【贝叶斯统计答案】第二章+第三章

合集下载

贝叶斯统计-习题答案)

贝叶斯统计-习题答案)

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(63631171463163631533853381<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<-(实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。

贝叶斯统计习题答案

贝叶斯统计习题答案

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。

贝叶斯统计习题答案

贝叶斯统计习题答案

贝叶斯统计习题答案第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=?+??=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==?+??=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语⾔求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1714631636315338533810<<-==-=--=--=----==--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<==<<=+<<-==+<<-=??θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=??θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝?∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ix e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2)由题意可知./(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{221221121212121 2122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x n ni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XNθ∴2由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()1122525eσθθθσσσ+----+?--+∝∝因此 222251(,)112525u x xN σθσσ+++⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(7687787321321321433213213321>?====≥=>=====<<=∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ从⽽有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111n n n ααααθθθθθ++++∝?∝因此θ的后验分布仍是Pareto 分布。

贝叶斯统计及其推断(PowerPoint 123页)

贝叶斯统计及其推断(PowerPoint 123页)

1.先验矩法
历史数据得的估计值1,..., k
计算
1 +...+k
k
, S2
1 k 1
k
(i
i 1
)2
令E =
Var
(
)2 (
1)
S2
解得 , 的一个估计 ,
先验分布的确定
2.利用先验分位数
若历史经验得 ( )的下P1和上P2分位数L和U
则有
L 0
( ) 1(1 ) 1d ( )T ( )
解:m(x) p(x, )d p(x | ) ( )d , ( | x) p(x, ) / p(x, )d p(x | ) ( ) / m(x).
求解的例子
设x b(n, ), ~ U (0,1).求m(x), ( | x)
解:m(x)
1 0
Cnx
x
(1
)nx
1d
Cnx
函数为P(x)=c.h(x)
则称h(x)为P(x)的核
由于 ch(x)dx 1(或 ch(x) 1) x
c
1
从而P(x) h( x)
h(x)dx
h(x)dx
即P( x)由核唯一确定,
除了相差一个常数倍外,核也由P(x)唯一确定
计算的简化---边缘密度的核
例3.1.设x ~ N (1, 4)
可信区间——选择标准
由上例知的1 可信区间a, b不唯一
选择区间长度最短的。假如,某人年龄的两个
1 可信区间为30,40和38,41,则38,41更好,
精度更高,信息更精确
可信区间——选择标准
a, b为1 可信区间,则
b
a ( | x)d 1

贝叶斯统计茆诗松版大部分课后习题答案word精品

贝叶斯统计茆诗松版大部分课后习题答案word精品

加 I —W)W j04/(l -疔36840 (1 ) ,011.6习题讲解一、1,3,5,6,10,11,12,15 1.1记样本为X. p(x 0.1) Cs *0.1 2 *0.960.1488 p(x 0.2) C ;*0.22*0.86 0.2936 后验分布: 0.1 x 0.2 x 0.1488*0.70.1488*0.7 0.2936*0.3 0.2936*0.30.1488*0.7 0.2936*0.30.5418 0.4582苴它1o<e<iJ n1 m x 0p(x| ) [2(1® aG<e<i其它1 d°C ; 3(1)5*2(1 )d1112 3(1 )6d12( X)i …氏 设辱心…血 是栗ri 泊松分布praj 的 个样本swe 匚此样木的似然函数为匕现収仙也[分•仃Ga(fiL Q 粹为泊松分巾均们A 的址验匕们•即―oo < a v +c©的后验分布为192/ 7 6 86 192—87参故久的百验分布为兀(几斗)板I A)^(Z)'X /J+M jA服从伽玛分布Go辽対+桟申一八r-1 1.11由题意设x 表示等候汽车的时间,则其服从均匀分布 U(0,)P(X )亠 0 X 0, 其它 因为抽取3个样本,即X (x 1,x 2, x 3),所以样本联合分布为丄 p(X) 3,0, X i ,X 2,X 3其它又因为 192/ 0, 所以,利用样本信息得 h(X, ) p(X )() 1 ~3 192 ~4 192 (~7 (8,0 X i ,X 2,X 3 )于是 m(X) 8 h(X,)d192 , rdp(x\A) = —Xi—, -OC < XIX/ < +OCh(X,) m(X)21p(x )— ,0 x0,即(x) ( n)1/0,即得证。

1.151样本的似然函数:p(x )1e服从伽马分布Ga n, nx-0.00024,20000.0.000121.12样本联合分布为:(X)6 867~0, (x) p(x )()1/1max 0,%丄,人因此的后验分布的核为1/n 1,仍表现为Pareto 分布密度函数的核参数的后验分布 (x) p(x )()n 1( nx)enX in— i 1en nxe1,2,3,5,6,7,8,10,11,12 2乙11)讥刈8)二&(1一&)\兀(&) = 1p 何0)兀(0)= &(1—胖 〜尿(2,4)E(&|X )"E =±W2)讽申)=,(1 — &)叫兀(&) = 1二 诃x) * p(x 0)兀(8)=护(1 一 0)10 〜%(4,11)i ・44E(& x) = 3¥ = -------- =——E 11 + 4 152.2解:由题意,变量t 服从指数分布: p(t )由伽玛分布性质知:0.2nt i 20 3.8 76,所以 ni 1由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布0.04, 0.2又已知n=20,t 3.8(|t) P (T| )( )neti1en 1e (t i)即后验分布为Ga( n,t i ) Ga(20.04,76.2)E T() n t i20.0476.20.2631服从倒伽玛分布IGa(n,t i ) IGa(20.04,76.2)样本联合分布p(T )neti且~Ga(,)〒0 , E()0.2 Var (n20.04, t ii 176.2t-E T ( ) E |T (1) ---------- 4.002n 1n 12.8 由 x ~ Ga( , ), ~ IGa(,)可以得出(1}e(1) 的后验分布为:(3)样本分布函数为:的后验期望估计的后验方差为11 162.5 n 36.2.7的先验分布为:()/ 1, 0, 令1 max 0必丄,X -可得后验分布为:(x)(n) 1 n/0,后验方差为: Var( x)E( x)十, n 1 (n) 122(n 1) (n 2)(xpn -2n -2X1 xe 2 ,x 0(x)p(x 1)e^即为倒伽玛分布IGa(-,2所以的后验分布为IGa(n2 )的核。

(完整版)贝叶斯统计-习题答案)

(完整版)贝叶斯统计-习题答案)

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。

第二章_贝叶斯推断课后答案

第二章_贝叶斯推断课后答案

第二章 贝叶斯推断2.1 解:由题意可知 ()1,01πθθ=<<设12,,...,n X X X 是从随机变量X 中抽取的随机样本,则11()()(1)nii n x ni i p x p x θθθθ==∑==-∏从而有 ()()1()(1),01nii x nx p x πθθπθθθθ=∑∝∙∝-<<所以 1(1,1)ni i x Be n x θ=++∑(1) 由题意可知 n=1,x=3∴(2,4)x Be θ∴21ˆ243Eθ==+ (2) 由题意可知 1233,3,2,5n x x x ====∴(4,11)x Be θ∴44ˆ41115Eθ==+ 2.2 解:设X 为银行为顾客服务的时间,则()x p x e λλλ-=设λ的先验分布为(,)Ga αβ,则20.20.040.21ααβαββ⎧=⎪=⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 由题意可知 3.8x =从而有 ()()()x p x πλλπλ∝∙()11111n ni ii i x x nx n n n ee ee λβλλβαλβααλλλλ==⎛⎫⎪-+- ⎪-+--+-+-⎝⎭∑∑∝∙==因此有 (,)(20.04,76.2)x Ga n nx Ga λαβ++=所以有 20.04ˆ()0.2676.2E x λλ=== ()()()1110ˆ() 4.0021nnx n nx nx E x e d n n αλβαββθλλλλαα++∞-+--+-++==∙==Γ++-⎰ 2.3 解:设X 为磁带的缺陷数,则()X p θ∴3133311()()!ii x i i i i e p x p x x θθθθ=-==∑==∏∏由题意可知 ()21,02e θπθθθ-=>从而有 ()()3132104()i i x x p x e e e θθθπθθπθθθθ=---∑∝∙∝=因此 (11,4)x Ga θ11ˆ()()16EMSE Var x θθ== 2.4 解:设X 为n 个产品中不合格数,则(,)X bin n θ 由题意可知 ()49(1),01πθθθθ∝-<< (1) 由题意可知(20,)X bin θ∴317()(1)p x θθθ∝-∴()()()x p x πθθπθ∝∙31749726(1)(1)(1)θθθθθθ∝-∙-=- 因此 (8,27)x Be θ又626725()7(1)26(1)0x πθθθθθ'∝---所以 7ˆ33MD θ=(2) 由题意可知(20,)X bin θ 且()726(1)πθθθ=-∴20()(1)p x θθ∝-∴()()()x p x πθθπθ∝∙72620746(1)(1)(1)θθθθθ∝-∙-=-因此 (8,47)x Be θ所以 78ˆˆ,5355MD E θθ== 2.5 解:设2(,2)X N θ ,则222σ= 令2204nnσσ==设(,1)N u θ ,则1τ=,且211(,)x N u θτ其中 2201222200u x u στστστ------=+++22210111τστ=+214ˆ()()0.14EMSE Var x n θθτ===≤+ 2.6 解:设X 为1000名成年人中投赞成票的人数,则(1000,)X bin θ(1)由题意可知 7107102901000(710)(1),01p C θθθθ=-<<a.()()710290711290710(710)(1)(1)A p πθθπθθθθθθ∝∙∝-∙=-∴710(712,291)Be θb.()()7102903713290710(710)(1)(1)B p πθθπθθθθθθ∝∙∝-∙=-∴710(714,291)Be θ(2)a.712ˆ(710)0.7098712291E E θθ===+b. 714ˆ(710)0.7104714291E E θθ===+ (3)由题意可知10001000()(1),01xx x p x C θθθθ-=-<<a.()()100011000()(1)(1)x x x x A x p x πθθπθθθθθθ-+-∝∙∝-∙=-∴(2,1001)x Be x x θ+-∴2ˆ()1003EAx E x θθ+== b.()()1000331000()(1)(1)x x x x B x p x πθθπθθθθθθ-+-∝∙∝-∙=-∴(4,1001)x Be x x θ+-∴4ˆ()1005EB x E x θθ+==∴ˆEA θ-ˆEB θ=21003x +-41005x +=2.7 解:由题意可知 1(),0p x x θθθ=<<1(),0,1,2,...,i n p x x i n θθθ∴=<<=令{}1012max ,,,...,n x x x θθ=,则()101()()()n m x p x d n ααθαθθπθθαθ+∞+=∙=+⎰从而有 ()()111()(),()n n p x n x m x ααθπθαθπθθθθ++++==>11111()1ˆ()(1)n E n n n E x d n αααθαθθθθθθαθ++∞+++-+===+-⎰1221121()1()(2)n n n n E x d n αααθαθθθθθαθ++∞+++-+==+-⎰22222(1)1111ˆ()()()()(2)(1)En n MSE Var x E x E x n n ααθθθθαθαθ+-+-==-=-+-+- 2.8 解:(1)由题意可知 21221()2n x n p x x e θθθ--⎛⎫∝ ⎪⎝⎭()(1)e βαθπθθ--+∝因此 ()221(1)(1)22212xnx nn x x e e eββααθθθπθθθθ+-----++-+⎛⎫∝∝⎪⎝⎭所以 (,)22n xx IGa θαβ++(2)222()1222x Var x n n βθαα⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭2()12x E x nβθα+=+- (3) 由题意可知 2221()n nx p x eθθθ-⎛⎫∝ ⎪⎝⎭()22(1)2nx nx eβαθπθθ+--++∝2(,)22n nxx IGa θαβ∴++22ˆ12MDnx n βθα+∴=++ 22ˆ12E nxn βθα+=+-。

贝叶斯统计第二版第二章答案

贝叶斯统计第二版第二章答案
(1) 由题意可知 因此 又 所以
(2) 由题意可知且 因此 所以 2.5 解:设,则 令 设,则,且 其中
2.6 解:设X为1000名成年人中投赞成票的人数,则 (1)由题意可知 a. b. (2)a.
b. (3)由题意可知 a. b. -=-= 2.7 解:由题意可知 令,则 从而有 2.8 解: (1)由题意可知 因此 所以 (2)
(3) 由题意可知第二章 贝 Nhomakorabea斯推断2.1 解:由题意可知 设是从随机变量X中抽取的随机样本,则 从而有 所以
(1) 由题意可知 n=1,x=3 (2) 由题意可知 2.2 解:设X为银行为顾客服务的时间,则 设的先验分布为,则 由题意可知 从而有
因此有 所以有 2.3 解:设X为磁带的缺陷数,则 由题意可知 从而有 因此 2.4 解:设X为n个产品中不合格数,则 由题意可知
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【贝叶斯统计答案】第二章+第三章第二章
,,tpte(),,,2.2 解: 由题意,变量t服从指数分布:
,,tni,
pTe(),,,样本联合分布
,,,,1,,,~(,),0Gae,,且, E()0.2,,Var()1,,,,,,,,(),
由伽玛分布性质知:
,,0.2,,,,0.04,0.2,,, ,,,,,1,2,,,
t,3.8 又已知 n=20,
nn
nt,,,,,,20.04,76.2t,,,203.876,i,i ,所以 ,1,1ii
由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布,,,,,,tt(),,,,,nn,,,11,,ii()()()tpTeee,,,,,,,,,,, GantGa(,)(20.04,76.2),,,,,即后验分布为 ,i
,,n20.04,|TE()0.263,,,, ,t76.2,,i
,1IGantIGa(,)(20.04,76.2),,,,,服从倒伽玛分布 ,,,,i
,,t,i,,||1,TT()()4.002EE,,,,, 1,,n,
11,,2.3可以算出的后验分布为,的后验期望估计的后验方差为. Ga(11,4)16 n,362.5只有个别人算错了,答案是.
2.6大家差不多都做对了.
,,,1,,,,,,/,,00,2.7的先验分布为:(), ,,,0,,,,0,
,,,max,,,xx令 ,,101n
,,,,,nn1,()/,,,,,,,,n11可得后验分布为:()x, ,,,0,,,,,1
(),,,n1,Ex(),则的后验期望估计为:, ,n,,1,2(),,,n1后验方差为:. Varx(),,2(1)(2)nn,,,,,,
n1,,,2.8由xGaIGa~(,),~(,)可以得出 22,
n12()1n,,1x,2,22 pxxex,,,(),0n,()2
,,,,(1),,,,(),0,,e ,,,,,(),
,(1)的后验分布为:
x,2,n,,,,(1),22, ,,,,,,()()()xpxe,,
nxIGa(,),,,,即为倒伽玛分布的核。

22
nxIGa(,),,,,,所以的后验分布为 22
x,,x,2,2(2)后验均值为 Ex(),,,nn22,,,1,,,2
x2(),,2后验方差为 Varx(),,nn2(1)(2),,,,,,22
(3)样本分布函数为:
nnn,1,,n,xnn2i,,1(2),,2,,,1i2
pxpxxe()(),,,,ii,,,,n(/2),,,11ii,,,,
,所以的后验分布为:
nx,2,i,2n,1i,,,,(1),22,,,,,,,()()()xpxe ,,
n
x,2in,1i(,),,,,即为IGa的核。

22
n1n21(),n,,xni,,,1,2,,,(1)n,,2,12i,
(xpxxee,,)()()[]*,,,,,,i,n,(),,1i,()2(dx,,)令 ,0d,
即:
nnnn1,,22,,xxii,,222x,,
2()nnn,2i,,,11iin,,,,,,,,,121,,n,n,1i222222,,xee,,,,,[][(1)*]0,,,i,2n,( )22,,,1i,()2
n
xn,i,1ix,2,,,,i,2,1i,,可得 ,MD22nn,,22,,,1,2
n
xn,i,1ix,2,,,,i,2,1i,,而由公式得 ,E22nn,,22,,,1,2
因此,倒伽玛分布的这两个估计是不一样的,原因是它不对称。

2.10解:已知 xNN~(,1),~(3,1),,
2,N(,),,设的后验分布为 11
可得:
,22,,x,,,,0,,1,,22 ,,,0
111
,,222 ,,,10
2,243,,,12由已知得:x,,3, ,,,03n3
333111,,,2,, ?,,,,3,1131134,,
,所以的95,的可信区间为: [30.51.96,30.51.96],,,,即为. [2.02,3.98] 222.11已知 xNIGa~0,,~,,,,,,,,,
nn1,,22可得的后验分布为 ,,IGax,,,,,i,,22,1i,,
n12,x,,i2,1iˆ后验均值为: ,,En,,1,2
2n1,,2,,x,i,,2i,12,,Varx,后验方差为: ,,,
2nn,,,,,,,,12,,,,,,22,,,,
变换:
n11n,,2 ,,~,Gax,,,i,,222,,1i,,
n1,,n,,,,22 ,,,2~2,,x,i,,,,2,,2,,,,1,,i,,
n,,1,,22Pxn,,,令:220.9,,,, ,,,0.1,,i,,2,,1,,i,,
n22,,x,i2,1i可得的0.9可信上限为. ,2n,2,,,,0.1
,,,1,,,,,,/,,00,2.12的先验分布为:(), ,,,0,,,,0,,,,max,,,xx
令 ,,101n
,,,,,nn1,()/,,,,,,,,n11可得后验分布为: ()x,,,,0,,,,,1
,1,,设的可信上限为, U,U则 ,,,,xd,,1,,,,1
带入有:
,U,,,nn1,,()/1,,,,,,,,nd1,,1
,n,,1 ,,,,n,,U
1,n1,,,,,U1,,,,,,,
三、10,11,12,13
3.10解:依题意
1x,,pxxexp,0,,,,,,,,,,,,
0.01,,,20.01exp,0,,,,,,,,,,,,,,
,,0.01x,,,,3则mxpxdd0.01exp,,, ,,,,,,,,,,,,,,,,0,,,,
0.01,0x,,2x0.01,,,
该元件在时间之前失效的概率200:
2002000.01pmxdxdx,,,0.99995,,2,,00x0.01,,,
3.11:解依题意
xi,,,iipxe,,,,iix!i
,,,,1i,,,,,e,0,,,,,,iii,,,,
xi,,,,,,1i ii,,,,,,mxpxdeed,,,,,,,,iiiiiii,,,,,,,,0x!,,,i,, ,,,,,x,,ix,i,,,,1!x,,,,i,,nnn,,,,
x,,,i,mxmx,,,,,,,,,,,ix,i,,ii,,11,,,,1!x,,,,,i,,
3.12,,解:超参数和的似然函数为
333,,,335,,,,,,,xf,,,,,,,,,,,,,,,,,,i,,L,,,,其中,,,,338383x,,,,,,i1i,7201!13!5!1,,,x,,,,,,,,,,,,,,,,,,,i,,,,,,
2221234.f,,,,,,,,,,,,,,,,,,,,,

,,,L ,,,,38,,0,,,,,,,,,,,1,,,,,,3ln,,Lff,,,,,,,,,,,,,,0,,,, ,,,,,从而有:
38,,,,3lnff,,,,,,,,3,,,,,
3,1.033599=0.3875996利用软件计算,可得,,,,,83.13证明:泊松分布的期望和方差分别为
2,.,,,,,,,,,,,,
,,1,,,,,,=,0,e,,,,,,,,,,,,
,,,,,,,,,,,,ed,,m,,,,,,0,,,,,
x,22,,,,,,,,,,,EE,,,,,,,,,,,,,221,
2,,,,2,,,,,,,,,,,,,,,,,,,,,,,,,,,EE,,,,
m,,,,22,,,,,,,,,,,,,,,,,,
2,,,,,,,m2,,,,,利用样本矩代替边际分布的矩,列出如下方程: ,,,x,,,,,,2,,,S2,,,,
2 ,,x,,2,,Sx,,,,x,,2,,Sx,,。

相关文档
最新文档