微型计算机原理与接口技术
微机原理与接口技术课件PPT

汇编语言的优点
汇编语言具有高效、可移植性、 可维护性等优点,适用于编写操 作系统、编译器等关键软件。
汇编语言的缺点
汇编语言编写复杂,容易出错, 且可移植性较差,需要针对不同 的计算机体系结构进行修改。
高级语言
01
高级语言的定义
高级语言是一种抽象程度更高的 编程语言,它使用更接近自然语 言的语法和语义。
实验提供参考。
THANKS FOR WATCHING
感谢您的观看
串行接口的数据传输速率比并行 接口慢,但只需要一根数据线, 因此成本较低。
03
串行接口的常见标准包括RS-232 、RS-422和USB。
04
中断控制器
中断控制器是微机中的一 种重要组件,它负责管理 计算机系统中断的处理。
中断控制器可以管理硬件 设备的中断请求,例如键 盘、鼠标和计时器等。
ABCD
并行接口通常用于连接打印机、磁盘驱动器等高速设备, 因为这些设备需要快速传输大量数据。
并行接口的常见标准包括ECP、EPP和USB。
串行接口
01
串行接口是一种数据传输方式, 它通过单个数据线逐位传输数据 。
02
串行接口通常用于连接鼠标、调 制解调器等低速设备,因为这些 设备不需要快速传输大量数据。
语音识别和图像处理
利用微机原理与接口技术,可以实现语音识 别和图像处理等功能,提高办公自动化水平 。
在家用电器中的应用
1 2 3
智能家居控制
微机原理与接口技术可以用于智能家居控制,实 现家用电器的远程控制和自动化控制。
电视和音响设备控制
通过微机原理与接口技术,可以实现电视和音响 设备的智能控制,提供更加便捷和智能的娱乐体 验。
微机原理与接口技术pdf

微机原理与接口技术pdf微机原理与接口技术是计算机专业的一门重要课程,它涉及到计算机硬件的基本原理和接口技术的应用。
本文将从微机原理和接口技术两个方面进行介绍和讨论,希望能够对读者有所帮助。
首先,我们来谈谈微机原理。
微机原理是指微型计算机的基本工作原理,包括中央处理器(CPU)、存储器、输入输出设备等各个部分的工作原理。
CPU是微型计算机的核心部件,它负责执行指令、进行运算和控制数据传输。
存储器用于存储数据和程序,包括随机存储器(RAM)和只读存储器(ROM)等。
输入输出设备用于与外部环境进行信息交换,包括键盘、鼠标、显示器、打印机等。
了解微机原理对于理解计算机的工作原理和进行系统调试都非常重要。
其次,我们来谈谈接口技术。
接口技术是指计算机与外部设备进行数据交换的技术,包括串行接口、并行接口、通信接口等。
串行接口是一种逐位传输数据的接口,适用于远距离传输和低速设备。
并行接口是一种同时传输多位数据的接口,适用于短距离传输和高速设备。
通信接口是一种用于计算机与通信设备进行数据交换的接口,包括网卡、调制解调器等。
了解接口技术对于设计外部设备、进行通信协议的开发都非常重要。
在实际应用中,微机原理和接口技术经常是相互结合的。
例如,我们在设计一个外部设备时,需要了解计算机的工作原理,选择合适的接口技术进行数据交换。
又如,在进行系统调试时,需要了解接口技术,进行数据的采集和分析。
因此,微机原理与接口技术的学习是非常重要的。
总之,微机原理与接口技术是计算机专业的一门重要课程,它涉及到计算机硬件的基本原理和接口技术的应用。
通过本文的介绍,希望读者能够对微机原理和接口技术有所了解,并能够在实际应用中灵活运用。
希望本文能够对读者有所帮助。
微型计算机原理与接口技术第四版

是指体积小、功耗低、成本低、可靠性高的计算机,广泛应用于工业控 制、智能仪表、智能家居等领域。
03
接口技术
是指计算机与外部设备之间的连接和通信技术,包括串行接口、并行接
口、USB接口、网络接口等。
课程目标
掌握微型计算机的基本原理和 体系结构,了解指令系统、汇 编语言程序设计等基础知识。
熟悉存储器系统的组成和工作 原理,了解不同类型存储器的
中央处理器的组成
中央处理器由寄存器、指令集、控制单元、算术逻辑单元 等组成。
中央处理器的性能指标
中央处理器的性能指标包括时钟频率、指令集、缓存大小 等。
存储器
存储器的分类
存储器是计算机中用于存储数据的部件,根据存储介质的不同, 可分为半导体存储器、磁表面存储器和光盘存储器等。
存储器的层次结构
存储器的层次结构包括寄存器、缓存、主存和外存,每个层次都有 不同的容量和访问速度。
中央处理器的组成
中央处理器由寄存器、指令集、控制单元、算术逻辑单元 等组成。
中央处理器的性能指标
中央处理器的性能指标包括时钟频率、指令集、缓存大小 等。
中央处理器
中央处理器的功能
中央处理器是计算机的核心部件,负责执行指令和处理数 据。它包括运算器和控制器,运算器负责算术运算和逻辑 运算,控制器负责控制指令的执行顺序。
04
微型计算机应用
04
微型计算机应用
嵌入式系统
嵌入式系统特点
嵌入式系统具有实时性、可靠性和精简性 等特点,广泛应用于工业控制、智能家居、
医疗设备等领域。
A 嵌入式系统定义
嵌入式系统是一种专用的计算机系 统,主要用于控制、监视或帮助操
作机器设备。
微型计算机原理与接口技术(第4版)___题解及实验指导

微型计算机原理与接口技术(第4版)___题解及实验指导这份大纲旨在为《微型计算机原理与接口技术(第4版)吴宁题解及实验指导》给出一个概览,请参考以下内容。
概述介绍微型计算机原理与接口技术的基本概念引言微型计算机的发展和应用阐述微型计算机系统的组成和层次结构计算机硬件描述计算机硬件的基本组成包括中央处理器、存储器和输入输出设备讨论硬件的功能和特点计算机软件介绍计算机软件的概念和分类强调操作系统的作用和功能讨论软件的开发和应用微型计算机接口研究计算机与外部设备之间的连接和通信介绍接口的原理和技术分析接口的设计和实现实验指导实验准备介绍进行实验所需的基本准备工作包括实验器材、软件环境和实验原理的研究实验内容提供各章节相关实验的具体内容和步骤引导学生逐步完成实验任务强调实验中的关键点和注意事项实验总结总结每个实验的目的和结果分析实验过程中遇到的问题和解决方法提供实验的评价和改进建议通过这份《微型计算机原理与接口技术(第4版)吴宁题解及实验指导》大纲,学生可以了解该教材的内容和结构,对于研究和实验有一个整体的认识和预期。
本章介绍微型计算机原理与接口技术的基本概念和背景。
首先,讲解了计算机系统的组成和发展历程,帮助读者了解计算机系统的基本结构和演化过程。
其次,介绍了微型计算机的特点和分类。
通过本章的研究,读者能够建立起对微型计算机原理与接口技术的整体认识和理解。
本章将深入探讨微型计算机的结构和各个功能部件的作用。
首先,介绍了微型计算机的总线结构和数据流动方式,帮助读者了解信息在计算机系统中的传输过程。
然后,讨论了微型计算机的存储器层次结构和主要存储器的特点。
随后,讲解了微型计算机的中央处理器(CPU)的功能和内部结构。
最后,介绍了微型计算机的输入输出系统,包括输入设备和输出设备的种类和原理。
通过本章的研究,读者能够全面了解微型计算机的内部结构和各个功能部件的作用。
本章重点介绍微型计算机的编程技术,包括指令系统和汇编语言编程。
单片微型计算机原理及接口技术

单片微型计算机原理及接口技术在现代科技领域中,计算机技术的发展日新月异,而单片微型计算机无疑是其中的重要一环。
本文将介绍单片微型计算机的原理以及接口技术,以帮助读者更好地理解和运用这一领域的知识。
一、单片微型计算机的原理1.1 数据表示和处理在单片微型计算机中,数据的表示和处理是非常重要的。
计算机所处理的数据通常以二进制形式表示,通过位(bit)来表示数据的最小单元。
在微型计算机中,通常使用八位(bit)的字节(byte)作为数据的基本单位。
此外,计算机还可以通过不同的数据类型来表示和处理不同类型的数据,如整数、浮点数、字符等。
1.2 CPU和内存在单片微型计算机中,中央处理器(CPU)被视为计算机的大脑。
CPU负责执行指令、进行算术和逻辑运算等操作。
而内存则用于存储数据和指令,供CPU读取和写入。
常见的内存分类有随机存取存储器(RAM)和只读存储器(ROM),其中RAM用于临时存储数据,而ROM则用于存储固定的指令和数据。
1.3 控制单元和指令控制单元是CPU的一个核心组成部分,它负责解析和执行指令。
指令是计算机执行操作的命令,可以进行数据的读取、写入、运算等操作。
常见的指令集结构有精简指令集(RISC)和复杂指令集(CISC)。
RISC的指令集相对较简单,执行速度快,而CISC的指令集相对较复杂,但可以实现更多功能。
二、单片微型计算机的接口技术2.1 输入输出接口在单片微型计算机中,输入输出(I/O)设备起着连接计算机与外部设备的重要作用。
常见的输入设备包括键盘、鼠标、触摸屏等,而输出设备包括显示器、打印机、扬声器等。
通过适当的接口技术,计算机可以与这些设备进行数据的输入和输出,并实现与用户的交互。
2.2 存储器接口技术存储器接口技术用于连接CPU和内存之间的数据传输。
根据不同的芯片架构和规范,存储器接口技术有所不同。
常见的接口技术包括地址总线、数据总线和控制总线。
地址总线用于指定内存的地址,数据总线用于传输数据,而控制总线则用于传输控制信号。
微机原理与接口技术课本

第1章微型计算机基础1.1 计算机中数的表示和运算1.1.1 计算机中的数制及转换在微型计算机中,常见和常使用的数制♦十进制♦二进制♦八进制♦十六进制等。
1.十进制十进制计数特征如下:♦使用10个不同的数码符号0,1,2,3,4,5,6,7,8,9♦基数为10♦每一个数码符号根据它在数中所处的位置(即数位),按逢十进一决定其实际数值。
任意一个十进制正数D,可以写成如下形式:(D)10=D n-l³10 n-1 +D n-2³10 n-2 +…+D l³101+D0³100+D—l³10 -1+D-2³10-2+²²+D-n³10-n2.二进制在二进制计数制中,基数是2,计数的原则是“逢2进1”。
特征如下:♦使用两个不同的数码符号0和l♦基数为2♦每一个数码符号根据它在数中所处的位置(即数位),按逢二进一决定其实际数值。
任意一个二进制正数B,可以写成如下形式:(B)2=B n—l³2 n-1 +B n—2³2 n-2+…+B l³21+B0³20+B—l³2 -1+B-2³1-2+²²+B-n³1-n十进制TO二进制把十进制整数转换成二进制整数通常采用的方法是“除以2取余数”。
把十进制小数转换成二进制小数所采用的规则是“乘2取整”。
在计算机中,数的存储、运算、传输都使用二进制。
[例 1-2] 将十进制小数0.6875转换成二进制小数3.八进制在八进制计数制中,基数是8,计数的原则是“逢8进1”。
特征如下:♦使用8个不同的数码符号0,1,2,3,4,5,6,7♦基数为8♦每一个数码符号根据它在数中所处的位置(即数位),按逢八进一来决定其实际数值。
任意一个八进制正数S,可表示为:(S)8=S n—l³8 n-1+S n—2³8 n-2+²²+S1³8 1+S0³8 0 +S—l³8–1+²²+S-m³8-m转换: 将十进制整数转换成八进制整数的方法是“除以8取余数”。
微型计算机原理与接口技术第版冯博琴吴宁主编

1.1.1. 微型计算机的发展
电子计算机的发展方向: 第五代:“非冯.诺依曼”计算机时代 第六代:神经网络计算机时代 光计算机时代 生物计算机时代
14
1.1.1. 微型计算机的发展
微型计算机诞生于20世纪70年代 微型计算机特点:体积小、重量轻、功耗低、 可靠性高、价格便宜、使用方便、软件丰富 微型计算机的核心是微处理器(CPU) 每出现一个新的微处理器,就会产生新一代的 微型计算机
并要求将它送入累加器A中,所以数据寄存器 DR通过内部总线将01H送入累加器A中。
39
PC 01H
1 AR 01H
控制信号
ALU
A
B
01H
7
操作控制器
ID IR
00
3
01
02
4
03
读命令 04
B0H 01H 04H 02H
F4H
DR 01H 56
(执行第一条指令操作示意图)
1.1.3微机系统的构成
中,经过译码CPU“识别”出这个操作码为 “MOV A,01H”指令,于是控制器发出执行这 条指令的各种控制命令。
36
2
PC 00H
1 AR 00H
3
00 01
02
4
03
读命令 04
控制信号
ALU
A
B
操作控制器
ID IR B0H
B0H 01H 04H 02H
F4H
DR
7
B0H
56
(取第一条指令操作示意图)37
虽然ENIAC体积庞大,耗电惊人,运算速 度不过几千次(现在的超级计算机的速度最快 每秒运算达万亿次!),但它比当时已有的计 算装置要快1000倍,而且还有按事先编好的程 序自动执行算术运算、逻辑运算和存储数据的 功能。但是ENIAC宣告了一个新时代的开始。
微机原理与接口技术课程标准

《微机原理与接口技术》课程标准一、课程概述《微型原理与接口技术》是计算机硬件与软件衔接及综合应用的课程。
尤其微处理器大量开展和计算机渗透嵌入各种仪表和控制系统后,“微机原理与应用〃成为组构系统的根本技术。
《微型原理与接口技术》是通信工程专业的必修课程,其课程着重介绍微型计算机根本构成及应用方法。
该课程的先修课程有:《电路与电子学》、《数字电路与逻辑设计》、《汇编语言程序设计》,并为《单片计算机技术》、《计算机控制技术》等课程打下根底。
它是一门理论性、实践性和应用性较强的课程。
这门学科的重点是培养学生在微型计算机根本构成与外界联系(广义输入/输出)的应用方面的知识和技能,对学生的专业开展和计算机的深入研究具有极其重要的意义。
通过本课程,使学生学习微处理器芯片根本功能、指令系统、构成微型计算机的外围芯片,以及构成微型计算机系统的接口芯片。
掌握微型计算机结构特点,以及实现微型计算机与外部连接的软、硬件根底知识和根本技能;掌握和了解各种典型环境下接口设计原那么;熟悉和正确选择常用的儿种大规模集成接口电路。
本课程具有较强的实践能力。
二、课程目标1 .知道《计算机接口技术》这门课程的性质、地位和价值;知道该课程的研究领域和技术前景;知道这门学科的研究范围、分析框架、研究方法、学科进展和未来方向。
2 .理解这门课程的主要概念、根本原理利技术要点,拓宽计算机应用的领域和范围的思路和概念。
3 .掌握计算机结构特点,以及实现计算机与外部连接的软、硬件根底知识和根本技能。
4 .掌握和了解各种典型环境下接口设计原那么;熟悉和正确运用常用的儿种大规模集成接口电路。
5 .通过本课程的学习,到达提高学生的分析问题、解决问题的思维能力和动手能力。
三、课程内容和教学要求这门课程的知识与技能要求分为知道、理解、掌握、学会四个层次。
这四个层次的一般涵义表述如下:知道 ---- 是指对这门学科和教学现象的认知。
理解 ---- 是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所涉及到的教学现象演变过程的特征、形成原因以及教学要素之间的相互关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
1、复习数制与编码、逻辑电路的相关知 识; 2、查阅近年来的微型计算机发展情况, 了解摩尔定律的主要内容; 3、微型计算机系统由几部分组成?各个 部分的完成怎样的功能?
三、微型计算机系统的组成
微
硬件系统
型
计
算
机
系
统
软件系统
主机
➢CPU ➢存储器
运算器 控制器
➢总线 ➢输入/输出接口
外部设备(I/O设备、外存)
系统用户为解决实际问题而编制的专用程序或软件
三、微型计算机系统的组成
硬件组织结构:
中央处理机 CPU
总线控制 逻辑
内存
一个字节为8位二进制数
00000H
➢内存容量
内存单元的内容 00001H 00002H
8086共有20根地址线, 寻址空间为220个存储单元,即1MB的空间
内存地址
⁞ F0000H A6H
➢存储单元的地址和内容
➢1B=8b;
F0001H
➢内存的操作:读操作、写操作➢1KB=210B=1024B;
首个微型计算机
二、微型计算机的发展概况——3
提高微型计算机系统的整体性能主要从两个方面着手: 1、提高芯片的集成度 2、发展系统集成技术:多处理机并行处理技术
各种类型的 微处理器
➢Intel 4004
➢Intel 8008
➢Motorola 6800
➢Intel 8086
➢Intel 80286
➢Intel 80386
➢Intel 80486
➢Intel Pentium
➢Intel Pentium II
➢Intel Pentium III
➢Intel Pentium IV
二、微型计算机的发展概况——4
未来的计算机发展方向: 巨型化:指功能巨型化。 微型化:指体积的微小化。 网络化 智能化
六、课程目标
本课程是学习和掌握微机硬件知识和汇编 语言程序设计的入门课程。
目的是使学生从理论和实践上掌握微型计 算机的基本组成、工作原理、指令系统及常用 接口技术,建立微机系统整体概念,使学生具 备微机应用系统软、硬件开发的初步能力。
小结
了解计算机的分类情况和微型计算 机的发展概况,
掌握微型计算机系统的基本组成, 理解微型计算机系统工作过程, 熟悉微机的主要性能指标。
一.第一代 电子管计算机(1946-1958) 二.第二代 晶体管计算机(1958-1965) 1.第三代 集成电路计算机(1965-1970) 2.第四代 以后 大规模、超大规模集成电路计算机(1970年以后)
二、微型计算机的发展概况——2
微机的发展历史:
第一阶段 的四位机时期(1971~1973年) 第二阶段 是八位机时期(1973~1977年) 第三阶段 是16位机时期(1978~1983年) 第四阶段 32位微型计算机发展时期(1983~1999年) 第五阶段 64位机、多处理机时期(2000年1以97后7)年 我国研制的
⁞
➢1MB=1024KB; FFFFEH
➢1GB=1024MB; FFFFFH
➢1TB=1024GB
存储器
➢内存的分类:
随机存取存储器(RAM,Random Access Memory): 可读写,断电消失。
只读存储器(ROM, Read Only Memory): 其中信息只能被CPU随机读取,而不能由CPU任 意写入。断电后信息不丢失。
➢CPU一次可以同时传送和处理的二
进制➢数外码设的扩位展数能力
➢内存容量 ➢运算速度 ➢存取周期
➢现在➢普软遍件采配用单置位情时况间内执行指令的条 数指作令为/➢运秒性算)能速作价度为格指 计比标 量, 单并 位以MIPS(百万条
➢环境适应性指标
➢存储器进行一次读出或写入操作所 需的时间称为存取周期
一、计算机的分类:按功能、体积和价格等分类
功能
嵌入式计算机和单片机
专用计算机系统
微型机
个人台式机、笔记本等PC机
弱
小型机
中型 机
服务于生产生活中的各 类高性能计算机
强
大型
机
巨
型
机
主要用于科学计算仿真等
“天河”系列计算机
➢“天河二号”目前运算速度世界第一。
二、微型计算机的发展概况——1
计算机的发展历史可以概括为:
四、微型计算机系统工作过程
计算机的工作过程就是执行程序的过程,程序是指令序列的集合。 计算机系统的体系结构本质上是冯 • 诺依曼计算机,即遵循存储
程序的工作原理
存储程序原理:
➢ 将计算过程描述为由许多条指令按一定顺序组成的程序,并 放入存储器保存
➢ 指令按其在存储器中存放的顺序执行; ➢ 由控制器控制整个程序和数据的存取以及程序的执行。
➢存储器 ➢接 口
外部 存储器
系
统
➢接 口
➢I/O设备
总
线 ➢I/O子系统
处理器结构
总线
微 处 存储器 理 器
存储器
I/O接口
➢AB地址总线
➢I/O设备 ➢DB数据总线 ➢CB控制总线
➢总线:由一组导线和相关控制电路组成,是各种公共信号线的集合,用 于微机系统各部件之间的信息传递。
存储器
存储器以字节为内存的基本存储单元
冯 • 诺依曼机的工作过程
➢程序计数 ➢地址 器PC
➢内存中的程序 ➢指令1
➢取出
➢指令2
┇
➢指令n
➢操作数
➢CPU ➢分析 ➢获取操作数 ➢执行 ➢存放结果
┇
➢14
五、微机的➢指主微要型性计算能机指系标统所采用的CPU芯
片型号,它决定了微机系统的档次
➢CPU类型 ➢字长
➢可靠性、可维护性和兼容性