江苏省连云港市岗埠中学中考数学《反比例函数》复习教案1 苏科版
反比例函数复习教案

反比例函数复习优秀教案一、教学目标:1. 知识与技能:(1)理解反比例函数的定义及其性质;(2)掌握反比例函数图象的特点及应用;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过复习,加深对反比例函数知识的理解;(2)培养学生的数学思维能力,提高解决问题的能力。
3. 情感态度与价值观:二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其性质;(2)反比例函数图象的特点及应用。
2. 教学难点:(1)反比例函数图象的绘制;(2)反比例函数在实际问题中的应用。
三、教学过程:1. 导入:通过复习反比例函数的定义及性质,引导学生回顾已学知识,为新课的学习做好铺垫。
2. 课堂讲解:(1)讲解反比例函数的定义:y = k/x(k为常数,k≠0);(2)分析反比例函数的性质:as x changes, y changes in the opposite direction;(3)展示反比例函数图象的特点:经过原点,双曲线形状,两分支分别趋向于x轴和y轴;(4)讲解反比例函数在实际问题中的应用:通过实例分析,让学生掌握反比例函数在实际问题中的解题方法。
3. 课堂练习:布置一些有关反比例函数的练习题,让学生在课堂上完成,检测学生对反比例函数知识的掌握程度。
四、课后作业:2. 绘制一个反比例函数的图象,并描述其特点;3. 选择一道实际问题,运用反比例函数解决。
五、教学反思:本节课通过复习反比例函数的知识,使学生巩固了反比例函数的定义、性质及应用。
在课堂讲解过程中,注重培养学生的数学思维能力,提高解决问题的能力。
通过课堂练习和课后作业,检测学生对反比例函数知识的掌握程度。
在今后的教学中,要继续关注学生的学习情况,针对性地进行辅导,提高教学质量。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探究反比例函数的性质;2. 通过多媒体演示反比例函数图象的特点,增强学生的直观感受;3. 利用实际例子,让学生学会将反比例函数应用于解决实际问题;4. 注重个体差异,给予学生充分的思考时间和空间,鼓励学生提出问题;5. 采用小组合作学习的方式,培养学生的团队合作意识。
反比例函数复习课教案

反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。
强调反比例函数中x 和y 成反比例关系,即xy = k。
1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。
探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。
讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。
第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。
引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。
2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。
引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。
第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。
3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。
引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。
第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。
4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。
引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。
【最新苏科版精选】苏科初中数学八下《11.1 反比例函数》word教案 (1).doc

以上函数表达式具有什么共同特征?你还能举出类似的实例吗?
小组讨论,代表回答:
一般地,形如y= (k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是函数.
注意:
1.反比例函数也可以表示为y=kx-1(k为常数,k≠0)的形式.
2.反比例函数的自变量的取值范围是不等于0的一切实数.
通过学生相互讨论,培养学生对问题的分析以及归纳能力,提高学生的数学语言表达能力.
典型例题:
写出下列问题中两个变量之间关系的函数表达式,并判断它们是否为反比例函数.
(1)面积是50 cm2的矩形,一边长y(cm)随另一边长x(cm)的变化而变化;
(2)体积是100 cm3的圆锥,高h(cm)随底面面积S(cm2)的变化而变化.
独立思考,积极回答:
参考答案:(1)根据题意,得xy=50,即y= ;
11.1反比例函数
教学目标
1.结合具体情境体会反比例函数的意义,理解反比例函数的概念;
2.能根据实际问题中的条件确定反比例函数的表达式;
3.在探索过程中,引导学生体会反比例函数是刻画现实世界中特定数量关系的一种数学模型.
教学重点
反比例函数的概念.
教学难点
1.讨论两个变量之间的相互关系,从而让学生加深对函数概念的理解;
积极思考,回答问题,填写表格.
让学生重新回顾函数的有关知识,为引入反比例函数的概念做好准备.
实践探索:
用函数表达式表示下列问题中两个变量之间的关系.
(1)计划修建一条长为500km的高速公路,完成该项目的天数y(天)随日完成量x(km)的变化而变化;
(2)一家银行为某社会福利厂提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;
八年级数学下册11.1反比例函数教案(新版)苏科版

教学方法
探索、合作、交流
教学内容
教师导学过程
学生活动过程
创设情境,
导入新课
1.什么是函数?
2.什么是一次函数?什么是正比例函数?它们的一般形式是怎样的?
3.我们还记得,在小学里学过,什么叫成反比例关系吗?
4.如果路程s一定,那么速度v和时间t成什么关系
思考与交流,感受生活中的分式,逐步建立反比例函数的模型。
反比例函数
教学目标
1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别反比例函数.
2.能根据已是刻画现实世界的特定数量关系的一种数学模型。
教学重点
1.理解反比例函数的意义.
2.确定反比例函数的表达式
教学难点
1.反比例函数表达式的确定.
2.思考:用函数关系式表示下列问题中两个变量之间的关系:
(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;
(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;
(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(=- 具有什么共同特征?你还能举出类似的实例吗?
学生说方法,代表板演。
课堂小结
反比例函数的五种不同的表现形式:
形式1:y是x反比例函数
形式2:y = (k为常数,k≠0)
形式3:y = kx-1(k为常数,k≠0)
形式4:xy = k(k为常数,k≠0)
形式5:变量y与x成反比例,比例系数为k(
各抒己见
作业
教后记
例2(1)已知y是x的反比例函数,当x= 3时,y= 2 ,求y与x的函数关系式.
中考数学复习方案 第14课时 反比例函数课件 苏科版

第14课时 │ 归类示例
归类示例
► 类型之一 反比例函数的概念
命题角度:
1.反比例函数的概念
2.求反比例函数的解析式
例 1 [2011·扬州] 某反比例函数的图象经过点(-1,6),则
下列各点中,此函数图象也经过的点是
A.(-3,2)
B.(3,2)
(A)
C.(2,3)
D.(6,1)
[解析] 设反比例函数的解析式为 y=kx,把点(-1,6)代入
y2、y3 的大小关系的是 A.y1>y2>y3
B.y1>y3>y2
( C)
C.y2>y1>y3
D.y2>y3>y1
[解析] 反比例函数 y=-7x的图象在第二、四象限,在
每一个象限内,y 随 x 的增大而增大.A(-2,y1)、B(-1, y2)在第二象限,因为-2<-1,所以 0<y1<y2,又 C(2,y3)
在第四象限,所以 y3<0.
·江苏科技版
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月1日星期二2022/3/12022/3/12022/3/1 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/12022/3/12022/3/13/1/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/12022/3/1March 1, 2022 •4、享受阅读快乐,提高生活质量。2022/3/12022/3/12022/3/12022/3/1
反比例教案苏教版

反比例教案苏教版教案标题:反比例教案苏教版教学目标:1. 理解什么是反比例关系,并能够用数学语言描述;2. 能够分析反比例函数的图像和性质;3. 能够解决与反比例关系相关的实际问题;4. 培养学生的逻辑思维和解决问题的能力。
教学准备:1. 教师准备好黑板、粉笔或白板、马克笔等教学工具;2. 学生书包中准备好苏教版相关教材、练习册和作业本;3. 求收集或制作与反比例关系相关的实例和问题。
教学过程:一、导入(5分钟)1. 教师通过一个生活中的例子引入反比例关系的概念,如购买商品时的折扣、工作的效率与完成时间的关系等;2. 学生参与讨论,对反比例关系有初步的理解。
二、概念介绍与讲解(10分钟)1. 教师用简洁明了的语言介绍反比例关系的定义和特点,即当两个变量之间的比值为常数时,它们之间存在反比例关系;2. 通过具体的数学符号和例子来说明反比例关系的数学表达方式。
三、图像和性质分析(15分钟)1. 教师在黑板上绘制反比例函数图像,并与学生一起观察和分析图像的特点;2. 学生根据观察和分析回答一些与图像性质相关的问题,例如:图像是否经过原点?是否有对称轴?等。
四、实例分析与问题解决(20分钟)1. 教师向学生展示一些实际问题,要求学生分析问题中存在的反比例关系,并列出相应的数学表达式;2. 学生进行个人或小组讨论,解答问题,并给出解决过程和答案;3. 教师和学生一起讨论解题思路和方法,并给出标准答案。
五、练习和总结(10分钟)1. 学生通过教材或练习册上的练习,巩固所学内容;2. 教师对学生的练习进行批改和评价;3. 学生总结反比例关系的要点和注意事项。
六、作业布置(5分钟)1. 教师布置与本课相关的习题作业,并注明作业的完成时间;2. 鼓励学生独立思考和解决问题。
教学反馈:教师根据学生的课堂表现和练习情况进行评价和反馈,并对下一次课的教学做出调整和准备。
教学扩展:为了进一步巩固学生对反比例关系的理解,可以要求学生编写程序模拟、图像绘制或实际测量等任务,将数学知识与实际问题结合起来。
八年级数学下册:9.1反比例函数教案1(苏科版)【教案】

9.1反比例函数教学目标1.理解反比例函数的概念.2.能根据实际问题中的条件确定反比例函数的关系式.3.能判断一个给定函数是否为反比例函数.教学重点会求反比例函数的关系式教学难点反比例函数的概念的理解教学过程1.情景创设在小学里,我们已经知道,如果两个量x、y满足xy=k(k为常数,k≠0),那么x、y就成反比例关系.例如,速度v、时间t与路程s之间满足vt=s,如果路程s一定,那么速度v与时间t 就成反比例关系.什么是函数?一般地,设在一个变化的过程中有两个变量x和y,如果对于变量x的每一个值,变量y都有惟一的值与它对应,我们称y是x的函数.其中,x是自变量,y是因变量.(1)某种汽油3.60元/L.加油xL,应付费y元,那么y与x之间的函数关系式为:y=3.60x.(2)水池中有水465m3,每小时排水15m3,排水th后,水池中还有水ym3.那么y和t之间的函数关系式为:y=465-15t.(3)某村有耕地面积200ha,人均占有耕地面积y(ha)与人口数量x(人)之间的函数关系式为:200yx .在以上的函数关系式中,哪些是我们熟悉的函数?它们分别是什么函数?其余的函数是什么函数呢?2.探索活动用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400㎡的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还贷额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化.交流 函数关系式a=6400b 、y=20x 、t=5000v 、m=200n - 具有什么共同特点?你还能举出类似的实例吗?一般地,形如k y x =(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数,k 是比例系数.注意 (1)反比例函数也可以表示为y=kx -1(k 为常数,k ≠0)的形式.(2)反比例函数的自变量的取值范围是不等于0的一切实数.练习 书78页 13.例题例1.下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少? (1) y=4x ; (2) y=-12x ; (3) y=1-x; (4) xy=1 (5) y=2x . 练习 书79页 2例2 若22(1)k y k x -=+是反比例函数, 求此反比例函数的关系式.练习 函数112(1)m y m x+-=- ,当m=_____时,它是正比例函数,当m=_____时,它是反比例函数. 例3 已知y=y 1+y 2,y 1是x 的反比例函数,y 2是x 的正比例函数,当x=2时,y=-6;当x=1时,y=3.求(1)求y 与x 的函数关系式;(2)当x=-4时,求y 的值.应用 一定质量的氧气,它的密度ρ(kg /m 3)是它的体积v(m 3)的反比例函数, 当v=10m 3, ρ=1.43kg /m 3.(1)求ρ与v 的函数关系式;(3)求当v=2m 3时氧气的密度ρ.4.小结5.作业 书79页 1.2.3。
苏科版八年级下册 第11章 反比例函数单元复习教案

第八讲 反比例函数1.反比例函数:一般地,形如:xky =(k 为常数,k ≠0)的函数称为反比例函数,其中 x 是自变量,y 是x 的函数,k 是比例系数.(自变量x 是一切不为0的实数) 2.反比例函数图象及画法:一般地,反比例函数xky =(k 为常数,k ≠0)的图象是由两个分支组成的,是双曲线.这两个分支分别位于第一、三象限或第二、四象限.双曲线两个分支关于原点对称,由于反比例函数中,自变量x ≠0,函数值y ≠0,所以它的图象与 x 轴和y 轴都没有交点,即双曲线的两个分支无限地接近坐标轴,但永远不与坐标轴相交. 画反比例函数的图象的基本步骤为: ① 列表;描点;③ 连线. 3.反比例函数性质:4.求反比例函数关系式的基本方法. (1)待定系数法是最基本的方法;(2)若已知两个函数的交点,可把交点坐标直接代入关系式;(3)若有两个函数时,先分别设出解析式(用 k 1, k 2分别表示比例系数),将两个解析式联立建立方程组,利用方程组的相关知识求解;(4)过反比例函数图象上的任意一点作 x 轴的垂线,那么这点与垂足、坐标系原点构成的三角形的面积是一个定值,即22kxy S ==。
命题点1 反比例函数的图象与性质1. 点A (-1,1)是反比例函数y =m +1x 的图象上一点,则m 的值为( )A. -1B. -2C. 0D. 12. 已知反比例函数y =6x ,当1<x <3时,y 的取值范围是( )A. 0<y <1B. 1<y <2C. 2<y <6D. y >63. 若点A (3,-4)、B (-2,m )在同一个反比例函数的图象上,则m 的值为( ) A. 6 B. -6 C. 12 D. -124. 已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式________.5. 反比例函数y =2a -1x 的图象有一支位于第一象限,则常数a 的取值范围是________.6.已知点A (-1,y 1),B (1,y 2)和C (2,y 3)都在反比例函数y =kx(k >0)的图象上,则________<________<________(填y 1,y 2,y 3).命题点2 反比例函数k 的几何意义7. 如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限.若反比例函数y =kx 的图象经过点B ,则k 的值是( )A. 1B. 2C. 3 D .2 3第7题图 第8题图 第9题图8. 如图,A 、B 是双曲线y =kx 上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C ,若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A. 43B. 83C. 3D. 4 9. 如图,在平面直角坐标系中,过点M (-3,2)分别作x 轴、y 轴的垂线与反比例函数y =4x 的图象交于A 、B两点,则四边形MAOB 的面积为________.命题点3 反比例函数与一次函数综合题10. 在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx(k ≠0)的图象大致是( )11. 在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点.若直线y =-x +b 与反比例函数y =1x的图象有2个公共点,则b 的取值范围是( )A. b >2B. -2<b <2C. b >2或b <-2D. b <-2第11题图12. 反比例函数y 1=mx (x >0)的图象与一次函数y 2=-x +b 的图象交于A ,B 两点,其中A (1,2).当y 2>y 1时,x的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >213.如图,直线y =kx 与双曲线y =2x(x >0)交于点A (1,a ),则k =________.第13题图14.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =8x (x >0)和y =kx(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为________.第14题图15. 在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线y =8x 的一个交点为P (2,m ),与x 轴、y 轴分别交于点A 、点B .(1)求m 的值;(2)若P A =2AB ,求k 的值.16. 反比例函数y =kx(k ≠0)与一次函数y =mx +b (m ≠0)交于点A (1,2k -1).(1)求反比例函数的解析式;(2)若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.17. 如图,一次函数y =x +b 的图象与反比例函数y =kx 的图象交于点A 和点B (-2,n ),与x 轴交于点C (-1,0),连接OA .(1)求一次函数和反比例函数的解析式:(2)若点P 在坐标轴上,且满足P A =OA ,求点P 的坐标.第17题图18. )如图,已知一次函数y 1=k 1x +b 的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数y 2=k 2x 的图象分别交于C 、D 两点,点D (2,-3),点B 是线段AD 的中点.(1)求一次函数y 1=k 1x +b 与反比例函数y 2=k 2x 的解析式;(2)求△COD 的面积;(3)直接写出y 1>y 2时自变量x 的取值范围.第18题图第八讲 反比例函数命题点1 反比例函数的图象与性质1. B 【解析】由点A (-1,1)是反比例函数图象上一点,可把点A 的坐标代入反比例函数解析式,即可求得m 的值.∵点A (-1,1)在反比例函数y =m +1x 上,∴把点A (-1,1)代入解析式得,1=m +1-1,解得,m =-2,故选择B.2. C 【解析】本题考查反比例函数图象的性质.反比例函数y =6x图象在第一、三象限,且在每个象限内y 随x 的增大而减小,当1<x <3时,图象在第一象限,且当x =1时,y =6; 当x =3时,y =2. 故当1<x <3时,y 的取值范围是2<y <6.3. A 【解析】设反比例函数的解析式为y =kx ,把A (3,-4)代入得k =3×(-4)=-12,所以反比例函数的解析式为:y =-12x ,把x =-2代入得m =-12-2,即m =6,故选A.4. y =1x (x >0)(答案不唯一) 【解析】反比例函数图象在每个象限内y 随x 的增大而减少,则k >0.5. a >12 【解析】本题考查了反比例函数的图像的位置与其系数的关系.因为反比例函数的图象有一支位于第一象限,所以2a -1>0,所以a >12.6. y 1,y 3,y 2 【解析】本题有三种方法:一是根据反比例函数y =kx ,当k >0时,图象在第一、三象限;图象在每个象限内y 随x 的增大而减少,且在第三象限y 值为负数,在第一象限y 值为正数,所以y 1<y 3<y 2;二是可以取特殊值,如取k =1,则y 1=-1,y 2=1,y 3=12,所以y 1<y 3<y 2;三是画出y =kx (k >0)的图象,根据图象可知y 1<y 3<y 2.命题点2 反比例函数k 的几何意义7. C 【解析】△ABO 为等边三角形,且OA =2,可求得B 点的坐标为(1,3),又反比例函数y =kx 的图象经过点B ,所以k =1×3=3,故选C.8. B 【解析】如解图,过点B 作BE ⊥x 轴于点E ,由反比例函数的比例系数的几何意义得,k =2S △AOC =2S△BOE,∴S四边形BDCE=S △AOD =1,∵CD ∥BE ,D 是OB 的中点,∴△OCD ∽△OEB ,CD =12BE ,∴S △OCD S △OBE =(CD BE)2=14,∴S 四边形BDCE S △OBE=34,∴S △OBE =43S 四边形BDCE =43,k =2S △AOC =2S △OBE =83.第8题解图9. 10 【解析】如解图,设AM 与x 轴交于点C ,MB 与y 轴交于点D ,∵点A 、B 分别在反比例函数y =4x上,根据反比例函数k 的几何意义,可得S △ACO =S △OBD =12×4=2,∵M(-3,2),∴S 矩形MCOD =3×2=6,∴S 四边形MAOB =S △ACO +S △OBD +S 矩形MCOD =2+2+6=10.第9题解图命题点3 反比例函数与一次函数综合题10. A 【解析】本题考查一次函数及反比例函数的图象与性质.11. C 【解析】本题考查反比例函数与一次函数综合问题.∵直线y =-x +1与y =-x +b 平行,∴y =-x+b 可以由直线y =-x +2平移得到.∵直线y =-x +2与双曲线在第一象限有唯一交点,∴当直线向右平移时,直线y =-x +b 与双曲线在第一象限有两个交点,∴b >2;∵直线向左平移到y =-x -2时,直线与双曲线在第三象限有唯一交点,再向左平移时直线与双曲线在第三象限有两个交点,∴此时b <-2.由此可知b 的取值范围是b >2或b <-2.12. B 【解析】先用待定系数法求出反比例函数与一次函数的解析式,再联立方程组求出另一个点B 的坐标,再根据图象得出不等式的解集.把A(1,2)分别代入反比例函数与一次函数的解析式解得m=2,b=3,∴y1=2x,y2=-x+3.由⎩⎪⎨⎪⎧y=2xy=-x+3,解得⎩⎪⎨⎪⎧x1=1y1=2或⎩⎪⎨⎪⎧x2=2y2=1,∴B(2,1),A(1,2)画出草图如解图,由图象可知,当y2>y1时,1<x<2.第12题解图13. 2【解析】本题考查一次函数与反比例函数结合.把点A坐标(1,a)代入y=2x,得a=21=2,∴点A的坐标为(1,2),再把点A(1,2)代入y=kx中,得k=2.第13题解图14. -20【解析】本题考查反比例函数k的几何意义.由题意可知S△POM=12×8=4,S△QOM=12|k|,∵S△POQ=S△POM+S△QOM=14,∴4+12|k|=14,则|k|=20.∵反比例函数图象在第四象限,∴k<0,∴k=-20.15. 解:(1)点P(2,m)在函数y=8x的图象上,得m=82,解得m=4.(2分)(2)由(1)知,点P坐标为(2,4),代入y=kx+b,得4=2k+b,即b=4-2k,∵y=kx+b与x、y轴交于A、B两点,∴A(2-4k,0),B(0,4-2k),(3分)∴一次函数的图象与y轴交点存在两种情况:即与y轴交于正半轴或负半轴.当一次函数的图象与y轴交于正半轴时,如解图①:过P点作PD⊥x轴于点D,∵PA=2AB,∴PB=AB,则OD=OA=2.∴4k-2=2,∴k=1.图①图②第15题解图当一次函数与y轴交于负半轴时,如解图②:过P点作PD⊥x轴于点D,∵PA=2AB,∴PD=2OB=4,∴OB=2,∴4-2k=-2,k=3.综上,k的值为1或3(5分)16. 解:(1)由已知可知,反比例函数y=kx过点A(1,2k-1),∴k1=2k-1,k=2k-1,解得k=1.反比例函数的解析式为y =1x.(2分)(2)画出直线的草图如解图.过点A 作AM ⊥x 轴于M.由(1)得点A(1,1),第16题解图∴点A 到x 轴的距离AM =1.(3分)由已知,得S △AOB =12×|OB|×|AM|=3,∴12×|OB|×1=3,|OB|=6. ∵点B 在x 轴上,故B(6,0)或 B ′(-6,0).(5分)①当一次函数的图象过A(1,1)和 B(6,0)时,由⎩⎪⎨⎪⎧m +b =16m +b =0,解得⎩⎨⎧m =-15b =65.此时一次函数解析式为y =-15x +65.(6分)②当一次函数的图象过A(1,1)和B′(-6,0)时, 由⎩⎪⎨⎪⎧m +b =1-6m +b =0,解得⎩⎨⎧m =17b =67,此时一次函数解析式为y =17x +67.(7分)∴符合条件的一次函数解析式为y =-15x +65或y =17x +67.(8分)17. 解:(1)把C(-1,0)代入y =x +b 得0=-1+b ,解得:b =1. ∴一次函数的解析式为y =x +1.(1分)把B(-2,n)代入y =x +1得n =-2+1=-1, ∴B(-2,-1).(2分)把B(-2,-1)代入y =k x 得-1=k-2,解得k =2.∴反比例函数的解析式为y =2x .(3分)(2)由题意得⎩⎪⎨⎪⎧y =x +1y =2x,(4分)解得⎩⎪⎨⎪⎧x 1=-2y 1=-1,⎩⎪⎨⎪⎧x 2=1y 2=2. ∴A 点坐标为(1,2).∵OA =PA.∴△OPA 为等腰三角形.当点P 在x 轴上时,P 点坐标为(2,0); 当点P 在y 轴上时,P 点坐标为(0,4). (7分) 18. 解:(1)∵D(2,-3)在y 2=k 2x 上,∴k 2=2×(-3)=-6, 故y 2=-6x.(1分)如解图,作DE ⊥x 轴,垂足为E ,第18题解图∵D(2,-3),B 是AD 中点, ∴A(-2,0).∵A(-2,0),D(2,-3)在一次函数y 1=k 1x +b 图象上,∴⎩⎪⎨⎪⎧-2k 1+b =02k 1+b =-3, 解得⎩⎨⎧k 1=-34b =-32.∴y 1=-34x -32.(3分)(2)由⎩⎨⎧y =-34x -32y =-6x,解得C(-4,32),(4分)∴S △COD =S △AOC +S △AOD =12×2×32+12×2×3=92.(6分)(3)当x <-4或0<x <2时,y 1>y 2.(8分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题复备栏
教学目标1、理解反比例函数的概念,会求比例系数。
2、感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系.
教学
重点
理解反比例函数的概念。
教学
难点
感受反比例函数是刻画世界数量关系的一种有效模型.
教学过程一、创设情境导入新课
在速度v,时间t与路程s之间满足v t s
⋅=
(1)如果速度v一定时,路程s随时间t的增大而增大,路程
s与时间t就成正比例关系。
且对于时间t的每一个值,路程s
都有唯一的一个值与它对应,它又是函数关系。
因此,如果速
度v一定时,路程s是时间t的正比例函数.
(2)如果时间t一定时,那么路程s与速度v又是什么关系呢?(3)如果路程s一定时,那么速度v和时间t又是什么关系呢?[反比例关系:如果两个量x、y满足xy k
=(k为常数,k≠0),那么x、y就成反比例关系],是函数关系吗?
二、合作交流互动探究
活动一:
汽车从南京出发开往上海(全程约为300km),全程所用的时间t(h)随速度v(k m/h)的变化而变化.
(1)你能用含有v的代数式表示t吗?
300
t
v
=
(2)利用(1)中的关系式完成下表:
v/(km/h) 60 80 90 100 120
t/h
随着速度的变化,全程所用的时间发生怎样的变化?
速度变大,时间减小;速度变小,时间增大。
(3)速度v是时间t的函数吗?为什么?
活动二:
(1)利函数关系式表示下列问题中的两个变量之间的关系:
①一个面积为6400㎡的长方形的长a(m)随宽b(m)的变
化而变化;
函数关系式
6400
a
b
=
②某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂
的平均年还款额y(万元)随还款年限x(年)的变化而变化;
函数关系式
20
y
x
=
③实数m与n的积为-200,m 随n的变化而变化;
函数关系式200
m n
=-
④一名工人加工80个零件的时间y (h )随该工人每小时能加工零件个数x(个/小时)的变化而变化. 函数关系式80y x
= (2)交流:
函数关系式:6400a b =、20y x =、200m n =-、80
y x
=具有什么共同特征? 定义: 一般地,形如k
y x
=
(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数,k 是比例系数. ①反比例函数的自变量x 的取值范围是不等于0的一切实数.
②反比例函数的函数值y 的取值范围是不等于0的一切实
数.
③指出上述4个反比例函数的比例系数.
三、应用迁移 巩固提高
例1、下列关系中的y 是x 的反比例函数吗?如果是,比例系数
k 是多少?
(1)4y x =; (2)12y x
=-;(3)1y x =-; (4)1xy =;(5)2x y = (6)2
1y x
=-
四、总结反思 拓展升华
反比例函数k
y x
=
(k 为常数,k ≠0)的自变量x 的取值范围为不等于0的实数。
但在实际问题中,反比例函数的自变量取值范围往往受到限制,比如:
(1)一名工人加工80个零件的时间y (h )随该工人每小时能加工零件个数x(个/小时)的变化而变化,函数关系式为80
y x
=。
求该函数的自变量范围。
(2)一个面积为6400㎡的长方形的长a(m)随宽b(m)的变化而变化,函数关系式为6400
a b
=。
求该函数的自变量的范围。
(长是大于宽的) 作业布置 补充习题。