高考数学(文)二轮复习题型练8大题专项函数与导数综合问题检测
2023高考数学二轮复习专项训练《导数的概念和几何意义》(含答案)

2023高考数学二轮复习专项训练《导数的概念和几何意义》一、单选题(本大题共12小题,共60分)1.(5分)直线y=x与曲线y=e x+m(m∈R,e为自然对数的底数)相切,则m=()A. 1B. 2C. −1D. −22.(5分)与曲线y=x3−5x相切且过原点的直线的斜率为()A. 2B. −5C. −1D. −23.(5分)曲线y=ax2在点P(1,a)处的切线平行于直线y=2x+1,则a=()A. 1B. 12C. −12D. −14.(5分)在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是( )A. 4x-y=0B. 4x-y-4=0C. 2x-y-2=0D. 4x-y=0或4x-y-4=05.(5分)若函数f(x)=1x−3ax的图象在x=1处的切线与直线x+4y=0垂直,则a= ()A. −1B. 1C. −712D. −536.(5分)函数f(x)=−x2+3ln x的图象在x=1处的切线倾斜角为α,则cos2α=()A. 13B. 12C. 23D. 347.(5分)已知函数y=3x在x=2处的自变量的增量为Δx=0.1,则Δy为( )A. -0.3B. 0.6C. -0.6D. 0.38.(5分)曲线在点(1,2)处的切线方程为A. B. C. D.9.(5分)曲线y=12x2−2x在点(1,−32)处的切线的倾斜角为()A. −135°B. 45°C. −45°D. 135°10.(5分)已知曲线C:x2−2x+y2+b=0,且曲线C上一点P(2,2)处的切线与直线ax−y+1=0垂直,则a=()A. 2B. 12C. −12D. −211.(5分)设f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 ,0)处的切线方程为()A. y=xB. y=−xC. y=2xD. y=−2x12.(5分)物体运动方程为s=14t4−3,则t=5时的瞬时速率为()A. 5m/sB. 25m/sC. 125m/sD. 625m/s二、填空题(本大题共5小题,共25分)13.(5分)曲线y=x+lnx−1往点(1,0)处的切线方程为______.14.(5分)已知定义在R上的函数f(x)满足f′(x)>0,且f(f(x)−e x)=e+1,若f(x)⩾ax−a+1恒成立,则实数的取值范围是____________.15.(5分)如果质点A的位移s与时间t满足方程s=2t3,则在t=3时的瞬时速度为____.16.(5分)已知函数f(x)={1x,x∈(0,2]f(x−2),x∈(2,+∞),则f(x)在x=3处的切线方程为______.17.(5分)若函数f(x)=−x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于−1,则Δx的取值范围是____________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=x2−2x−alnx+ax,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设f(x)的极小值点为x0,且f(x0)<a−a24,求a的取值范围.19.(12分)已知函数f(x)=ln x−ax,其中a为非零常数.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处的切线斜率为−1,求f(x)的极值.20.(12分)已知函数f(x)=−x2+x图像上两点A(2,f(2))、B(2+Δx,f(2+Δx)).(1)若割线AB的斜率不大于−1,求Δx的范围;(2)用导数的定义求函数f(x)=−x2+x在x=2处的导数f′(2),并求在点A处的切线方程.21.(12分)已知函数y=23x3−2x2+3,(1)求在点(1,53)处的切线方程,(2)求函数在[−1,3]的最值.22.(12分)已知函数f(x)=e x ln x−ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=−e x+1平行,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.23.(12分)已知函数f(x)=ae x,g(x)=ln(ax)+52,a>0.(Ⅰ)若y=f(x)的图象在x=1处的切线过点(3,3),求a的值并讨论ℎ(x)=xf(x)+m(x2+2x−1)(m∈R)在(0,+∞)上的单调增区间;(Ⅱ)定义:若直线l:y=kx+b与曲线C1:f1(x,y)=0、C2:f2(x,y)=0都相切,则我们称直线l为曲线C1、C2的公切线.若曲线y=f(x)与y=g(x)存在公切线,试求实数a的取值范围.四、多选题(本大题共5小题,共25分)24.(5分)已知函数f(x)=√x−ln x,若f(x)在x=x1和x=x2(x1≠x2)处切线平行,则()A.√x1√x2=12B. x1x2<128C. x1+x2<32D. x12+x22>51225.(5分)函数f(x)的导函数为f′(x),若已知f′(x)的图像如图,则下列说法不正确的是()A. f(x)存在极大值点B. f(x)在(0,+∞)单调递增C. f(x)一定有最小值D. 不等式f(x)<0一定有解26.(5分)关于函数f(x)=a ln x+2x,下列判断正确的是()A. 函数f(x)的图象在点x=1处的切线方程为(a−2)x−y−a+4=0B. x=2a是函数f(x)的一个极值点C. 当a=1时,f(x)⩾ln2+1D. 当a=−1时,不等式f(2x−1)−f(x)>0的解集为(12,1)27.(5分)已知函数f(x)=ax3+x2+axe x,则()A. 若曲线y=f(x)在(0,f(0))处的切线与x+5y=0相互垂直,则a=5B. 若a=0,则函数f(x)的单调递减区间为(−∞,0)∪(2,+∞)C. 若a=0,则函数f(x)有2个极值点D. 若关于x的不等式函数x2+1⩾f(x)在(0,+∞)上恒成立,则实数a的取值范围为(−∞,e-12]28.(5分)函数f(x)={e x−1,x⩽1,ln(x−1),x>1,若函数g(x)=f(x)−x+a只有一个零点,则a的值可以为()A. 2B. −2C. 0D. 1答案和解析1.【答案】C;【解析】解:设切点为(x,y),则x=y,∵y=e x+m,∴y′=e x+m∴e x+m=1,即x+m=0,又e x+m=x,∴e0=x,∴x=1,∴m=−1,故选:C.先求导函数,利用直线y=x与曲线y=e x+m相切,可知切线的斜率为1,即切点处的函数值为1,再利用切点处的函数值相等,即可求出a的值本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解答该题的关键是正确理解导数的几何意义.2.【答案】B;【解析】解:设切点坐标为P(x0,y0),由曲线y=f(x)=x3−5x,得f′(x)=3x2−5,所以过原点的切线斜率为k=f′(x0)=3x02−5,所以切线方程为y−y0=(3x02−5)(x−x0);又切线过原点O(0,0),所以−x03+5x0=−3x03+5x0,解得x0=0,所以y0=0,则P(0,0);所以与曲线y=x3−5x相切且过原点的直线的斜率为k=f′(0)=−5.故选:B.设切点为(x0,y0),求出切线l的斜率为f′(x0),写出切线l的方程,根据且线1过原点求出切点坐标和斜率.该题考查了导数的几何意义与应用问题,也考查了运算求解能力,是基础题.3.【答案】A;【解析】解:y=ax2的导数为y′=2ax,可得曲线在点P(1,a)处的切线斜率为k=2a,由切线平行于直线y=2x+1,可得k=2,即2a=2,解得a=1,故选:A.求得y=ax2的导数,可得切线的斜率,由两直线平行的条件可得a的方程,解方程可得a的值.该题考查导数的几何意义,考查两直线平行的条件,考查方程思想和运算能力,属于基础题.4.【答案】D;【解析】曲线y=x 3+x-2求导可得y′=3x 2+1 设切点为(a ,b)则3a 2+1=4,解得a=1或a=-1 切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x 3+x-2相切的 直线方程是:4x-y-4=0和4x-y=0 故选D 。
高考数学二轮复习提高题专题复习导数及其应用多选题练习题及解析

高考数学二轮复习提高题专题复习导数及其应用多选题练习题及解析一、导数及其应用多选题1.已知函数()sin sin f x ax a x =-,[]0,2x π∈,其中ln 1a a ->,则下列说法中正确的是( )A .若()f x 只有一个零点,则10,2a ⎛⎫∈ ⎪⎝⎭B .若()f x 只有一个零点,则()0f x ≥恒成立C .若()f x 只有两个零点,则31,2a ⎛⎫∈ ⎪⎝⎭D .若()f x 有且只有一个极值点0x ,则()01312a a f x π+--<⋅恒成立【答案】ABD 【分析】利用()00f =以及零点存在定理推导出当1a >时,函数()f x 在[]0,2π上至少有两个零点,结合图象可知当01a <<时,函数()f x 在()0,2π上有且只有一个极值点,利用导数分析函数()f x 在()0,2π上的单调性,可判断A 选项的正误;利用A 选项中的结论可判断B 选项的正误;取12a =,解方程()0f x =可判断C 选项的正误;分析出当()f x 在()0,2π上只有一个极值点时,01a <<,分13a =、103a <<、113a <<三种情况讨论,结合sin x x <可判断D 选项的正误. 【详解】构造函数()ln 1g x x x =--,其中0x >,则()111x g x x x-'=-=. 当01x <<时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,此时,函数()g x 单调递增. 所以,()()min 10g x g ==.ln 1a a ->,0a ∴>且1a ≠.()sin sin f x ax a x =-,则()00f =.当1a >时,sin sin sin 02222a a f a a ππππ⎛⎫=-=-<⎪⎝⎭,3333sin sin sin 02222a a f a a ππππ⎛⎫=-=+> ⎪⎝⎭,由零点存在定理可知,函数()f x 在3,22ππ⎛⎫⎪⎝⎭内至少有一个零点, 所以,当1a >时,函数()f x 在区间[]0,2π上至少有两个零点, 所以,当函数()f x 在区间[]0,2π上只有一个零点时,01a <<.对于A 选项,当01a <<时,()()cos cos cos cos f x a ax a x a ax x '=-=-.01a <<,则022a ππ<<,022a ππ<<, cos 022a f a ππ⎛⎫'=> ⎪⎝⎭,()()()2cos2cos2cos210f a a a a ππππ'=-=-<, 由零点存在定理可知,函数()f x 在区间,22ππ⎛⎫⎪⎝⎭上至少有一个极值点, 令()0f x '=,可得cos cos ax x =,当()0,2x π∈时,02ax x π<<<,由()cos cos cos 2ax x x π==-,可得2ax x π=-,解得21x a π=+, 所以,函数()f x 在区间()0,2π上有且只有一个极值点21x a π=+. 作出函数1cos y ax =与函数2cos y x =在区间[]0,2π上的图象如下图所示:由图象可知,函数1cos y ax =与函数2cos y x =在区间()0,2π上的图象有且只有一个交点,记该交点的横坐标为0x ,当00x x <<时,cos cos ax x >,此时()0f x '>; 当02x x π<<时,cos cos ax x <,此时()0f x '<.所以,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减. 所以,()()()0max 00f x f x f =>=,又()2sin 2f a ππ=.若函数()f x 在区间[]0,2π上有且只有一个零点,则()2sin 20f a ππ=>.01a <<,则022a ππ<<,所以,02a ππ<<,解得102a <<,A 选项正确;对于B 选项,若函数()f x 在区间[]0,2π上有且只有一个零点时,由A 选项可知,函数()f x 在区间()00,x 上单调递增,在区间()0,2x π上单调递减.()00f =,()2sin 20f a ππ=>,所以,对任意的[]0,2x π∈,()0f x ≥,B 选项正确;对于C 选项,取12a =,则()1sin sin sin sin cos sin 1cos 2222222x x x x x x f x x ⎛⎫=-=-=- ⎪⎝⎭,02x π≤≤,则02x π≤≤,令()0f x =,可得sin 02x =或cos 12x=,可得02x =或2xπ=, 解得0x =或2x π=. 所以,当12a =时,函数()f x 有两个零点,C 选项错误; 对于D 选项,当1a >时,若02x π<<,则02ax a π<<,且22a ππ>,当()0,2x π∈时,令()0f x '=,可得出()()cos cos cos 2ax x k x k Z π==±∈,至少可得出2ax x π=-或2ax x π=+,即函数()f x 在区间()0,2π上至少有两个极值点,不合乎题意,所以,01a <<. 下面证明:当02x π<<时,sin x x <,构造函数()sin h x x x =-,其中02x π<<,则()1cos 0h x x '=->,所以,函数()sin h x x x =-在区间0,2π⎛⎫⎪⎝⎭上为增函数,所以,()()00h x h >=,即sin x x <.分以下三种情况来证明()01312a a f x π+--<⋅恒成立.()()000cos cos 0f x a ax x '=-=,可得00cos cos ax x =,0002ax x π<<<,由00cos cos ax x =可得出002ax x π=-,所以,021x a π=+. 则()000sin sin 2sin ax x x π=-=-. ①当13a =时,032x π=,则()1sin sin 33x f x x =-,31342sin sin 223233f ππππ⎛⎫=-=< ⎪⎝⎭,即()01312a a f x π+--<⋅成立;②当103a <<时,023,212x a πππ⎛⎫=∈ ⎪+⎝⎭, 则()()()0000002sin sin sin sin 1sin 1sin1f x ax a x x a x a x a a π=-=--=-+=-++ ()()()()22221sin 1sin 21sin 121111a a a a a a a a a a a ππππππ⎛⎫⎛⎫=+-=+-=+<+⋅= ⎪ ⎪++++⎝⎭⎝⎭ 1312a a π+--=⋅;③当113a <<时,023,12x a πππ⎛⎫=∈ ⎪+⎝⎭, ()()()()0000000sin sin sin sin 1sin 1sin f x ax a x x a x a x a x =-=--=-+=+-()()()()()()()01121sin 1sin 1sin 1111a a a x a a a a a a πππππ--⎛⎫=+-=+-=+<+⋅ ⎪+++⎝⎭()13112a a a ππ+--=-=.综上所述,当函数()f x 只有一个极值点0x 时,()01312a a f x π+--<恒成立. 故选:ABD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.下列不等式正确的有( )A 2ln 3<B .ln π<C .15<D .3ln 2e <【答案】CD 【分析】构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <lne e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.3.阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :2yx 上两个不同点,A B 横坐标分别为1x ,2x ,以,A B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( )A .若AB 过抛物线的焦点,则P 点一定在抛物线的准线上B .若阿基米德三角形PAB 为正三角形,则其面积为4C .若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D .一般情况下,阿基米德三角形PAB 的面积212||4x x S -=【答案】ABC 【分析】设出直线AB 的斜截式方程、点,A B 的坐标,根据导数的几何意义求出切线,PA PB 的方程,进而求出点P 的坐标,将直线AB 的方程和抛物线方程联立,得到一元二次方程以及该方程两根的和、积的关系.A :把抛物线焦点的坐标代入直线AB 的斜截式方程中,根据抛物线的准线方程进行判断即可;B :根据正三角形的性质,结合正三角形的面积公式进行判断即可;C :根据直角三角形的性质,结合直角三角形的面积公式进行判断即可;D :根据点到直线距离公式、两点间距离公式进行求解判断即可.. 【详解】由题意可知:直线AB 一定存在斜率, 所以设直线AB 的方程为:y kx m =+,由题意可知:点221122(,),(,)A x x B x x ,不妨设120x x <<,由2'2yx y x ,所以直线切线,PA PB 的方程分别为:221112222(),2()y x x x x y x x x x -=--=-,两方程联立得:211122222()2()y x x x x y x x x x ⎧-=-⎨-=-⎩, 解得:12122x x x y x x +⎧=⎪⎨⎪=⎩,所以P 点坐标为:1212(,)2x x x x +,直线AB 的方程与抛物线方程联立得:2121220,y kx mx kx m x x k x x m y x=+⎧⇒--=⇒+==-⎨=⎩. A :抛物线C :2y x 的焦点坐标为1(0,)4,准线方程为 14y =-,因为AB 过抛物线的焦点,所以14m =,而1214x x m =-=-,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有||||PA PB =,= 因为 12x x ≠,所以化简得:12x x =-,此时221111(,),(,)A x x B x x -, P 点坐标为:21(0,)x -, 因为阿基米德三角形PAB 为正三角形,所以有||||PA AB =,1122x x =-⇒=-, 因此正三角形PAB, 所以正三角形PAB的面积为11sin 6022︒==, 故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA PB ⊥时, 所以1212121222121122122114PAPBx x x xx x kk x x x x x x x x ++--⋅=-⇒⋅=-⇒=---, 直线AB 的方程为:14y kx =+所以P 点坐标为:1(,)24k -,点 P 到直线AB 的距离为:=||AB ===,因为12121,4x x k x x +==-,所以21AB k =+, 因此直角PAB的面积为:2111(1)224k ⨯+=≥, 当且仅当0k =时,取等号,显然其面积有最小值14,故本说法正确; D :因为1212,x x k x x m +==-,所以1||AB x x ===-,点P 到直线AB 的距离为:212== 所以阿基米德三角形PAB的面积32121211224x x S x x -=⋅-=, 故本选项说法不正确. 故选:ABC 【点睛】关键点睛:解决本题的关键就是一元二次方程根与系数关系的整体代换应用,本题重点考查了数学运算核心素养的应用.4.关于函数()sin ,(,)x f e x x x π∈-=+∞+,下列结论正确的有( ) A .()f x 在(0,)+∞上是增函数 B .()f x 存在唯一极小值点0xC .()f x 在(,)π-+∞上有一个零点D .()f x 在(,)π-+∞上有两个零点 【答案】ABD 【分析】根据函数()f x 求得()'f x 与()f x '',再根据()0f x ''>在(,)π-+∞恒成立,确定()'f x 在(,)π-+∞上单调递增,及(0,)x ∈+∞()0f x '>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',从而判断A ,B 选项正确;再据此判断函数()f x 的单调性,从而判断零点个数.【详解】由已知()sin ,(,)x f e x x x π∈-=+∞+得()cos x f x e x '=+,()sin xf x e x ''=-,(,)x π∈-+∞,()0f x ''>恒成立,()'f x 在(,)π-+∞上单调递增,又3423()0,()0,(0)20422f e f e f ππππ--'''-=-<-=>=>(0,)x ∴∈+∞时()(0)0f x f ''>>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',即00cos x e x =-,所以()f x 在(0,)+∞上是增函数,且()f x 存在唯一极小值点0x ,故A,B 选项正确. 且()f x 在0(,)x π-单调递减,0(,)x +∞单调递增,又()00f eππ--=+>,000000()sin sin cos )04x f x e x x x x π=+=-=-<,(0)10=>f ,所以()f x 在(,)π-+∞上有两个零点,故D 选项正确,C 选项错误.故选:ABD. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.5.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln xf x x=,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3ex y =D .1122y x =- 【答案】AB 【分析】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解. 【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点, 由函数()ln x f x x =,可得()21ln xf x x -'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方; 又由函数()1x g x e-=,可得()1e0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =, 此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合; 设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为021ln x k x -=, 又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x =,所以12k e ==,可得切线方程为2x y e =, 又由直线3xy e=与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1,明显不满足,排除D. 故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.6.关于函数()sin x f x e a x =+,(),x π∈-+∞,下列结论正确的有( ) A .当1a =时,()f x 在()0,(0)f 处的切线方程为210x y -+= B .当1a =时,()f x 存在惟一极小值点0x C .对任意0a >,()f x 在(),π-+∞上均存在零点 D .存在0a <,()f x 在(),π-+∞有且只有一个零点 【答案】ABD 【分析】逐一验证,选项A ,通过切点求切线,再通过点斜式写出切线方程;选项B ,通过导数求出函数极值并判断极值范围,选项C 、D ,通过构造函数,将零点问题转化判断函数的交点问题. 【详解】对于A :当1a =时,()sin xf x e x =+,(),x π∈-+∞,所以(0)1f =,故切点为()0,1,()cos x f x e x '=+,所以切线斜(0)2k f '==,故直线方程为()120y x -=-,即切线方程为:210x y -+=,故选项A 正确; 对于B :当1a =时,()sin xf x e x =+,(),x π∈-+∞,()cos x f x e x '=+,()()sin 0,,xf x e x x π''=->∈-+∞恒成立,所以()f x '单调递增,又202f π⎛⎫'=>⎪⎝⎭,334433cos 0442f e e ππππ--⎛⎫⎛⎫'-=+-=-< ⎪ ⎪⎝⎭⎝⎭, 所以存在03,42x ππ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=, 即00cos 0xe x +=,则在()0,x π-上,()0f x '<,()f x 单调递减,在()0,x +∞上,()0f x '>,()f x 单调递增, 所以存在惟一极小值点0x ,故选项B 正确;对于 C 、D :()sin xf x e a x =+,(),x π∈-+∞,令()sin 0xf x e a x =+=得:1sin x x a e-=, 则令sin ()xxF x e =,(),x π∈-+∞,)cos sin 4()x x x x x F x e e π--'==,令()0F x '=,得:4x k ππ=+,1k ≥-,k Z ∈,由函数)4y x π=-图象性质知:52,244x k k ππππ⎛⎫∈++ ⎪⎝⎭)04x π->,sin ()x x F x e =单调递减,52,2244x k k πππππ⎛⎫∈+++ ⎪⎝⎭)04x π-<,sin ()x x F x e =单调递增,所以当524x k ππ=+,1k ≥-,k Z ∈时,()F x 取得极小值, 即当35,,44x ππ=-时,()F x 取得极小值, 又354435sin sin 44eeππππ-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭<<,即3544F F ππ⎛⎫⎛⎫-<< ⎪⎪⎝⎭⎝⎭,又因为在3,4ππ⎛⎫-- ⎪⎝⎭,sin ()x x F x e =单调递减,所以343()42F x F e ππ⎛⎫≥=- ⎪⎝⎭, 所以24x k ππ=+,0k ≥,k Z ∈时,()F x 取得极大值,即当944x ππ=、, 时,()F x 取得极大值. 又9449sin sin 44e e ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<<,即()442F x F eππ⎛⎫≤=⎪⎝⎭,当(),x π∈-+∞时,344()22e F x e ππ-≤≤,所以当3412e a π-<-,即34a e π>时, ()f x 在(),π-+∞上无零点,所以选项C 不正确;当341e a π-=时,即4a e π=时, 1=-y a 与sin x xy e=的图象只有一个交点,即存在0a <,()f x 在(),π-+∞有且只有一个零点, 故选项D 正确. 故选:ABD 【点睛】本题考查函数的极值、切线、零点的问题,属于较难题.7.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x =+->,分析其单调性和最值,由此确定出1ln 10nna a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确;B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n na a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a cb d -+-的值可能是( ) A .7 B .8C .9D .10【答案】BCD 【分析】由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=-由1121cd c d -=⇒=-+-,令()2g x x =-+ 则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y 由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD. 【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
高考数学二轮复习导数及其应用多选题测试试题含答案

高考数学二轮复习导数及其应用多选题测试试题含答案一、导数及其应用多选题1.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”; C 中,由函数()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.2.已知函数()21xx x f x e +-=,则下列结论正确的是( )A .函数()f x 存在两个不同的零点B .函数()f x 既存在极大值又存在极小值C .当0e k -<<时,方程()f x k =有且只有两个实根D .若[),x t ∈+∞时,()2max 5f x e=,则t 的最小值为2 【答案】ABC 【分析】首先求函数的导数,利用导数分析函数的单调性和极值以及函数的图象,最后直接判断选项. 【详解】对于A .2()010f x x x =⇒+-=,解得12x -±=,所以A 正确; 对于B .22(1)(2)()x xx x x x f x e e--+-=-=-', 当()0f x '>时,12x -<<,当()0f x '<时,1x <-或2x >,所以(,1),(2,)-∞-+∞是函数的单调递减区间,(1,2)-是函数的单调递增区间, 所以(1)f -是函数的极小值,(2)f 是函数的极大值,所以B 正确.对于C .当x →+∞时,0y →,根据B 可知,函数的最小值是(1)f e -=-,再根据单调性可知,当0e k -<<时,方程()f x k =有且只有两个实根,所以C 正确;对于D :由图象可知,t 的最大值是2,所以D 不正确. 故选:ABC. 【点睛】易错点点睛:本题考查了导数分析函数的单调性,极值点,以及函数的图象,首先求函数的导数,令导数为0,判断零点两侧的正负,得到函数的单调性,本题易错的地方是(2,)+∞是函数的单调递减区间,但当x →+∞时,0y →,所以图象是无限接近轴,如果这里判断错了,那选项容易判断错了.3.函数ln ()xf x x=,则下列说法正确的是( ) A .(2)(3)f f >B .ln eππ>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25xyk ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<,且()f x 在(0,)e 单调递增ln f f e ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ====252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.4.已知函数()3sin f x x x ax =+-,则下列结论正确的是( )A .()f x 是奇函数B .当3a =-时,函数()f x 恰有两个零点C .若()f x 为增函数,则1a ≤D .当3a =时,函数()f x 恰有两个极值点【答案】ACD 【分析】利用函数奇偶性的定义可判断A 选项的正误;利用导数分析函数()f x 的单调性,可判断B 选项的正误;利用导数与函数单调性的关系可判断C 选项的正误;利用导数以及零点存在定理可判断D 选项的正误. 【详解】对于A 选项,函数()3sin f x x x ax =+-的定义域为R ,()()()()33sin sin f x x x ax x x ax f x -=-+-+=--+=-,函数()f x 为奇函数,A 选项正确;对于B 选项,当3a =-时,()3sin 3f x x x x =++,则()2cos 330f x x x '=++>,所以,函数()f x 在R 上为增函数,又()00f =,所以,函数()f x 有且只有一个零点,B 选项错误;对于C 选项,()2cos 3f x x x a '=+-,由于函数()f x 为增函数,则()0f x '≥对任意的x ∈R 恒成立,即23cos a x x ≤+. 令()23cos g x x x =+,则()6sin g x x x '=-,则()6cos 0g x x ''=->,所以,函数()g x '在R 上为增函数,当0x <时,()()00g x g ''<=,此时,函数()g x 为减函数;当0x >时,()()00g x g ''>=,此时,函数()g x 为增函数. 所以,()()min 01g x g ==,1a ∴≤,C 选项正确;对于D 选项,当3a =时,()3sin 3f x x x x =+-,则()2cos 33f x x x '=+-.由B 选项可知,函数()f x '在(),0-∞上单调递减,在()0,∞+上单调递增,()()11cos10f f ''-==>,()020f '=-<,由零点存在定理可知,函数()f x '在()1,0-和()0,1上都存在一个零点, 因此,当3a =时,函数()f x 有两个极值点,D 选项正确. 故选:ACD. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在极值点;(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.5.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<--【答案】ACD 【分析】由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】 因为当0x >时,()'()1fx f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1xf xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增,所以()()4>3g g ,即43(4)+1(3)+1>f f e e,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e ,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确;()()4>1g g ,即4(4)+1(1)+1>f f e e,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确,故选:ACD. 【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.6.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( )A .()()()m x f x g x =-在0x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1-D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断.【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x +'∴=+=>,当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误; 对于D ,函数()f x 和()h x的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线方程为(2e y k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2ey =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x 存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.7.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()xh x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0xe f x e ex-'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.8.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f(x)=t1∈(0,1),此时x只有1个解,即函数y=f[f(x)]+1有1个零点.故选:CD.【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.。
2021年高考数学二轮复习 函数与导数解答题专题训练(含解析)

1.(xx·皖南八校联考)已知函数f (x )=e x (ax 2-2x +2),其中a >0.(1)若曲线y =f (x )在x =2处的切线与直线x +e 2y -1=0垂直,求实数a 的值; (2)讨论f (x )的单调性.解 f ′(x )=e x [ax 2+(2a -2)x ](a >0). (1)由题意得f ′(2)·⎝ ⎛⎭⎪⎫-1e 2=-1,解得a =58.(2)令f ′(x )=0,得x 1=0,x 2=2-2aa.①当0<a <1时,f (x )的增区间为(-∞,0),⎝ ⎛⎭⎪⎫2-2a a ,+∞,减区间为⎝ ⎛⎭⎪⎫0,2-2a a ;②当a =1时,f (x )在(-∞,+∞)内单调递增;③当a >1时,f (x )的增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a ,(0,+∞),减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 2.(xx·云南二模)已知f (x )=e x (x 3+mx 2-2x +2). (1)假设m =-2,求f (x )的极大值与极小值;(2)是否存在实数m ,使f (x )在[-2,-1]上单调递增?如果存在,求实数m 的取值范围;如果不存在,请说明理由.解 (1)当m =-2时,f (x )=e x (x 3-2x 2-2x +2)的定义域为(-∞,+∞). ∵f ′(x )=e x (x 3-2x 2-2x +2)+e x (3x 2-4x -2) =x e x (x 2+x -6)=(x +3)x (x -2)e x ,∴当x ∈(-∞,-3)或x ∈(0,2)时,f ′(x )<0; 当x ∈(-3,0)或x ∈(2,+∞)时,f ′(x )>0;f ′(-3)=f ′(0)=f ′(2)=0,∴f (x )在(-∞,-3)上单调递减,在(-3,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,∴当x =-3或x =2时,f (x )取得极小值; 当x =0时,f (x )取得极大值,∴f (x )极小值=f (-3)=-37e -3,f (x )极小值=f (2)=-2e 2,f (x )极大值=f (0)=2. (2)f ′(x )=e x (x 3+mx 2-2x +2)+e x (3x 2+2mx -2)=x e x [x 2+(m +3)x +2m -2]. ∵f (x )在[-2,-1]上单调递增, ∴当x ∈[-2,-1]时,f ′(x )≥0. 又当x ∈[-2,-1]时,x e x <0,∴当x ∈[-2,-1]时,x 2+(m +3)x +2m -2≤0, ∴⎩⎨⎧-22-2m +3+2m -2≤0,-12-m +3+2m -2≤0,解得m ≤4,∴当m ∈(-∞,4]时,f (x )在[-2,-1]上单调递增. 3.(文)(xx·山西四校联考)已知函数f (x )=ax 2+x -x ln x . (1)若a =0,求函数f (x )的单调区间;(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.解(1)当a=0时,f(x)=x-x ln x,函数定义域为(0,+∞).f′(x)=-ln x,由-ln x=0,得x=1.当x∈(0,1)时,f′(x)>0,f(x)在(0,1)上是增函数;当x∈(1,+∞)时,f′(x)<0,f(x)在(1,+∞)上是减函数.(2)由f(1)=2,得a+1=2,∴a=1,∴f(x)=x2+x-x ln x,由f(x)≥bx2+2x,得(1-b)x-1≥ln x.∵x>0,∴b≤1-1x-ln xx恒成立.令g(x)=1-1x-ln xx,可得g′(x)=ln xx2,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴g(x)min=g(1)=0,∴b的取值范围是(-∞,0].3.(理)(文)4.(xx·广州调研)已知f (x )是二次函数,不等式f (x )<0的解集是(0,5),且f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行.(1)求f (x )的解析式;(2)是否存在t ∈N *,使得方程f (x )+37x=0在区间(t ,t +1)内有两个不相等的实数根?若存在,求出t 的值;若不存在,说明理由.解 (1)∵f (x )是二次函数, 不等式f (x )<0的解集是(0,5), ∴可设f (x )=ax (x -5),a >0. ∴f ′(x )=2ax -5a .∵函数f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行, ∴f ′(1)=-6.∴2a -5a =-6,解得a =2. ∴f (x )=2x (x -5)=2x 2-10x .(2)由(1)知,方程f (x )+37x=0等价于方程2x 3-10x 2+37=0.设h (x )=2x 3-10x 2+37,则h ′(x )=6x 2-20x =2x (3x -10).当x ∈⎝ ⎛⎭⎪⎫0,103时,h ′(x )<0,函数h (x )在⎝ ⎛⎭⎪⎫0,103上单调递减;当x ∈⎝ ⎛⎭⎪⎫103,+∞时,h ′(x )>0,函数h (x )在⎝ ⎛⎭⎪⎫103,+∞上单调递增.∵h (3)=1>0,h ⎝ ⎛⎭⎪⎫103=-127<0,h (4)=5>0,∴方程h (x )=0在区间⎝ ⎛⎭⎪⎫3,103,⎝ ⎛⎭⎪⎫103,4内各有一个实数根,在区间(0,3),(4,+∞)内没有实数根.∴存在唯一的正整数t =3,使得方程f (x )+37x=0在区间(t ,t +1)内有且只有两个不相等的实数根.4.(理)(文)5.(xx·辽宁五校联考)已知函数f (x )=x ln x . (1)求函数f (x )的单调区间;(2)证明:对任意的t >0,存在唯一的实数m 使t =f (m );(3)设(2)中所确定的m 关于t 的函数为m =g (t ),证明:当t >e 时,有710<ln g tln t<1.解 (1)∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0), 令f ′(x )=0,得x =1e.∴当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,此时f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增.(2)当0<x ≤1时,f (x )≤0,又t>0,令h(x)=f(x)-t,x∈[1,+∞),由(1)知h(x)在区间[1,+∞)上为增函数,h(1)=-t<0,h(e t)=t(e t-1)>0,∴存在唯一的实数m,使t=f(m)成立.(3)∵m=g(t)且由(2)知t=f(m),t>0,当t>e时,若m=g(t)≤e,则由f(m)的单调性有t=f(m)≤f(e)=e,矛盾,∴m>e.又ln g tln t=ln mln f m=ln mln m ln m=ln mln m+ln ln m=uu+ln u,其中u=ln m,u>1,要使710<ln g tln t<1成立,只需0<ln u<3 7 u.令F(u)=ln u-37u,u>1,F′(u)=1u-37,当1<u<73时,F′(u)>0,F(u)单调递增;当u>73时,F′(u)<0,F(u)单调递减.∴对u >1,F (u )≤F ⎝ ⎛⎭⎪⎫73<0,即ln u <37u 成立.综上,当t >e 时,710<ln g tln t<1成立.5.(理)(xx·浙江考试院抽测)已知a 为给定的正实数,m 为实数,函数f (x )=ax 3-3(m +a )x 2+12mx +1.(1)若f (x )在(0,3)上无极值点,求m 的值;(2)若存在x 0∈(0,3),使得f (x 0)是f (x )在[0,3]上的最值,求实数m 的取值范围. 解 (1)由题意得f ′(x )=3ax 2-6(m +a )x +12m =3(x -2)(ax -2m ), 由于f (x )在(0,3)上无极值点, 故2ma=2,所以m =a .(2)由于f ′(x )=3(x -2)(ax -2m ),故①当2ma≤0或2ma≥3,即m ≤0或m ≥32a 时,取x 0=2即满足题意. 此时m ≤0或m ≥32a .②当0<2ma<2,即0<m <a 时,列表如下:x 0⎝ ⎛⎭⎪⎫0,2m a2ma⎝ ⎛⎭⎪⎫2m a ,2 2 (2,3) 3f ′(x )+ 0 - 0 +f (x )1 单调递增极大值单调递减极小值单调递增9m +1故f (2)≤f (0)或f ⎝ ⎛⎭⎪⎫m a ≥f (3),即-4a +12m +1≤1或-4m 3+12m 2aa 2+1≥9m +1,即3m ≤a 或-m 2m -3a2a 2≥0,即m ≤a 3或m ≤0或m =3a 2.此时0<m ≤a3.③当2<2m a <3,即a <m <3a2时,列表如下:x 0 (0,2) 2⎝ ⎛⎭⎪⎫2,2m a2ma⎝ ⎛⎭⎪⎫2m a ,3 3f ′(x )+ 0 - 0 +f (x )1 单调递增极大值单调递减极小值单调递增9m +1故f ⎝ ⎛⎭⎪⎫2m a ≤f (0)或f (2)≥f (3),即-4m 3+12m 2a a2+1≤1或-4a +12m +1≥9m +1, 即-4m 2m -3a a2≤0或3m ≥4a ,即m =0或m ≥3a 或m ≥4a 3.此时4a 3≤m <3a 2.综上所述,实数m 的取值范围是m ≤a 3或m ≥4a3.40806 9F66 齦n29197 720D 爍N39551 9A7F 驿^35617 8B21 謡42H26687 683F 栿298137475 瑵21691 54BB 咻U。
2021年高考数学二轮复习 导数的综合应用专题检测(含解析)

2021年高考数学二轮复习导数的综合应用专题检测(含解析)1.已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是________.答案②③解析f(x)=x3-6x2+9x-abc,a<b<c,f′(x)=3x2-12x+9=3(x2-4x+3)=3(x-1)(x-3),函数f(x)和导函数f′(x)的大致图象如图所示:由图得f(1)=1-6+9-abc=4-abc>0,f(3)=27-54+27-abc=-abc<0,且f(0)=-abc=f(3)<0,所以f(0)f(1)<0,f(0)f(3)>0.2.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为________.答案③解析根据f′(x)的符号,f(x)图象应该是先下降后上升,最后下降,排除①④;从适合f′(x )=0的点可以排除②.3.已知a ≤1-x x +ln x 对任意x ∈[12,2]恒成立,则a 的最大值为________.答案 0解析 设f (x )=1-x x +ln x ,则f ′(x )=-x +x -1x 2+1x =x -1x 2.当x ∈[12,1)时,f ′(x )<0,故函数f (x )在[12,1)上单调递减;当x ∈(1,2]时,f ′(x )>0,故函数f (x )在(1,2]上单调递增,∴f (x )min =f (1)=0,∴a ≤0,即a 的最大值为0.4.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x+1的解集为________. 答案 (0,+∞)解析 构造函数g (x )=e x ·f (x )-e x, 因为g ′(x )=e x ·f (x )+e x ·f ′(x )-e x=e x [f (x )+f ′(x )]-e x >e x -e x=0,所以g (x )=e x ·f (x )-e x为R 上的增函数. 又因为g (0)=e 0·f (0)-e 0=1,所以原不等式转化为g (x )>g (0),解得x >0.5.关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________. 答案 (-4,0)解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可, 又f ′(x )=3x 2-6x =3x (x -2), 令f ′(x )=0,得x 1=0,x 2=2. 当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.所以当x =0时,f (x )取得极大值, 即f (0)=-a ,当x =2时,f (x )取得极小值,即f (2)=-4-a .所以⎩⎪⎨⎪⎧-a >0,-4-a <0,解得-4<a <0.6.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ′(x )的图象如图,下列关于函数f (x )的四个命题:①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中真命题的个数是________. 答案 1解析 首先排除①,不能确定周期性;f (x )在[0,2]上时,f ′(x )<0,故②正确;当x ∈[-1,t ]时,f (x )的最大值是2,结合原函数的单调性知0≤t ≤5,所以排除③;不能确定在x =2时函数值和a 的大小,故不能确定几个零点,故④错误. 7.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是________. 答案 (-∞,2ln 2-2]解析 函数f (x )=e x-2x +a 有零点,即方程e x-2x +a =0有实根,即函数g (x )=2x -e x,y =a 有交点,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在(-∞,ln 2)上递增,在(ln 2,+∞)上递减,因而g (x )=2x -e x的值域为(-∞,2ln 2-2],所以要使函数g (x )=2x -e x,y =a 有交点,只需a ≤2ln 2-2即可.8.某名牌电动自行车的耗电量y 与速度x 之间有如下关系:y =13x 3-392x 2-40x (x >0),为使耗电量最小,则速度应定为________. 答案 40解析 ∵y ′=x 2-39x -40,令y ′=0. 即x 2-39x -40=0,解得x =40或x =-1(舍). 当x >40时,y ′>0,当0<x <40时,y ′<0, 所以当x =40时,y 最小.9.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为________. 答案 2∶1解析 设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝ ⎛⎭⎪⎫6-x 2π2x =14π(x 3-12x 2V ′=34π(x -2)(x -6).当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1.10.(xx·重庆)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元. 所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意得200πrh +160πr 2=12 000π,所以h =15r(300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因为r >0,又由h >0可得r <53, 故函数V (r )的定义域为(0,53).(2)因为V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.11.(xx·江苏)已知函数f (x )=e x +e -x,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较ea -1与ae-1的大小,并证明你的结论.(1)证明 因为对任意x ∈R ,都有f (-x )=e -x+e-(-x )所以f (x )是R 上的偶函数.(2)解 由条件知m (e x +e -x -1)≤e -x-1在(0,+∞)上恒成立. 令t =e x(x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.因为t -1+1t -1+1≥2(t -1)·1t -1+1=3, 所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝⎛⎦⎥⎤-∞,-13. (3)解 令函数g (x )=e x +1ex -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a . 由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立, 当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x.令h ′(x )=0,得x =e -1. 当x ∈(0,e -1)时,h ′(x )<0, 故h (x )是(0,e -1)上的单调减函数; 当x ∈(e -1,+∞)时,h ′(x )>0, 故h (x )是(e -1,+∞)上的单调增函数,所以h (x )在(0,+∞)上的最小值是h (e -1). 注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0;当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0. 所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时, h (a )<0,即a -1>(e -1)ln a ,从而ea -1<ae -1;②当a =e 时,e a -1=ae -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故ea -1>ae -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,ea -1=ae -1;当a ∈(e ,+∞)时,e a -1>ae -1.12.(xx·陕西)已知函数f (x )=e x,x ∈R .(1)求f (x )的反函数的图象在点(1,0)处的切线方程;(2)证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点;(3)设a <b ,比较f ⎝ ⎛⎭⎪⎫a +b 2与f (b )-f (a )b -a 的大小,并说明理由.(1)解 f (x )的反函数为g (x )=ln x ,设所求切线的斜率为k ,∵g ′(x )=1x,∴k =g ′(1)=1.于是在点(1,0)处的切线方程为y =x -1.(2)证明 方法一 曲线y =e x 与y =12x 2+x +1公共点的个数等于函数φ(x )=e x-12x 2-x -1零点的个数.∵φ(0)=1-1=0,∴φ(x )存在零点x =0.又φ′(x )=e x-x -1,令h (x )=φ′(x )=e x-x -1, 则h ′(x )=e x -1,当x <0时,h ′(x )<0,∴φ′(x )在(-∞,0)上单调递减; 当x >0时,h ′(x )>0,∴φ′(x )在(0,+∞)上单调递增. ∴φ′(x )在x =0处有唯一的极小值φ′(0)=0, 即φ′(x )在R 上的最小值为φ′(0)=0. ∴φ′(x )≥0(仅当x =0时等号成立), ∴φ(x )在R 上是单调递增的,∴φ(x )在R 上有唯一的零点,故曲线y =f (x )与y =12x 2+x +1有唯一的公共点.方法二 ∵e x>0,12x 2+x +1>0,∴曲线y =e x与y =12x 2+x +1公共点的个数等于曲线y =12x 2+x +1ex与y =1公共点的个数, 设φ(x )=12x 2+x +1ex,则φ(0)=1,即x =0时,两曲线有公共点. 又φ′(x )=(x +1)e x -(12x 2+x +1)e xe 2x =-12x2e x ≤0(仅当x =0时等号成立),∴φ(x )在R 上单调递减,∴φ(x )与y =1有唯一的公共点, 故曲线y =f (x )与y =12x 2+x +1有唯一的公共点.(3)解 f (b )-f (a )b -a -f ⎝ ⎛⎭⎪⎫a +b 2=e b -e ab -a-e =e b -e a-b e +a e b -a =e b -a[e -e -(b -a )].设函数u (x )=e x-1e x -2x (x ≥0),则u ′(x )=e x+1ex -2≥2e x·1ex -2=0,∴u ′(x )≥0(仅当x =0时等号成立), ∴u (x )单调递增.当x >0时,u (x )>u (0)=0.令x =b -a 2,则e -e -(b -a )>0,∴f (b )-f (a )b -a >f ⎝ ⎛⎭⎪⎫a +b 2.26799 68AF 梯36006 8CA6 貦 32603 7F5B 罛<d^r29839 748F 璏#?27969 6D41 流>31179 79CB 秋37876 93F4 鏴。
高考数学二轮复习提高题专题复习导数及其应用多选题练习题及答案

高考数学二轮复习提高题专题复习导数及其应用多选题练习题及答案一、导数及其应用多选题1.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.2.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<--【答案】ACD 【分析】由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】 因为当0x >时,()'()1fx f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1xf xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43(4)+1(3)+1>f f e e ,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e ,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确;()()4>1g g ,即4(4)+1(1)+1>f f e e,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确, 故选:ACD. 【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.3.关于函数()sin ,(,)x f e x x x π∈-=+∞+,下列结论正确的有( ) A .()f x 在(0,)+∞上是增函数B .()f x 存在唯一极小值点0xC .()f x 在(,)π-+∞上有一个零点D .()f x 在(,)π-+∞上有两个零点 【答案】ABD 【分析】根据函数()f x 求得()'f x 与()f x '',再根据()0f x ''>在(,)π-+∞恒成立,确定()'f x 在(,)π-+∞上单调递增,及(0,)x ∈+∞()0f x '>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',从而判断A ,B 选项正确;再据此判断函数()f x 的单调性,从而判断零点个数.【详解】由已知()sin ,(,)x f e x x x π∈-=+∞+得()cos x f x e x '=+,()sin xf x e x ''=-,(,)x π∈-+∞,()0f x ''>恒成立,()'f x 在(,)π-+∞上单调递增,又3423()0,()0,(0)20422f e f e f ππππ--'''-=-<-=>=> (0,)x ∴∈+∞时()(0)0f x f ''>>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',即00cos x e x =-,所以()f x 在(0,)+∞上是增函数,且()f x 存在唯一极小值点0x ,故A,B 选项正确. 且()f x 在0(,)x π-单调递减,0(,)x +∞单调递增, 又()00f eππ--=+>,000000()sin sin cos )04x f x e x x x x π=+=-=-<,(0)10=>f ,所以()f x 在(,)π-+∞上有两个零点,故D 选项正确,C 选项错误.故选:ABD. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<-- 当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >; A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小. 故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<, 1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.5.某同学对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的是( )A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1x xx f x e e -=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D. 【详解】对于选项A :函数()sin e e x xxf x -=-的定义域为{}|0x x ≠,且()()sin sin x x x xx xf x f x e e e e ----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1xxx f x e e-=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee -----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,,()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.6.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1- B .0 C .1 D .2【答案】CD 【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出. 【详解】解:∵函数()()()221x f x x e a x =-+-, ∴()()()()()12112xx f x x e a x x e a '=-+-=-+,①若0a =,那么()()0202xf x x e x =⇔-=⇔=,函数()f x 只有唯一的零点2,不合题意; ②若0a >,那么20x e a +>恒成立, 当1x <时,()0f x '<,此时函数为减函数; 当1x >时,()0f x '>,此时函数为增函数; 此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+-()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <,则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意; ③若02ea -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()(1)20xf x x e a '=-+>恒成立,故()f x 单调递增,故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦(){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意; ④若2ea =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若2ea <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()1ln 2x a <<-时,10x ->,()ln 2220a x e a e a -+<+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当()ln 2x a >-时,10x ->,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故当1x =时,函数取极大值,由()10f e =-<得:函数()f x 在R 上至多存在一个零点,不合题意; 综上所述,a 的取值范围为()0,∞+, 故选:CD. 【点睛】本题考查利用导数研究函数的零点问题,属于较难题.7.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x -'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误;对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.8.在单位圆O :221x y +=上任取一点()P x y ,,圆O 与x 轴正向的交点是A ,将OA 绕原点O 旋转到OP 所成的角记为θ,若x ,y 关于θ的表达式分别为()x fθ=,()y g θ=,则下列说法正确的是( )A .()x f θ=是偶函数,()y g θ=是奇函数;B .()x f θ=在()0,π上为减函数,()y g θ=在()0,π上为增函数;C .()()1fg θθ+≥在02πθ⎛⎤∈⎥⎝⎦,上恒成立;D .函数()()22t f g θθ=+的最大值为2.【答案】ACD 【分析】依据三角函数的基本概念可知cos x θ=,sin y θ=,根据三角函数的奇偶性和单调性可判断A 、B ;根据辅助角公式知()()4f g πθθθ⎛⎫+=+ ⎪⎝⎭,再利用三角函数求值域可判断C ;对于D ,2cos sin2t θθ=+,先对函数t 求导,从而可知函数t 的单调性,进而可得当1sin 2θ=,cos 2θ=时,函数t 取得最大值,结合正弦的二倍角公式,代入进行运算即可得解. 【详解】由题意,根据三角函数的定义可知,x cos θ=,y sin θ=, 对于A ,函数()cos fθθ=是偶函数,()sin g θθ=是奇函数,故A 正确;对于B ,由正弦,余弦函数的基本性质可知,函数()cos f θθ=在()0,π上为减函数,函数()sin g θθ=在0,2π⎛⎫⎪⎝⎭为增函数,在,2ππ⎛⎫⎪⎝⎭为减函数,故B 错误; 对于C ,当0θπ⎛⎤∈ ⎥2⎝⎦,时,3,444πππθ⎛⎤+∈ ⎥⎝⎦()()cos sin 4f g πθθθθθ⎛⎫+=+=+∈ ⎪⎝⎭,故C 正确;对于D ,函数()()222cos sin2t f g θθθθ=+=+,求导22sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)t θθθθθθ'=-+=-+-=--+, 令0t '>,则11sin 2θ-<<;令0t '<,则1sin 12θ<<, ∴函数t 在06,π⎡⎤⎢⎥⎣⎦和5,26ππ⎡⎤⎢⎥⎣⎦上单调递增,在5,66ππ⎛⎫ ⎪⎝⎭上单调递减,当6πθ=即1sin 2θ=,cos 2θ=时,函数取得极大值1222t =⨯= 又当2θπ=即sin 0θ=,cos 1θ=时,212012t =⨯+⨯⨯=,所以函数()()22t f g θθ=+取得最大值2,故D 正确.故选:ACD.【点睛】方法点睛:考查三角函数的值域时,常用的方法:(1)将函数化简整理为()()sin f x A x ωϕ=+,再利用三角函数性质求值域; (2)利用导数研究三角函数的单调区间,从而求出函数的最值.。
2021年高考数学二轮复习 导数及其应用专题训练(含解析)

2021年高考数学二轮复习导数及其应用专题训练(含解析)一、选择题1.函数y=f(x)的图象在点x=5处的切线方程是y=-x+8,则f(5)+f′(5)等于( )A.1 B.2C.0 D.1 2解析由题意知f(5)=-5+8=3,f′(5)=-1,故f(5)+f′(5)=2.故选B.答案B2.函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为( )解析x<0时,f(x)为增函数,所以导函数在x<0时大于零;x>0时,原函数先增后减再增,所以导函数先大于零再小于零之后又大于零.故选D.答案 D3.(理)(xx·山东淄博一模)若函数f (x )的导函数在区间(a ,b )上的图象关于直线x =a +b2对称,则函数y =f (x )在区间[a ,b ]上的图象可能是( )A .①④B .②④C .②③D .③④解析 因为函数y =f (x )的导函数在区间(a ,b )上的图象关于直线x =a +b2对称,即导函数要么图象无增减性,要么在直线x =a +b2两侧单调性相反.由图①得,在a 处切线斜率最小,在b 处切线斜率最大,故导函数图象不关于直线x =a +b2对称,故①不成立;由图②得,在a 处切线斜率最大,在b 处切线斜率最小,故导函数图象不关于直线x =a +b2对称,故②不成立;由图③得,原函数为一次函数,其导函数为常数函数,故导函数图象关于直线x =a +b2对称,③成立;由图④得,原函数有一对称中心,在直线x =a +b2与原函数图象的交点处,故导函数图象关于直线x =a +b2对称,④成立;所以满足要求的有③④,故选D.答案 D3.(文)函数f (x )=3x 2+ln x -2x 的极值点的个数是( ) A .0 B .1 C .2D .无数个解析 函数定义域为(0,+∞), 且f ′(x )=6x +1x -2=6x 2-2x +1x,由于x >0,g (x )=6x 2-2x +1中Δ=-20<0, ∴g (x )>0恒成立, 故f ′(x )>0恒成立,即f (x )在定义域上单调递增,无极值点. 答案 A4.(xx·重庆七校联盟联考)已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1,f (1))处切线的斜率是( )A .2B .1C .3D .-2解析 由f (x )=2f (2-x )-x 2+8x -8两边求导得,f ′(x )=2f ′(2-x )×(-1)-2x +8.令x =1得f ′(1)=2f ′(1)×(-1)-2+8⇒f ′(1)=2,∴k =2.答案 A5.(xx·云南昆明一模)已知函数f (x )=ln x +1ln x,则下列结论中正确的是( ) A .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是增函数 B .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是减函数 C .∀x >0,且x ≠1,f (x )≥2D .∃x 0>0,f (x )在(x 0,+∞)上是增函数解析 由已知f ′(x )=1x -1x ln 2x =ln 2x -1x ln 2x (x >0,且x ≠1),令f ′(x )=0,得x =e 或x =1e.当x ∈⎝⎛⎭⎪⎫0,1e 时,f ′(x )>0;当x ∈⎝⎛⎭⎪⎫1e,1∪(1,e)时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.故x =1e和x =e 分别是函数f (x )的极大值点和极小值点,故函数f (x )在⎝ ⎛⎭⎪⎫1e,1和(1,e)内单调递减,所以A 、B 错;当0<x <1时,ln x <0,f (x )<0,故C 错;若x 0≥e,f (x )在(x 0,+∞)上是增函数,D 正确.答案 D6.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )解析 设F (x )=f x x ,则F ′(x )=xf ′x -f xx 2≤0, 故F (x )=f xx为减函数. 由0<a <b ,有f a a ≥f bb⇒af (b )≤bf (a ),故选A. 答案 A 二、填空题7.(理)(xx·广东卷)曲线y =e -5x+2在点(0,3)处的切线方程为________.解析 y ′=-5e-5x,∴y ′|x =0=-5,∴所求切线方程为y -3=-5x ,即5x +y -3=0.答案 5x +y -3=07.(文)已知函数f (x )=x e x,则f ′(x )=________;函数f (x )的图象在点(0,f (0))处的切线方程为________.解析 ∵f ′(x )=1·e x +x ·e x =(1+x )e x;f ′(0)=1,f (0)=0,因此f (x )在点(0,f (0))处的切线方程为y -0=x -0,即y =x .答案 (1+x )e xy =x8.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 解析 过点P 作y =x -2的平行直线,且与曲线y =x 2-ln x 相切. 设P (x 0,x 20-ln x 0),则有k =y ′|x =x 0=2x 0-1x 0.∴2x 0-1x 0=1.∴x 0=1或x 0=-12(舍去).∴P (1,1),∴d =|1-1-2|1+1= 2. 答案29.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2],则f (-1)的取值范围是________.解析 由于f ′(x )=3x 2+4bx +c ,据题意方程3x 2+4bx +c =0有两个根x 1,x 2,且x 1∈[-2,-1],x 2∈[1,2],令g (x )=3x 2+4bx +c ,结合二次函数图象可得⎩⎪⎨⎪⎧g -2=12-8b +c ≥0,g -1=3-4b +c ≤0,g 1=3+4b +c ≤0,g2=12+8b +c ≥0,此即为关于点(b ,c )的线性约束条件,作出其对应的平面区域,f (-1)=2b -c ,问题转化为在上述线性约束条件下确定目标函数f (-1)=2b -c 的最值问题,由线性规划易知3≤f (-1)≤12.答案 [3,12] 三、解答题10.已知函数f (x )=4x 3+3tx 2-6t 2x +t -1,x ∈R ,其中t ∈R . (1)当t =1时,求曲线y =f (x )在点(0,f (0))处的切线方程; (2)t ≠0时,求f (x )的单调区间.解 (1)当t =1时,f (x )=4x 3+3x 2-6x ,f (0)=0,f ′(x )=12x 2+6x -6,f ′(0)=-6, 所以曲线y =f (x )在点(0,f (0))处的切线方程为y =-6x . (2)f ′(x )=12x 2+6tx -6t 2.令f ′(x )=0,解得x =-t 或x =t2.因为t ≠0,以下分两种情况讨论:①若t <0,则t2<-t .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,2,(-t ,+∞);f (x )的单调递减区间是⎝ ⎛⎭⎪⎫2,-t .②若t >0,则-t <t2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是(-∞,-t ),⎝ ⎛⎭⎪⎫2,+∞;f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-t ,t 2.11.(理)(xx·福建卷)已知函数f (x )=e x-ax (a 为常数)的图象与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x. 解 (1)由f (x )=e x -ax ,得f ′(x )=e x-a . 又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x-2. 令f ′(x )=0,得x =ln2.当x <ln2时,f ′(x )<0,f (x )单调递减; 当x >ln2时,f ′(x )>0,f (x )单调递增.所以当x =ln2时,f (x )取得极小值,且极小值为f (ln2)=e ln2-2ln2=2-ln4,f (x )无极大值. (2)令g (x )=e x -x 2,则g ′(x )=e x-2x . 由(1)得g ′(x )=f (x )≥f (ln2)>0, 故g (x )在R 上单调递增,又g (0)=1>0, 因此,当x >0时,g (x )>g (0)>0,即x 2<e x.(3)①若c≥1,则e x≤c e x.又由(2)知,当x>0时,x2<e x.所以当x>0时,x2<c e x.取x0=0,当x∈(x0,+∞)时,恒有x2<c e x.②若0<c<1,令k=1c>1,要使不等式x2<c e x成立,只要e x>kx2成立.而要使e x>kx2成立,则只要x>ln(kx2),只要x>2ln x+ln k成立.令h(x)=x-2ln x-ln k,则h′(x)=1-2x=x-2x,所以当x>2时,h′(x)>0,h(x)在(2,+∞)内单调递增.取x0=16k>16,所以h(x)在(x0,+∞)内单调递增,又h(x0)=16k-2ln(16k)-ln k=8(k-ln2)+3(k-ln k)+5k,易知k>ln k,k>ln2,5k>0,所以h(x0)>0.即存在x0=16c,当x∈(x0,+∞)时,恒有x2<c e x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<c e x.11.(文)已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.(1)求b的值;(2)求f(2)的取值范围.解(1)∵f(x)=-x3+ax2+bx+c,∴f′(x)=-3x2+2ax+b.∵f(x)在(-∞,0)上是减函数,在(0,1)上是增函数,∴当x=0时,f(x)取得极小值,即f′(0)=0.∴b=0.(2)由(1)知,f(x)=-x3+ax2+c,∵1是函数f(x)的一个零点,即f(1)=0,∴c=1-a.∵f′(x)=-3x2+2ax=0的两个根分别为x1=0,x2=2a 3.∵f(x)在(0,1)上是增函数,且函数f(x)在R上有三个零点,∴x 2=2a3>1,即a >32.∴f (2)=-8+4a +(1-a )=3a -7>-52.故f (2)的取值范围为⎝ ⎛⎭⎪⎫-52,+∞. B 级——能力提高组1.(理)(xx·江西卷)若f (x )=x 2+2⎠⎛01f(x)d x ,则⎠⎛01f(x)d x =( )A .-1B .-13C .13D .1解析 直接求解定积分,再利用方程思想求解. ∵f(x)=x 2+2⎠⎛01f(x)d x ,∴⎠⎛01f(x)d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f x d x ⎪⎪ 1=13+2⎠⎛01f(x)d x , ∴⎠⎛01f(x)d x =-13.答案 B 1.(文)(理)2.(xx·中原名校二模)已知函数g(x)=ax 3+bx 2+cx +d(a≠0)的导函数为f(x),且a +2b +3c =0,f(0)·f(1)>0,设x 1,x 2是方程f(x)=0的两根,则|x 1-x 2|的取值范围是( )A .⎣⎢⎡⎭⎪⎫0,23B .⎣⎢⎡⎭⎪⎫0,49C .⎝ ⎛⎭⎪⎫13,23 D .⎝ ⎛⎭⎪⎫19,49 解析 因为f(x)=3ax 2+2bx +c ,所以f(0)f(1)=c(3a +2b +c)=c(2a -2c)>0,0<c a<1,又|x 1-x 2|=Δ|3a|=2b 2-3ac |3a|=|a -3c||3a|=⎪⎪⎪⎪⎪⎪13-c a ∈⎣⎢⎡⎭⎪⎫0,23.答案 A2.(理)(xx·中原名校二模)已知函数g(x)=ax 3+bx 2+cx +d(a≠0)的导函数为f(x),且a +2b +3c =0,f(0)·f(1)>0,设x 1,x 2是方程f(x)=0的两根,则|x 1-x 2|的取值范围是( )A .⎣⎢⎡⎭⎪⎫0,23B .⎣⎢⎡⎭⎪⎫0,49C .⎝⎛⎭⎪⎫13,23D .⎝⎛⎭⎪⎫19,49解析 因为f(x)=3ax 2+2bx +c ,所以f(0)f(1)=c(3a +2b +c)=c(2a -2c)>0,0<c a<1,又|x 1-x 2|=Δ|3a|=2b 2-3ac |3a|=|a -3c||3a|=⎪⎪⎪⎪⎪⎪13-c a ∈⎣⎢⎡⎭⎪⎫0,23.答案 A2.(文)已知函数f(x)=ax 3+bx 2+cx ,其导函数y =f′(x)的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的是________. ①当x =32时函数取得极小值;②f(x )有两个极值点; ③当x =2时函数取得极小值; ④当x =1时函数取得极大值.解析 从图象上可以看到:当x∈(0,1)时,f′(x)>0;当x∈(1,2)时,f′(x)<0;当x∈(2,+∞)时,f′(x)>0,所以f(x)有两个极值点1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案 ①3.(理)(xx·课标全国卷Ⅱ)已知函数f(x)=e x-e -x-2x. (1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b 的最大值; (3)已知1.414 2<2<1.414 3,估计ln 2的近似值(精确到0.001). 解 (1)f′(x)=e x+e -x-2≥0,等号仅当x =0时成立.所以f(x)在(-∞,+∞)上单调递增. (2)g(x)=f(2x)-4bf(x)=e 2x-e -2x-4b(e x -e -x)+(8b -4)x ,g′(x)=2[e 2x+e-2x-2b(e x+e -x )+(4b -2)]=2(e x+e -x-2)(e x+e -x-2b +2).①当b≤2时,g′(x)≥0,等号仅当x =0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0;②当b>2时,若x 满足2<e x+e -x<2b -2,即0<x<ln (b -1+b 2-2b)时g′(x)<0.而g(0)=0,因此当0<x≤ln (b -1+b 2-2b)时,g(x)<0.综上,b 的最大值为2.(3)由(2)知,g(ln 2)=32-22b +2(2b -1)ln 2.当b =2时,g(ln 2)=32-42+6ln 2>0,ln 2>82-312>0.692 8;当b =324+1时,ln (b -1+b 2-2b)=ln 2, g(ln 2)=-32-22+(32+2)ln 2<0,ln 2<18+228<0.693 4. 所以ln 2的近似值为0.693.3.(文)(xx·课标全国卷Ⅱ)已知函数f(x)=x 3-3x 2+ax +2,曲线y =f(x)在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k<1时,曲线y =f(x)与直线y =kx -2只有一个交点. 解 (1)f′(x)=3x 2-6x +a ,f′(0)=a. 曲线y =f(x)在点(0,2)处的切线方程为y =ax +2. 由题设得-2a =-2,所以a =1.(2)证明:由(1)知,f(x)=x 3-3x 2+x +2. 设g(x)=f(x)-kx +2=x 3-3x 2+(1-k)x +4. 由题设知1-k>0.当x≤0时,g′(x)=3x 2-6x +1-k>0,g(x)单调递增,g(-1)=k -1<0,g(0)=4, 所以g(x)=0在(-∞,0]有唯一实根. 当x>0时,令h(x)=x 3-3x 2+4, 则g(x)=h(x)+(1-k)x>h(x).h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)单调递减,在(2,+∞)单调递增,所以g(x)>h(x)≥h(2)=0.所以g(x)=0在(0,+∞)没有实根.综上,g(x)=0在R有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.20226 4F02 伂31220 79F4 秴]38002 9472 鑲39341 99AD 馭30496 7720 眠24691 6073 恳 "35323 89FB 觻 26755 6883 梃35769 8BB9 讹]7。
(完整版)高考数学二轮复习函数与导数专题函数与导数测试(教师版)新人教版

函数与导数测试一.选择题(共60分)1、已知222{|,,},{|2,,},M y y x x y R N x x y x y R M N ==∈=+=∈⋂则= ( D ) A .{(1,1),(1,1)}-B .∅C .[0,1]D .[0,2] 2.设函数f (x )=log 2x 的反函数为y=g (x ),若41)11(=-a g ,则a 等于 ( C )A .—2B .21-C .21D .23。
设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= ( D )A .3B .1C .-1D .-34.若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是 ( A )A .B .C .D . 5.下列说法正确的是 ( D ) A .命题:“已知函数(),(1)(1)f x f x f x +-若与均为奇函数,则()f x 为奇函数,”为真命题 B .“1x >”是“||1x >”的必要不充分条件。
C .若“p q 且”为假命题,则,p q 均为假命题.D .命题2:",10"p x R x x ∃∈++<使得,则2:",10".p x R x x ⌝∀∈++≥均有6.设函数()()f x g x 、在[],a b 上可导,且()()''f x g x >,则当a x b <<时有(A ) A .()()()()f x g a g x f a +>+B .()()f x g x <C .()()f x g x >D .()()()()f xg b g x f b +>+7。
设点P 是3233+-=x x y 上的任一点,P 点处的切线倾斜角为α,则角α的取值范围为( A )A 、),[),0[322πππ⋃B 、),[),0[652πππ⋃C 、),[32ππD 、),(652ππ 8.已知函数f (x +1)是定义在R 上的奇函数,若对于任意给定的不等实数x 1、x 2,不等式ab aoxoxoxo xy1212()[()()]0x x f x f x --<恒成立,则不等式f (1-x )<0的解集为 (C ). A.(1,+∞) B.(0,+∞) C.(-∞,0) D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型练8 大题专项(六)函数与导数综合问题1.(全国Ⅰ,文21)已知函数f(x)=e x(e x-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2.设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.3.已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值.4.已知函数f(x)=-2x ln x+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.5.已知函数f(x)=x2-ax,g(x)=ln x,h(x)=f(x)+g(x)(a∈R).(1)若不等式f(x)≥g(x)恒成立,求实数a的取值范围.(2)若函数h(x)有两个极值点x1,x2.①求实数a的取值范围;②当x1∈时,求证:h(x1)-h(x2)>-ln 2.6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=a e(x-1).(1)求b的值;(2)若对任意x∈,f(x)与g(x)有且只有两个交点,求a的取值范围.题型练8大题专项(六)函数与导数综合问题1.解 (1)函数f(x)的定义域为(-∞,+∞),f'(x)=2e2x-a e x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在区间(-∞,+∞)单调递增.②若a>0,则由f'(x)=0得x=ln a.当x∈(-∞,ln a)时,f'(x)<0;当x∈(ln a,+∞)时,f'(x)>0.故f(x)在区间(-∞,ln a)单调递减,在区间(ln a,+∞)单调递增.③若a<0,则由f'(x)=0得x=ln.当x∈时,f'(x)<0;当x∈时,f'(x)>0.故f(x)在区间单调递减,在区间单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a2ln a.从而当且仅当-a2ln a≥0,即a≤1时,f(x)≥0.③若a<0,则由(1)得,当x=ln时,f(x)取得最小值,最小值为f=a2.从而当且仅当a2≥0,即a≥-2时f(x)≥0.综上,a的取值范围是[-2,1].2.解 (1)由f'(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x∈时,g'(x)>0,函数g(x)单调递增,x∈时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为.(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x∈时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x∈时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>.3.解 (1)f'(x)=3x2+2ax,令f'(x)=0,解得x1=0,x2=-.当a=0时,因为f'(x)=3x2>0(x≠0),所以函数f(x)在区间(-∞,+∞)内单调递增;当a>0时,x∈∪(0,+∞)时,f'(x)>0,x∈时,f'(x)<0,所以函数f(x)在区间,(0,+∞)内单调递增,在区间上单调递减;当a<0时,x∈(-∞,0)∪时,f'(x)>0,x∈时,f'(x)<0,所以函数f(x)在区间(-∞,0),内单调递增,在区间内单调递减.(2)由(1)知,函数f(x)的两个极值为f(0)=b,fa3+b,则函数f(x)有三个零点等价于f(0)·f=b<0,从而又b=c-a,所以当a>0时,a3-a+c>0或当a<0时,a3-a+c<0.设g(a)=a3-a+c,因为函数f(x)有三个零点时,a的取值范围恰好是(-∞,-3)∪,则在(-∞,-3)内g(a)<0,且在内g(a)>0均恒成立,从而g(-3)=c-1≤0,且g=c-1≥0,因此c=1.此时,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a],因函数有三个零点,则x2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0,解得a∈(-∞,-3)∪.综上c=1.4.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-1-ln x-a),所以g'(x)=2-.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明由f'(x)=2(x-1-ln x-a)=0,解得a=x-1-ln x.令φ(x)=-2x ln x+x2-2x(x-1-ln x)+(x-1-ln x)2=(1+ln x)2-2x ln x,则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x0∈(1,e),使得φ(x0)=0.令a0=x0-1-ln x0=u(x0),其中u(x)=x-1-ln x(x≥1).由u'(x)=1-≥0知,函数u(x)在区间(1,+∞)内单调递增.故0=u(1)<a0=u(x0)<u(e)=e-2<1.即a0∈(0,1).当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.再由(1)知,f'(x)在区间(1,+∞)内单调递增,当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时,f(x)=(x-a0)2-2x ln x>0.故x∈(0,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.5.解 (1)由f(x)≥g(x),得a≤x-(x>0),令φ(x)=x-(x>0),得φ'(x)=.∴当0<x<1时,x2-1<0,ln x<0,从而φ'(x)<0,∴φ(x)在区间(0,1)内是减函数.当x>1时,x2-1>0,ln x>0,从而φ'(x)>0,∴φ(x)在区间(1,+∞)内是增函数,∴φ(x)min=φ(1)=1,∴a≤1,即实数a的取值范围是(-∞,1].(2)①(方法一)∵h(x)=x2-ax+ln x(x>0),∴h'(x)=2x+-a,∴h'(x)≥2-a,当a≤2时,h'(x)≥0,函数h(x)在区间(0,+∞)内单调递增,函数h(x)无极值点,当a>2时,h'(x)=,当x∈时,h'(x)>0;当x∈时,h'(x)<0;当x∈时,h'(x)>0.故函数h(x)在区间内单调递增,在区间内单调递减,在区间内单调递增.函数h(x)有两个极值点x1=,x2=,综上所述,实数a的取值范围是(2,+∞).(方法二)∵h(x)=x2-ax+ln x(x>0),∴h'(x)=2x+-a=问题等价于方程2x2-ax+1=0有两相异正根x1,x2,∴解得a>2,故实数a的取值范围是(2,+∞).②证明:由①知,x1,x2即方程2x2-ax+1=0的两个根,x1x2=,∴h(x1)-h(x2)=-a(x1-x2)+ln x1-ln x2.又2+1=ax1,2+1=ax2,∴h(x1)-h(x2)=+2ln x1+ln 2.令k(x)=-x2+2ln x+ln 2,x∈,得k'(x)=-<0,∴k(x)在为减函数,∴k(x)>k-ln 2.∴h(x1)-h(x2)>-ln 2.6.解 (1)由f(x)=,得f'(x)=,由题意得f'(1)=ab=a e.∵a≠0,∴b=e.(2)令h(x)=x(f(x)-g(x))=x2-(a+e)x+a eln x,则任意x∈,f(x)与g(x)有且只有两个交点,等价于函数h(x)在区间有且只有两个零点.由h(x)=x2-(a+e)x+a eln x,得h'(x)=,①当a≤时,由h'(x)>0得x>e;由h'(x)<0得<x<e.此时h(x)在区间内单调递减,在区间(e,+∞)内单调递增.∵h(e)=e2-(a+e)e+a eln e=-e2<0,∵h(e2)=e4-(a+e)e2+2a e=e(e-2)(e2-2a)≥e(e-2)>0(或当x→+∞时,h(x)>0亦可),∴要使得h(x)在区间内有且只有两个零点,则只需h+a eln≥0,即a≤.②当<a<e时,由h'(x)>0得<x<a或x>e;由h'(x)<0得a<x<e.此时h(x)在区间(a,e)内单调递减,在区间和(e,+∞)内单调递增.此时h(a)=-a2-a e-a eln a<-a2-a e+a eln e=-a2<0,∴此时h(x)在区间内至多只有一个零点,不合题意.③当a>e时,由h'(x)>0得<x<e或x>a,由h'(x)<0得e<x<a,此时h(x)在区间和(a,+∞)内单调递增,在区间(e,a)上单调递减,且h(e)=-e2<0,∴h(x)在区间内至多只有一个零点,不合题意.综上所述,a的取值范围为.。