第3节气体在固体表面上的吸附资料
固态吸附二氧化硫

固态吸附二氧化硫
固态吸附二氧化硫主要指的是利用多孔性固体吸附剂处理含硫烟气,使烟气中的二氧化硫组分吸附于固体表面上,以达到烟气脱硫的目的。
这种方法对低浓度的二氧化硫具有很高的净化效率,设备简单,操作方便,可实现自动控制,并且能有效地回收二氧化硫,实现废物资源化。
常用的吸附剂有活性炭、活性炭纤维等。
其中,活性炭纤维吸附剂是利用多羟基纤维素、碳素、聚丙烯腈纤维、沥青纤维、黏胶纤维等纤维原料,经低温碳化、磷酸活化及添加各种活性组分制成,具有含碳量高、表面微观特性好、吸附脱附速度快等优点。
气体吸附原理

气体吸附原理气体吸附是指气体分子在固体表面上附着的现象,它是一种重要的物理化学过程,广泛应用于化工、环保、能源等领域。
气体吸附原理是指气体分子在与固体表面相互作用时,通过吸附作用在固体表面上形成一层吸附层的过程。
气体吸附过程是一个复杂的物理化学过程,它受到多种因素的影响。
其中,最重要的是吸附剂的性质和气体分子的性质。
吸附剂的性质包括孔径大小、孔隙结构、化学成分等,而气体分子的性质则包括分子大小、极性、化学活性等。
这些因素共同作用,决定了气体在固体表面上的吸附行为。
气体吸附过程可以分为物理吸附和化学吸附两种类型。
物理吸附是指气体分子与吸附剂表面之间的范德华力作用,它是一种弱相互作用力,通常发生在低温下。
而化学吸附则是指气体分子与吸附剂表面发生化学键结合的过程,它是一种强相互作用力,通常发生在高温下。
在气体吸附过程中,吸附剂的孔隙结构对吸附性能起着至关重要的作用。
孔隙结构可以影响吸附剂的比表面积、孔体积和孔径分布等参数,从而影响气体分子在吸附剂表面上的扩散和吸附速率。
通常情况下,孔径越小,吸附剂的比表面积和孔体积越大,气体分子在其表面上的吸附性能也越好。
此外,气体分子的性质也对气体吸附过程产生重要影响。
一般来说,分子大小越小、极性越大、化学活性越高的气体分子,其在固体表面上的吸附性能也越好。
这是因为这些气体分子更容易与吸附剂表面发生相互作用,从而形成稳定的吸附层。
在工业应用中,气体吸附技术被广泛应用于气体分离、气体储存、气体检测等领域。
例如,在天然气净化过程中,气体吸附技术可以有效去除天然气中的杂质气体,提高天然气的纯度。
在气体储存领域,气体吸附技术可以将气体分子吸附到多孔吸附剂中,实现气体的高效储存和释放。
总之,气体吸附原理是一个复杂而重要的物理化学过程,它受到多种因素的影响。
通过深入研究气体吸附原理,可以更好地理解气体分子在固体表面上的吸附行为,为气体吸附技术的应用和发展提供理论基础和技术支持。
固体表面对气体的吸附

若以Γm(或Vm)代表单分子层饱和吸附时的吸附量(或饱和 吸附时的气体体积),Γ(或V)代表压力为p时的实际吸附量
(或实际吸附气体体积),代入上式得:
bp Γ Γm 1 bp 或
V
Vm
bp 1 bp
四、兰格缪尔吸附等温式
(二)兰格缪尔吸附等温式的物理意义及应用
兰格缪尔吸附等温式只适用于单分子层吸附,较好地表示 典型的吸附等温式在不同压力范围内的特征:
二、吸附等温线
吸附等温线(absorption isotherm curve):温度恒定
时,吸附质平衡分压p与吸附量Γ之间的关系曲线。
吸附等温线大致有如下五种类型:
图中纵坐标代表吸附量,横坐标为相对压力。
三. 弗仑因德立希吸附等温式
弗仑因德立希吸附等温式(Freundlich absorption isotherm) 描述单分子层吸附等温线的经验公式
五、多分子层吸附理论—BET公式
在兰格缪尔吸附理论的基础上,1938 年布鲁诺(Brunauer)、埃米(Emmet) 和泰勒(Teller)三人提出了多分子层的气 固吸附理论,简称BET吸附理论。
BET理论的假设: 吸附为多分子层的; 第一层吸附是固体表面分子与吸附质分子之间的分子间力, 从第二层以后的各层吸附是吸附质分子之间的分子间力,因此 第一层和其它各层的吸附热不同; 吸附和解吸附均发生在最外层。 此外,还假定第一层吸附未饱和之前,也可能发生多分子层 吸附;当吸附达到平衡时,其吸附量等于各层吸附量的总和。
五、多分子层吸附理论—BET公式
在上述假定的基础上,用统计方法得出如下关系:
Cp
V Vm ( p * p)1 (C 1) p / p *
式中V 代表平衡压力 p 时的吸附量,Vm代表在固体表面上 铺满单分子层时所需气体的体积,为实验温度下气体的饱和蒸 气压,C是与吸附热有关的常数。
自然科学自由能与吸附原理

下面我们简化一些情况进行讨论
假定有一各向异性的固体,其表
dA1
面张力可以分解成互相垂直的二
γ1
个分量,分别用γ1和γ2表示,若在 二个方向上面积的增加为dA1和
γ2 dA2
dA2,如右图所示。
γ 1 d1 A γ 2 d2 A d( s ) G A s d G As d(G 8)
其中 dA=dA1+dA2 式(8)即是Shuttleworth导出的各向异性固体
的两个不同方向的表面张力γ1和γ2与表面自由
能 G S 的关系。对于各向同性的固体,
γ1=γ2=γ 式(8)就变成
GsA(G As)T,P,n (9)
光反射法
用强的光源通过狭缝,照射到 三相交界处,改变入射光的方 向,当反射光刚好沿着固体表 面发出时,可以根据入射光与
反射光的夹角2 计算接触角。
2
非理想固体表面上的接触角
在一般固体表面: (l)固体表面本身或由于表面污染(特别是高能表面),
固体表面在化学组成上往往不均一;
(2)因原子或离子排列的紧密程度不同,不同晶面具有不 同的表面自由能;即使同一晶面,因表面的扭变或缺陷, 其表面自由能亦可能不同;
铺展:置一液滴于一固体表面。恒温恒压下,若此液滴在
固体表面上自动展开形成液膜,则称此过程为铺展润湿。
体系自由能的变化为:
Ggllsgs
或
S G g s g l ls
S称为铺展系数,S>0 是液体在固体表面上 自动展开的条件。
液体
V
在固
体表
L
面的
铺展
《环境化学》第三章

天然水的存在形式
位臵 大气圈 主要存在形式 雨、雪、水蒸 汽等 位臵 岩石 圈 主要存在形式 地下水、岩浆水、 苦咸水等
水圈
河流、冰川、 海洋、湖泊、 沼泽等
生物 圈
体液、细胞液、 血液等
天然水的组成
• 天然水中一般含有可溶性物质、胶体物 质和悬浮物质。 • 可溶性物质的成分十分复杂,主要是在 岩石的风化过程中,经水溶解迁移的地 壳矿物质。 (1)水体中的颗粒物质 • 水体中的颗粒物质分为悬浮固体和溶解 性固体两种。
天然水的组成
④水解作用 K2O· 2O3· 2+2CO2+11H2O→H2Al2Si2O8·2O Al 6SiO H +2KHCO3+4(SiO2· 2O) 2H (4)水体中的溶解性气体 • 大气中的气体与溶液中同种气体间的平 衡为: [G(aq)] = KH×pG
天然水的组成
KH —各种气体在一定温度下的亨利定律常
水的碱度
• 苛性碱度:当用标准酸溶液进行中和滴定到 pH=10.8时,所消耗的酸量。 • 酚酞碱度:以酚酞做指示剂,消耗的酸量。 • 总碱度:以甲基橙做指示剂,消耗的酸量。 由于没有明显的滴定突越,苛性碱度测不到, 是一个理论值。
酚酞碱度=[OH-]+[CO32-]-[H2CO3*] – [H+]
„CO2(aq)‟= 3.34×10-7×32.39=1.082×10-5mol/L (0.4761mg/L )
第二节 水体中的酸-碱化 学平衡
碳酸平衡
• 大气中含有一Байду номын сангаас分压的CO2; 在水生生物体之 间的生物化学转化中,CO2占有独特的位臵, CO2对调节天然水pH 值起着重要作用。 • 在水体中存在着CO2、H2CO3、HCO3-、CO32-等4种 物质;
第三章 吸附层析

吸附层析
硅胶
含水量越高,吸附力越小。 活化:110°C烘箱,1hr。
吸附层析
洗脱剂的选择
选择洗脱剂顺序:极性小到极性大; 浓度低到高。 生物大分子一般以中性盐溶液洗脱; 洗脱剂强弱决定于:极性、离子强度。
吸附层析
本章小结
吸附层析原理:通过吸附剂表面与被分离物质之间 的范德华力和静电引力的大小不同,来达到分离 的目的。 结合力的大小由被分离物质的性质、吸附剂的性质 决定。
吸附层析
吸附原则: 极性强的吸附剂易吸附极性强的物质; 非极性的吸附剂易吸附非极性的物质。
吸附层析
羟基磷灰石(HA) 羟基磷灰石(HA)
吸附层析
迁移率(Rf):一组分在相同时间内,在固定相与流 动相的移动距离之比。
吸附层析
1.2 基本原理
通过吸附剂表面与被分离物质之间的范德华力和静 电引力的大小不同,来达到分离的目的。
吸附层析
1.3 吸附剂
1) 应具备的性能: 表面积大; 颗粒均匀; 选择性好; 稳定性强; 成本低。
吸附层析
2) 吸附原则: 极性强的吸附剂易吸附极性强的物质; 3)预处理: 过筛---酸、碱浸泡---沸水煮---清水洗 ---有机溶剂处理(无杂质)
吸附层析
活性碳
1) 制备:动物碳、植物碳、矿物碳 2) 特性:水中吸附力最强;
酸性环境中吸附力强,pH>6.8时,吸附力差。
吸附层析
1.4 洗脱剂
要求:纯度高、稳定性好、洗脱力强、粘度 小、易与被分离物分开。
dft 物理吸附 化学吸附

dft 物理吸附化学吸附1.引言1.1 概述概述部分的内容可以描述DFT物理吸附和化学吸附的背景和基本概念。
可以参考如下内容:概述DFT(密度泛函理论)是一种基于量子力学的理论模型,用于研究原子、分子和固体材料的电子结构和性质。
在材料科学和化学领域,DFT被广泛应用于理解和预测物质的吸附现象。
吸附是指气体、液体或固体的分子或离子与固体表面发生相互作用并留在表面上的过程。
吸附可以分为物理吸附和化学吸附两种类型。
物理吸附,也被称为吸附剂表面上的静电吸附,是通过分子间的范德华力相互作用形成的。
物理吸附通常在较低的温度和相对较低的压力下发生,吸附分子与吸附剂之间的相互作用相对较弱。
在物理吸附过程中,吸附分子与吸附剂之间没有化学键的形成或破裂。
这种吸附通常是可逆的,在吸附剂上形成吸附层,但吸附分子可以很容易地释放或重新吸附到其他位置。
化学吸附与物理吸附相比,涉及到更强的化学键形成和破裂。
在化学吸附过程中,吸附分子与吸附剂之间发生电子转移或共价键形成,从而形成化学键。
这种吸附通常在较高的温度和相对较高的压力下发生,并且具有较高的吸附能。
与物理吸附不同,化学吸附往往是不可逆的,吸附分子与吸附剂形成稳定的化学键,必须通过外部能量输入才能使其解离。
理解和研究吸附现象对于许多应用领域具有重要意义,例如催化剂设计、气体分离、环境污染控制等。
DFT方法的引入使得我们能够更准确地预测和解释物理吸附和化学吸附的过程,有助于优化材料的吸附性能和设计更高效的吸附剂。
在本文中,我们将首先介绍DFT (密度泛函理论)的基本原理和应用,然后详细讨论物理吸附和化学吸附的特点和机理。
最后,我们将总结物理吸附和化学吸附在各个领域的应用,并展望未来的研究方向。
1.2 文章结构文章结构部分的内容:本文按照以下结构进行组织和阐述。
首先,在引言部分(章节1),我们将对本文的主题进行概述,介绍DFT(密度泛函理论)的基本原理和应用背景,同时明确文章的目的。
吸附理论

第一节 吸附过程与吸附剂
吸附过程:是用多孔固体(吸附剂)将流体(气提或液 体)混合物中一种或多种组分积聚或凝缩在 表面达到分离目的操作。 一、物理吸附和化学吸附
根据吸附剂表面与被吸附物质之间作用力不同。
物理吸附和化学吸附的区别(见补表10-1)。 注意一点: 同一污染物的吸附量随温度的变化曲线
例10-1图:活性炭吸附苯蒸汽等温吸附线
显然,该等温吸附线符合朗氏等温吸附线,从而可用朗 氏方程式描述。 结合曲线横、纵坐标参数,将朗氏方程式变换成下列形 式: A X ( X / P) (1 B)
T T
任取曲线上两点q (400,0.205) 和s (4000,0.290) 带入上 式,于是有: 解之得:
---------------- 10.1
图10-2 5种类型等温吸附线
XT —吸附质质量与吸附剂质量之比值,无量纲,单位吸 附剂在吸附平衡时的饱和吸附量(m3/kg)或(kg/kg) P—吸附质在气相中的分压, pa; K,n—经验常数,与吸附剂、吸附质种类及吸附温度有关 ,对于一定的吸附物质,仅与平衡时的分压和温 度有关,其值需由实验确定,而n≥1。
物理吸附和化学吸附可同时发生但常以某一类吸附为主 。
(见图10-1 :吸附过程曲线)
补表10-1 物理吸附和化学吸附的区别
(物) :一种物理作用,分子间力(范德华力) ; (化) :一种表面化学反应(化学键力) 。 (物) :极快,常常瞬间即达平衡; 吸附速率 (化) :较慢,达平衡需较长时间。 吸附热 (物) :与气体的液化热相近,较小(几百焦耳/mol 左右) ; (区别二者 (化) :与化学反应热相近,很大(>42kJ/mol) 。 的重要标 志) (物) :没有多大的选择性(可逆) ; 选择性 (化) :具有较高的选择性(不可逆) 。 (物) :吸附与脱附速率一般不受温度的影响,但吸附量随 温度上升而上升; 温度的影响 (化) :可看成一个表面化学过程,需一定的活化能,吸附 与脱附速率随温度升高而明显加快。 (物) :单分子层或双分子层,解析容易,低压多为单分子 吸附层厚度 层随吸附压力增加变为多分子层; (化) :总是单分子层或单原子层,且不易解吸。 吸附作用力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、吸附的类型
A、物理吸附
具有如下特点的吸附称为物理吸附: a、吸附力是由固体和气体分子之间的范德华引 力产生的,一般比较弱。 b、吸附热较小,接近于气体的液化热,一般在 几个kJ/mol以下。
c、吸附无选择性,任何固体可以吸附任何气体, 当然吸附量会有所不同。
设:表面覆盖度θ
已被吸附质覆盖的固体表面积
θ=
固体总的表面积
则空白表面为(1 - θ )
A(g)
M(表面)
k1
AM
k 1
v(吸附)=k1p( 1-θ)N
v(脱附)=k-1 θN
达到平衡时,吸附与脱附速率相等。
k1p( 1- θ ) =k-1 θ
k1p(1 - θ )=k-1 θ
设b = k1/k-1, 单位:Pa-1,
常见的吸附等温线有如下5种类型:(图中 p/ps称为比压,ps是吸附质在该温度时的饱和 蒸汽压,p为吸附质的压力)
二、Langmuir吸附等温式
Langmuir吸附等温式描述了吸附量与被 吸附蒸汽压力之间的定量关系。他在推导该公 式的过程引入了四个重要假设:
(1) 吸附是单分子层的; (2) 固体表面是均匀的; (3)被吸附分子之间无相互作用; (4)吸附平衡是动态平衡。
通常固定一个变量,求出另外两个变量之 间的关系,例如:
(1)T=常数,q = f (p),得吸附等温线。 (2)p=常数,q = f (T),得吸附等压线。 (3)q=常数,p = f (T),得吸附等量线。
5、吸附等温线的类型
从吸附等温线可以反映出吸附剂的表面性 质、孔分布以及吸附剂与吸附质之间的相互 作用等有关信息。
§8.3 气体在固体表面上的吸附
一、气固吸附的一般常识 正由于固体表面原子受力不对称和表面
结构不均匀性,它可以吸附气体或液体分子, 使表面自由能下降。而且不同的部位吸附和 催化的活性不同。
1、吸附剂和吸附质 当气体或蒸汽在固体表面被吸附时,固体
称为吸附剂,被吸附的气体称为吸附质。
常用的吸附剂有:硅胶、分子筛、活性炭等。
(1)单位质量的吸附剂所吸附气体物质的量;
na n m
单位:mol·g-1
(2)单位质量的吸附剂所吸附气体的体积。
Va V m
单位:m3·g-1
体积要换算成标准状况(STP)
4、吸附量与温度、压力的关系
对于一定的吸附剂与吸附质的体系,达 到吸附平衡时,吸附量是温度和吸附质压力 的函数,即:
q f (T , p)
d、吸附稳定性不高,吸附与解吸速率都很快。 e、吸附可以是单分子层的,但也可以是多分子层的。 f、吸附不需要活化能,吸附速率并不因温度的升高 而变快。
总之:物理吸附仅仅是一种物理作用,没有电子转 移,没有化学键的生成与破坏,也没有原子重排等。
B、化学吸附
具有如下特点的吸附称为化学吸附: a、吸附力是由吸附剂与吸附质分子之间产生的 化学键力,一般较强。 b、吸附热较高,接近于化学反应热,一般在 40kJ/mol以上。 c、吸附有选择性,固体表面的活性位只吸附与 之可发生反应的气体分子,如酸位吸附碱性分子, 反之亦然。
得: bp
1 bp
这公式称为 Langmuir吸附等温式,式中b 称为吸附系数,它的大小代表了固体表面吸附气 体能力的强弱程度。
将θ =V/Vm代入Langmuir吸附公式
重排后可得:
V
a
Vma
bp 1 bp
1 Va
1 Vma
1 Vmab
1 p
这是Langmuir吸附公式的又一表示形式。
用实验数据,以
1 Va
~Байду номын сангаас
1 作图得一直线,从斜
p
率和截距求出吸附系数b和铺满单分子层的气
体体积Vm。
Vm是一个重要参数。从吸附质分子截面积 am,可计算吸附剂的总表面积as。
as
Vma V0
L am
V0:1mol气体在标准状况下的体积;
L:阿伏加德罗常数。
作业:P300:习题12,13(请用电脑作图)
d、吸附很稳定,一旦吸附,就不易解吸。 e、吸附是单分子层的。 f、吸附需要活化能,温度升高,吸附和解吸速 率加快。
总之:化学吸附相当与吸附剂表面分子与吸附质 分子发生了化学反应,在红外、紫外-可见光谱 中会出现新的特征吸收带。
不能将物理吸附与化学吸附截然分开。
3、吸附量的表示 吸附量通常有两种表示方法: