,得:n块石棉瓦重叠了(n﹣1)个10厘米,故n(n为正整数)块石棉瓦覆盖的宽度为:60n﹣10(n﹣1)=50n+10故选C.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.要注意弄清n(n为正整数)块石棉瓦重叠的面积是多少.2.(2007•台湾)张老板以每颗a元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b元的价格将剩下的30颗卖出,则全部水蜜桃共卖()A.70a+30(a﹣b)元B.70×(1+20%)×a+30b元C.100×(1+20%)×a﹣30(a﹣b)元D.70×(1+20%)×a+30(a﹣b)元考点:列代数式.专题:应用题.分析:水蜜桃共卖出的价钱=先卖70颗水蜜桃的单价+剩下的30颗水蜜桃卖出的单价.根据等量关系直接列出代数式即可.解答:解:依题意得,先卖70颗水蜜桃的单价是a(1+20%)元,剩下的30颗水蜜桃卖出的单价是(a﹣b)元,∴水蜜桃共卖出的价钱是70×(1+20%)×a+30(a﹣b)元.D点评:正确理解文字语言中的关键词,从而明确其中的运算关系.注意多两成是原来的价钱a再加上20%a.要分清楚是单价的两成和比单价多两成的列式.3.(2006•遂宁)某种手机卡的市话费上次已按原收费标准降低了m元/分钟,现在再次下调20%,使收费标准为n 元/分钟,那么原收费标准为()A.(n﹣m)元/分钟B.(n+m)元/分钟C.(n﹣m)元/分钟D.(n+m)元/分钟考点:列代数式.专题:应用题;压轴题.分析:(原收费标准﹣m)×(1﹣20%)=新收费标准.解答:解:设原收费标准是x元/分钟.则根据题意,得(x﹣m)(1﹣20%)=n.解得:x=n+m.故选B.点评:此题直接用代数式表示较困难,可以用设未知数的方法,借助列方程来达到目的较好.4.一个两位数,十位数字是x,个位数字是y,如果把它们的位置交换得到的数是()A.y+x B.y x C.10y+x D.10x+y考点:列代数式.专题:数字问题.分析:根据所给的条件交换后个位数字是x,十位数字是y,即可列出一个式子为10y+x,即为所求的数.解答:解:∵十位数字是x,个位数字是y,∴交换后的数个位数字是x,十位数字是y,所以得到的数为10y+x.故选C.点评:列代数式的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.5.一本词典售价a元,利润是成本的20%;如果把利润提高到成本的30%,那么应提高售价为()A.元B.元C.元D.元考点:列代数式.专题:应用题.分析:售价a元,利润是成本的20%,成本为单位1,那么成本为:a÷(1+20%).应提高售价=利润为30%的售价﹣利润为20%的售价.解答:解:a÷(1+20%)×(1+30%)﹣a=元.故选B.点评:本题的易错点为:需先算出词典的成本.关键为找到所求的量的等量关系.应提高售价=利润为30%的售价﹣利润为20%的售价.6.己知|x|=2,|y|=5,且xy>0,则x+y的值为()A.3B.7C.±3 D.±7考点:代数式求值;绝对值.分析:先由绝对值的性质得到x与y的值,然后再由xy>0得出x、y同号,从而得出x+y.解答:解:∵|x|=2,|y|=5,∴x=±2,y=±5,又xy>0,所以当x=﹣2时,y=﹣5,此时x+y=﹣7;当x=2时,y=5,此时x+y=7.所以x+y=±7.故选D.点评:本题考查了代数式求值和绝对值的性质,关键是不能忘记每种可能性,要考虑周全.7.商店分别以相同的价格n元卖出两件不同品牌的衬衣,其中一件盈利20%,另一件亏本20%,该商店在这次买卖中()A.不亏不赚B.亏了C.赚了D.不能确定考点:代数式求值.专题:销售问题.分析:设赚钱的衬衣进价为x元,亏本的衬衣进价为y元,则可以用n表示出x、y的值,从而看出是亏是赚.解答:解:设赚钱的衬衣进价为x元,亏本的衬衣进价为y元,根据题意知,=20%,则x=,故赚的钱数为:n﹣=;=20%,则y=,故亏的钱数为:;因为,故商店在这次买卖中亏了.故选B.点评:本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式.8.已知a+b+c=0,则代数式(a+b)(b+c)(c+a)+abc的值为()A.﹣1 B.1C.0D.2考点:代数式求值.专题:计算题.分析:题中给出a+b+c=0,那么要求的式子中的a+b=﹣c,b+c=﹣a,c+a=﹣b,代入所求式子即可.解答:解:∵a+b+c=0∴a+b=﹣c,b+c=﹣a,c+a=﹣b∴(a+b)(b+c)(c+a)+abc=﹣c×(﹣a)×(﹣b)+abc=﹣abc+abc=0.故选C.点评:本题的关键是找到题中所给的等量关系与要求的式子中的因式的关系.9.若|a|=2,|b|=3,且a>b,则|a﹣b|的值为()A.﹣5或﹣1 B.1或﹣1 C.5或3 D.5或1考点:代数式求值.分析:首先根据题意确定a与b的值为a=±2,b=﹣3;所以分两种情况:(1)a=2,b=﹣3;(2)a=﹣2,b=﹣3,分别代入|a﹣b|计算即可.解答:解:(1)a=2,b=﹣3时,|a﹣b|=5(2)a=﹣2,b=﹣3时,|a﹣b|=1故选D.点评:本题考查代数式的求值问题.注意绝对值的性质与分类讨论思想的应用,避免漏解.10.当x=6,y=﹣1时,代数式的值是()A.﹣5 B.﹣2 C.D.考点:代数式求值.分析:本题考查的是式子的化简.可以化简后代入数值,也可以直接代入,化简后可以消去y,比较简便.解答:解:将代数式(x+2y)+y展开可得(x+2y)+y=﹣x=﹣2,代数式(x+2y)+y的值是﹣2.故选B.点评:本题主要考查的是式子的化简求值,也可以直接代入求值.11.当x=1,y=﹣1时,ax+by﹣3=0,那么,当x=﹣1,y=1时,ax+by﹣3=()A.﹣6 B.﹣5 C.﹣4 D.﹣3考点:代数式求值.分析:首先将x=1,y=﹣1代入ax+by﹣3=0,得出a与b的关系;然后再将x=﹣1,y=1代入得出结果.解答:解:∵当x=1,y=﹣1时,a﹣b﹣3=0,即a﹣b=3,∴当x=﹣1,y=1时,ax+by﹣3=﹣a+b﹣3=﹣3﹣3=﹣6.故选A.点评:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取a与b的关系,然后利用“整体代入法”求代数式的值.12.a与﹣b是互为相反数,则的值等于()A.0B.1C.﹣1 D.1997考点:代数式求值.分析:根据a与﹣b是互为相反数,知道a=b,然后代入式子求解即可.解答:解:∵a与﹣b是互为相反数,∴a+(﹣b)=0所以a=b则==1.故选B.点评:本题考查了代数式求值和相反数的性质,题目比较简单,认真细心.13.设a是最小的自然数,b是最大的负整数,c,d分别是单项式﹣xy2的系数和次数,则a,b,c,d四个数的和是()A.﹣1 B.0C.1D.3考点:单项式.专题:判别式法.分析:因为最小的自然数0,最大的负整数是﹣1,﹣xy2的系数和次数分别是﹣1和3,所以代入求值即可.解答:解:最小的自然数0,所以a=0;最大的负整数是﹣1,所以b=﹣1;﹣xy2的系数和次数分别是﹣1和3,所以c=﹣1,d=3,则a+b+c+d=0+(﹣1)+(﹣1)+3=1.故选C.点评:解答此类题,第一个知识点是需要分清整数的分类,特别是0和正整数统称自然数,第二个知识点是会确定单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.在代数式x﹣y,3a,a2﹣y+,,xyz,,中有()A.5个整式B.4个单项式,3个多项式C.6个整式,4个单项式D.6个整式,单项式与多项式个数相同考点:整式.分析:根据整式,单项式,多项式的概念分析各个式子.解答:解:单项式有:3a,,xyz,共3个.多项式有x﹣y,a2﹣y+,共3个,所以整式有6个.故选D.点评:主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.15.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于5考点:多项式.分析:根据多项式次数的定义求解.多项式的次数是多项式中最高次项的次数,所以可知最高次项的次数为5.解答:解:由于多项式的次数是“多项式中次数最高的项的次数”,因此五次多项式中,次数最高的项是五次的,其余项的次数可以是五次的,也可以是小于五次的,却不能是大于五次的.因此五次多项式中的任何一项都是不大于五次的.故选C.点评:解题的关键是弄清多项式次数是多项式中次数最高的项的次数.易错点:由于概念理解不透彻,容易错选A或B.16.已知代数式,其中整式有()A.5个B.4个C.3个D.2个考点:整式.分析:根据整式的定义求解.解答:解:不是整式,因为分母中含有未知数,不是整式,因为整式进行的运算只有加减乘除.其余五项都是整式.故选A.点评:本题重点在于考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.17.若多项式y2+(m﹣3)xy+2x|m|是三次三项式,则m的值为()A.﹣3 B.3C.﹣2 D.2考点:多项式.分析:由于多项式是关于x、y的三次三项式,所以|m|=3,但m﹣3≠0,根据以上两点可以确定m的值.解答:解:∵多项式是关于x、y的三次三项式,∴|m|=3,∴m=±3,但m﹣3≠0,即m≠3,综上所述,m=﹣3.故选A.点评:此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.18.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式考点:多项式.分析:根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.解答:解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选B.点评:不含字母的项叫做常数项,26的次数是0,即该多项式的次数不少六次,而是五次.19.下列说法正确的是()B.22xy3z的次数是5A.是单项式C.单项式ab2系数为0 D.x4﹣1的常数项是1考点:单项式.分析:根据单项式的系数与次数的定义,对各选项分析判断后利用排除法求解.解答:解:A、是多项式,故本选项错误;B、22xy3z的次数是5,需要注意22是系数,故本选项正确;C、单项式ab2系数为1,故本选项错误;D、x4﹣1的常数项是﹣1,故本选项错误.故选B.点评:本题考查了单项式的定义以及单项式的系数与次数的定义,本题易错点在于B选项的2的指数2是数字的指数,不是字母的指数,容易被当做次数的一部分计算.20.下列计算正确的是()A.2a+b=2ab B.﹣5a2+3a2=﹣2C.3x2y﹣3xy2=0 D.考点:合并同类项.分析:根据同类项的定义,以及合并同类项的法则即可作出判断.解答:解:A、不是同类项,不能合并,故选项错误;B、﹣5a2+3a2=﹣2a2,故选项错误;C、不是同类项,不能合并,故选项错误;D、正确.故选D.点评:本题考查了同类项的定义以及合并同类项的法则,理解同类项的定义是关键.21.已知2x6y2和﹣是同类项,则9m2﹣5mn﹣17的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣4考点:同类项.分析:本题根据同类项的定义中相同字母的指数也相同,可得m,n的值,再代入9m2﹣5mn﹣17求值即可.解答:解:由同类项的定义,得3m=6,n=2,即m=2,n=2.当m=2,n=2时,9m2﹣5mn﹣17=9×22﹣5×2×2﹣17=﹣1.故选A.点评:同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.22.已知x>0,xy<0,则|x﹣y+4|﹣|y﹣x﹣6|的值是()A.﹣2 B.2C.﹣x+y﹣10 D.不能确定考点:绝对值;整式的加减.分析:含绝对值的数等于它本身或相反数,而此题可根据已知分析x、y的符号,再根据x,y的正负性来解此题.解答:解:由已知x>0,xy<0,得y<0则:x﹣y+4>0,y﹣x﹣6<0∴|x﹣y+4|﹣|y﹣x﹣6|=x﹣y+4+(y﹣x﹣6)=x﹣y+4+y﹣x﹣6=﹣2.故选A.点评:此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数二.填空题(共6小题)23.(2007•漳州质检)已知2x2+x﹣1=0,则代数式6x2+3x﹣5的值是﹣2.考点:代数式求值.分析:把2x2+x当作一个整体,求出2x2+x的值,把6x2+3x﹣5转化成3(2x2+x)﹣5,代入求出即可.解答:解:∵2x2+x﹣1=0,∴2x2+x=1,∴6x2+3x﹣5=3(2x2+x)﹣5=3×1﹣5=﹣2,故答案为:﹣2.点评:本题考查了求代数式的值,关键是求出2x2+x的值和6x2+3x﹣5转化成3(2x2+x)﹣5,用了整体代入思想.24.单项式﹣的系数是﹣,次数是3;多项式x2y+2x+5y﹣25是3次多项式.考点:多项式;单项式.分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.多项式的次数是多项式中次数最高项的次数,由此可以确定多项式x2y+2x+5y﹣25中次数最高项,从而判定是几次多项式.解答:解:∵单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,∴单项式﹣的系数是﹣,次数是3;又∵多项式的次数是多项式中次数最高项的次数,多项式x2y+2x+5y﹣25中次数最高项的次数是3,此题中25是常数项,所以5不是多项式的次数,因此这个多项式是3次多项式.故填空答案:﹣,3;3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键,要记住π也是常数.25.若单项式是同类项,则n=±2.考点:同类项.专题:计算题.分析:根据同类项的定义可知,相同字母的指数相同,列出关于n的方程,求出方程的解即可得到n的值.解答:解:由单项式是同类项,得到n2﹣3=1,即n2=4,解得n=±2.故答案为:±2点评:此题要求学生掌握同类项的定义是所含字母相同且相同字母的指数也相同,是一道基础题.学生注意平方等于4的数有两个.26.m和n均不为零,3x2y3和﹣5x2+2m+n y3是同类项,则=.考点:代数式求值;同类项.分析:根据同类项的定义,列出等式,再整体代入即可.解答:解:依题意,得2+2m+n=2,即n=﹣2m,∴==.点评:本题考查了代数式的求值,同类项的定义,换元法的思想.27.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=2m﹣4.考点:去括号与添括号;绝对值.分析:先根据绝对值的性质把原式化简,再去括号即可.解答:解:根据绝对值的性质可知,当1≤m<3时,|m﹣1|=m﹣1,|m﹣3|=3﹣m,故|m﹣1|﹣|m﹣3|=(m﹣1)﹣(3﹣m)=2m﹣4.点评:本题考查绝对值的化简方法和去括号的法则,比较简单.28.计算m+n﹣(m﹣n)的结果为2n.考点:整式的加减.分析:根据整式的加减运算法则,先去括号,再合并同类项即可求得.解答:解:原式=m+n﹣m+n=2n.点评:解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.三.解答题(共2小题)29.计算:(1)9a﹣11a;(2);(3)6ab﹣3a2b2+7+8a2b+3a2b2﹣6ab﹣3.考点:合并同类项.分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,求出结果即可.解答:解:(1)原式=﹣2a;(2)原式=mn2;(3)原式=(6﹣6)ab+(﹣3+3)a2b2+8a2b+4=8a2b+4.点评:本题考查了合并同类项的知识,解题的关键是掌握合并同类项的法则:即系数相加作为系数,字母和字母的指数不变.30.化简求值:2a+(a+4b)﹣(3a﹣6b),其中a=﹣2,b=.考点:整式的加减—化简求值.专题:综合题.分析:把第二项利用乘法分配律计算,第三项先把括号外边的数字因式利用乘法分配律乘进括号里边,然后利用去括号法则:括号外边是负号,去掉括号和负号,括号里各项都变号,去掉括号后,合并同类项即可得到最后结果,然后把a与b的值代入即可求出值.解答:解:原式=2a+a+×4b﹣(×3a﹣×6b)=2a+a+2b﹣(a﹣2b)=2a+a+2b﹣a+2b=a+4b,当a=﹣2、b=时,原式=a+4b=×(﹣2)+4×=﹣3+2=﹣1.点评:此题考查了整式的化简求值,去括号法则,以及合并同类项法则.学生在去括号时,括号外边若有数字因式,应先将数字因式利用乘法分配律乘到括号里边,然后再利用去括号法则去括号,这样不容易出错.解答这类型题时应将原式化简后再代值.。

相关文档
最新文档