半导体考点整理

合集下载

半导体知识点

半导体知识点

1.施主杂质:能够释放电子而产生导电电子并形成正电中心的杂质。

2. 受主杂质:能够接受电子而产生导电空穴,并形成负电中心的杂质。

3.受主能级:通过受主掺杂在半导体禁带中形成缺陷能级。

正常情况下,此能级被空穴占据,这个被受主杂质束缚的空穴的能量状态称为受主能级。

4.施主能级:通过施主掺杂在半导体禁带中形成缺陷能级,被施主杂质束缚电子能量状态称为施主能级。

5.空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。

6.间接复合:导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。

7.直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。

8.非平衡载流子:处于非平衡状态的半导体,其载流子浓度也不再是平衡载流子浓度,比它们多出一部分。

比平衡状态多出来的这部分载流子称为非平衡载流子。

9.直接带隙半导体:导带边和价带边处于 k 空间相同点的半导体通常被称为直接带隙半导体。

电子要跃迁的导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。

例子有 GaAs,InP,InSb。

10.间接带隙半导体:导带边和价带边处于 k 空间不同点的半导体通常被称为间接带隙半导体。

形成半满能带不只需要吸收能量,还要该变动量。

例子有Ge,Si。

11.本征半导体:没有杂质和缺陷的半导体叫做本征半导体。

12.杂质半导体:在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。

掺入的杂质主要是三价或五价元素。

掺入杂质的本征半导体称为杂质半导体。

13. 迁移率:单位场强下电子的平均漂移速度。

14.扩散长度:非平衡载流子深入样品的平均距离。

由扩散系数和材料寿命决定。

15.复合中心:促进复合过程的杂质和缺陷称为复合中心。

16.状态密度:单位能量间隔内的量子态数目称为状态密度。

17.小注入:过剩载流子的浓度远小于热平衡多子浓度的情况18.过剩空穴:价带中超出热平衡状态浓度的空穴浓度△p=p-p。

半导体物理各考点总结

半导体物理各考点总结

第一章半导体中的电子状态1.分类说明半导体材料的晶格结构与结合特性。

答:金刚石结构特点:每个原子周围有四个最邻近的原子,组成一个正四面体结构,配位数是4. 夹角109°28′。

金刚石结构可以看成是两个面心立方晶包沿立方体的空间对角线相互位移四分之一对角线套构而成。

闪锌矿结构特点:双原子复式结构,它是由两类原子各自组成的面心立方晶胞沿立方体的空间对角线相互位移四分之一对角线套构而成。

以共价键为主,结合特性具有不同程度的离子性,称为极性半导体。

2.什么是电子共有化运动?原子中内层电子和外层电子参与共有化运动有何不同?答:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去。

因而,电子可以在整个晶体上运动。

因为个原子中相似壳层上的电子才有相同能量,电子只能在相似壳层上转移,因此共有化运动的产生是由于不同原子的相似壳层之间的交叠。

由于内外层交叠程度很不相同,所以只有最外层电子的共有化运动才显著。

3.说明能级分裂成能带的根本原因以及内外层能带有何不同?答:根本原因,当周围n个原子相互靠近时,每个原子中的电子除受到本身原子的势场作用外,还要受到其他原子的作用,其结果是每一个n度简并的能级都分裂为n个彼此相距很近的能级;·内壳层原来处于低能级,共有化运动很弱,能级分裂的很小,能带窄。

外壳层电子原来处于高能级,共有化运动显著,能带分裂的厉害,能带宽。

4.原子中的电子自由电子和晶体中电子受势场作用情况有何不同?自由电子和晶体中电子运动情况有何不同?答: 孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,晶体中的电子是在严格周期性重复排列的势场中运动5.导体、半导体和绝缘体能带的区别?答:金属中,由于组成金属的原子中的价电子占据的能带是部分占满的,所以金属是良好的导电体。

绝缘体禁带宽度大,常温下激发到导带的电子很少,导电性差。

半导体物理知识点梳理

半导体物理知识点梳理

半导体物理考点归纳一· 1.金刚石 1) 结构特点:a. 由同类原子组成的复式晶格。

其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成b. 属面心晶系,具立方对称性,共价键结合四面体。

c. 配位数为4,较低,较稳定。

(配位数:最近邻原子数)d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。

2) 代表性半导体:族的C ,,等元素半导体大多属于这种结构。

2.闪锌矿 1) 结构特点:a. 共价性占优势,立方对称性;b. 晶胞结构类似于金刚石结构,但为双原子复式晶格;c. 属共价键晶体,但有不同的离子性。

2) 代表性半导体:等三五族元素化合物均属于此种结构。

3.电子共有化运动:原子结合为晶体时,轨道交叠。

外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。

4.布洛赫波:kxi k k e x u x πϕ2)()(=晶体中电子运动的基本方程为: ,K 为波矢,(x)为一个与晶格同周期的周期性函数, 5.布里渊区:禁带出现在2a 处,即在布里渊区边界上;允带出现在以下几个区: 第一布里渊区:-1/2a<k<1/2a (简约布里渊区)第二布里渊区:-1<k<-1/2a,1/2a<k<1E(k)也是k 的周期函数,周期为1,即E(k)(),能带愈宽,共有化运动就更强烈。

6.施主杂质:V 族杂质在硅,锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们 为施主杂质或n 型杂质 7.施主能级:将施主杂质束缚的电子的能量状态称为施主能级,记为。

施主能级离导带很近。

8.受主杂质:族杂质在硅,锗中能够接受电子而产生导电空穴,并形成负电中心,称它们为受主杂质或P 型杂质。

9.受主能级:把被受主杂质所束缚的空穴的能量状态称为受主能级,记)()(na x u x u k k +=为。

半导体知识点总结大全

半导体知识点总结大全

半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。

它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。

本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。

一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。

原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。

2. 能带:在固体中,原子之间的电子形成了能带。

能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。

3. 半导体中的能带:半导体材料中,能带又分为价带和导带。

价带中的电子是成对出现的,导带中的电子可以自由运动。

(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。

典型的本征半导体有硅(Si)和锗(Ge)。

2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。

常见的杂质有磷(P)、硼(B)等。

(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。

P型半导体中导电的主要载流子是空穴。

2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。

N型半导体中导电的主要载流子是自由电子。

3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。

4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。

二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。

2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。

3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。

半导体物理考点总结

半导体物理考点总结

1.电子和空穴的异/同点。

答:不同点:电子带负电,空穴带正电;mp* = -mn*;电子是真实存在的,而空穴是人为假想定义的粒子;电子可以发生共有化运动,发生跃迁,空穴则不能。

相同点:电子和空穴均可以参与导电。

2.什么是回旋共振?答:半导体置于磁感应强度为B的均匀恒定磁场中,半导体中电子受到磁场作用力的方向是垂直于v与B所组成的平面。

从而, 电子在垂直于B的平面内作匀速圆周运动, 运动轨迹是一条螺旋线;再以电磁波通过半导体样品,当交变磁场的角频率ω等于回旋频率ωc时,会发生共振吸收,所以这种情况下,则称产生了回旋共振。

4.浅能级杂质电离能的计算。

答:类氢模型:氢原子中电子的能量为:E n=m0 q4/2(4)2Ч2n2其中n=1,2,3……氢原子基态电子电离能为:E0=E- E1=m0 q4/2(4)2Ч2施主杂质电离能为:受主杂质电离能为:5.杂质补偿作用:在半导体中,同时参杂有施主杂质和受主杂质,而施主杂质和受主杂质之间有相互抵消的作用,通常称为杂质的补偿作用。

6.费米能级的含义。

答:费米能级在半导体物理中是个很重要的物理参数,它是表征量子态是否被电子占据的一个界限,费米能级的位置直观的标志了电子占据量子态的情况。

在热力学零度时,能量比E F小的量子态几乎全部被电子所占据,而能量比E F大的量子态被电子战局的概率几乎为零,所以费米能级标志了电子填充能级的水平。

并且,半导体中,费米能级不是真正的能级,即不一定是允许的单电子能级,所以它可以像束缚状态的能级一样,可以处就等于系统中增加一个电子所引起的系统自由能的变化。

8.影响半导体电导率和迁移率的因素有哪些?答:迁移率的大小与杂质浓度和温度有关,也与外加电场强度有关系。

低掺杂并当室温下杂质全部电离时,杂质浓度越高,电导率越大;重参杂时或当浓度很高时,载流子迁移率随杂质浓度的增加而显著下降。

低温时,杂质散射起主要作用,温度升高,迁移率逐渐增大,电导率上升;当温度达到一定高度时,以晶格振动散射为主,温度继续升高,迁移率下降,电导率下降。

半导体物理知识点及重点习题总结删减

半导体物理知识点及重点习题总结删减

第一章 半导体电子状态1.半导体:通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。

2能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。

这些区间在能级图中表现为带状,称之为能带。

导带与价带3.能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。

答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。

通过该方程和周期性边界条件最终给出E-k 关系,从而系统地建立起该理论。

单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。

绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

4.有效质量:有效质量是在描述晶体中载流子运动时引进的物理量。

它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。

其大小由晶体自身的E-k 关系决定。

5.本征半导体:既无杂质有无缺陷的理想半导体材料。

6.空穴 :是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

它引起的假想电流正好等于价带中的电子电流。

7.空穴是如何引入的,其导电的实质是什么?答:空穴是为处理价带电子导电问题而引进的概念。

设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。

这样引入的空穴,其产生的电流正好等于能带中其它电子的电流。

所以空穴导电的实质是能带中其它电子的导电作用,而事实上这种粒子是不存在的。

8.半导体的回旋共振现象是怎样发生的(以n 型半导体为例)答案:首先将半导体置于匀强磁场中。

半导体主要知识点梳理总结

半导体主要知识点梳理总结

半导体主要知识点梳理总结半导体主要知识点梳理总结作为当今时代信息技术和电子工业的核心材料,半导体在现代社会扮演着至关重要的角色。

从微芯片到太阳能电池,从智能手机到电子器件,半导体无处不在。

对于想要了解半导体的读者来说,本文将梳理总结半导体的主要知识点,帮助读者建立起一个全面而深入的理解。

一、半导体的基本概念半导体是一种介于导体和绝缘体之间的材料,具有导电性能,但电阻较高。

半导体的导电性通过施加外加电压或光照来控制。

半导体的内部结构由两种材料的组合形成,即P型半导体和N型半导体。

P型半导体中主要存在电子缺陷,称为空穴,而N型半导体中存在过量的自由电子。

半导体的导电性质与其能带结构有关。

能带是描述材料中电子能量的概念,包括价带和导带。

价带是电子处于较低能级的带,而导带是电子处于较高能级的带。

半导体的导电能力取决于价带与导带之间的能隙,也就是电子跃迁的能量差。

如果能隙较小,电子容易从价带跃迁到导带,因此导电性能较好。

而如果能隙较大,电子跃迁需要更高的能量,导电性能较差。

二、PN结与二极管PN结是半导体器件中最基本的结构之一。

它是由P型和N 型半导体材料的交界处形成的结构。

PN结的形成依靠半导体材料中的杂质原子掺杂。

其中P型区域被掺杂有五价元素,如硼,而N型区域被掺杂有三价元素,如磷。

PN结中的P区域和N区域形成了电势差,在静态情况下形成了一个静电势垒。

二极管是基于PN结的一种半导体器件。

它具有单向导电性,即只有一个方向上才能导电。

正向偏压情况下,即P端电压高于N端,这时PN结处的电势垒会减小,电子和空穴会发生再结合,导电能力增强。

而在反向偏压情况下,电势垒增大,使得电流难以流过,呈现出不导电的状态。

二极管在电子电路中常用于整流、开关和波形修整等方面。

三、场效应管与晶体管场效应管(FET)是另一种PN结基础上发展起来的半导体器件。

它是一种通过操控电场来控制电流的器件。

FET主要由掺杂有两个N型材料之间的P型沟道构成。

半导体知识点总结

半导体知识点总结

半导体知识点总结半导体是一种介于导体和绝缘体之间的材料,它具有一些特殊的电子性质,因此在现代电子技术中具有重要的应用。

本文将对半导体的基本概念、特性、原理以及应用进行详细的介绍和总结。

一、半导体的基本概念1、半导体材料半导体材料是一类电阻率介于导体和绝缘体之间的材料,它具有一些特殊的电子能带结构。

常见的半导体材料包括硅(Si)、锗(Ge)、GaAs等。

2、半导体的掺杂半导体材料经过掺杂后,可以改变其电子结构和导电性质。

常见的掺杂有N型和P型两种类型,分别通过掺入杂质原子,引入额外的自由电子或空穴来改变半导体的导电性质。

3、半导体的结构半导体晶体结构通常是由大量的晶格排列组成,具有一定的晶格参数和对称性。

在半导体器件中,常见的晶体结构有晶体管、二极管、MOS器件等。

二、半导体的特性1、能带结构半导体的能带结构是其特有的性质,它决定了半导体的导电性质。

半导体的能带结构通常包括价带和导带,其中价带中填充电子的能级较低,而导带中电子的能级较高,两者之间的能隙称为禁带宽度。

2、电子迁移和载流子在外加电场的作用下,半导体中的自由电子和空穴可以在晶体内迁移,并形成电流。

这些移动的载流子是半导体器件工作的基础。

3、半导体的导电性半导体的导电性是由自由电子和空穴共同贡献的,通过掺杂和外加电场的调制,可以改变半导体的导电性。

三、半导体的原理1、P-N结P-N结是半导体器件中最基本的结构之一,它由P型半导体和N型半导体组成。

P-N结具有整流、放大、开关等功能,是二极管、光电二极管等器件的基础。

2、场效应器件场效应器件是一类利用外加电场控制半导体导电性质的器件,包括MOS场效应管、JFET场效应管等。

场效应器件具有高输入电阻、低功耗等优点,在数字电路和模拟电路中得到广泛应用。

3、半导体光电器件半导体光电器件是一类利用光电效应将光能转化为电能的器件,包括光电二极管、光电导电器件等。

光电器件在光通信、光探测、光伏等领域有着重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意:下面是章节重点,标注了解的内容考的概率不大(不是不考),且考察难度也不会很深,极有可能是以和其他知识点结合的形式出现在大题中。

请尽可能系统地在理解的基础上去复习,注意知识点内在的联系。

评判宗旨是理解第一,识记第二,亦即答案即使在表述上没有那么书面,比如是自己组织语言描述的,只要我觉得你理解正确,依然会算作对。

下周二的课程仍然是其他半导体部分的讲解,下周四最后一节半导体课是答疑课。

现在可以着手按照考点开始复习,有问题可以个人提出,或者是集体分工合作讨论总结提出,可以email的方式提前给我(效率较高),或者课上提出均可。

选择合适自己的复习方式,祝考试顺利!。

相关文档
最新文档