七年级数学下册 第6章 实数 6.1 平方根、立方根教案 (新版)沪科版

合集下载

新沪科版七年级数学下册《6章实数6.1平方根、立方根》教案_0

新沪科版七年级数学下册《6章实数6.1平方根、立方根》教案_0

《立方根》教案教学目的:1、使学生了解一个数的立方根概念,并会用根号表示一个数的立方根.2、理解开立方的概念.3、明确立方根个数的性质,分清一个数的立方根与平方根的区别.教学分析:重点:立方根的概念及求法.难点:立方根与平方根的区别.关键:立方根的概念与性质及求法.教学过程:一、知识导向:立方根是与平方根等同的两个概念,在前面学习平方根与算术平方根概念的基础上,进一步来学习这个概念与知识,应该是相对轻松的.所以在教材的处理上,主要还是要侧重于两者的比较与关系,这样比较有利于学生的掌握.二、新课学习:1、知识设疑:A. 要制作一个容积为125dm3的立方体木箱(如图),它的棱长是多少?B.计算下列各题:(1) ( )3=8; (2) ( )3= -8;(3) ( )3= ; (4) ( )3= .2、知识形成概括1:如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).用式子表示,就是,如果x3=a,那么x叫做a的立方根.用符号“3a”表示,读作“三次根号a”,其中a是被开方数,3是根指数.(注意:根指数3不能省略).概括2:求一个数的立方根的运算,叫做开立方.3、例题讲解:例1、求下列各数的立方根:8;-8;0.125;0例2、求下列各式的值:327、364、31000三、巩固训练求下列各式的值.(1)38(2)327(3)3125.0(4)33)001.0((5)3512(6)36427四、易错问题纠正(略)五、拓展探究六、总结归纳1.开立方的定义:求一个数的立方根的运算,叫做开立方.(1)、正数的立方根是正数,(2)、负数的立方根是负数;(3)、0的立方根是0.2.立方根的性质七、布置作业.。

新沪科版七年级数学下册《6章实数6.1平方根、立方根》教案_7

新沪科版七年级数学下册《6章实数6.1平方根、立方根》教案_7

算关系来求完全平 方数的平方根.
4

9
( 3) 因 为
0.6 2 0.36 ,
所 以 0.36 的 平 方 根 是
0.6 .
问: 通过刚才的学习,我们已经知道负数 没有平方根, 那么根据上题你能说出正数、 0 的平方根是怎样的?
2.性质归纳: (1)负数没有平方根; (2)正数 a 的两个平方根互为相反数,可
0.17.
B组
1.判断下列说法是否正确,正确的在括
1.解 :
号内填入“√ ”,错误的填入 “× ”:( P2) (1)×,
1;
(1) 1 的平方根是 1;
()
(2)√;
(2) 0 的平方根是 0;
()
(3)×, -1 没有平方根;
(3) -1 的平方根是 -1; ( )
16
44
(4)
等于 或 ; ( )
要 理解公式
( ± a ) 2=a 和
(2)
2
9
=________ ,
( 9)2 =_________ .
( 2) 92 =9 , ( 9)2 =9.
因为开平方与平 方互
a 2 =∣ a∣ 超 出
为逆运算,一个正数 9 的 了学生的思维发展
平方根 ( 9) 的平方等于
水平,此处让学生 进一步认识开平方
三、课堂小结
1.平方根和开平方的概念是什么?
2.平方根的性质是什么?
1.已知一个数的平方等 于 a,那么这个数叫做 a 的平方根.求一个数 a 的 平方根的运算叫做开平 方运算. 2.负数没有平方根;正 数 a 的两个平方根可以用
“ ± a ”表示, 0 的平方
根就是 0.
课后作业

新沪科版七年级数学下册《6章 实数 6.1 平方根、立方根》教案_5

新沪科版七年级数学下册《6章 实数  6.1 平方根、立方根》教案_5

6.1.2立方根一、教学目标知识与技能目标1.了解立方根的概念,能够用根号表示一个数的立方根.2.能用进行开立方运算,并区分立方根与平方根的不同.过程与方法目标用问题探寻出立方根的运算及表示方法,并能自我总结出立方根的的特点.情感态度与价值观目标发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.二、教学重难点教学重点:立方根的概念及其运算。

教学难点:立方根的概念及其运算。

三、教学过程(一)新课引入1、计算:1³=()2³=()3³=()4³=()5³=()(-2)³= ()(-3)³=()2、填空:()³=1 ()³=8 ()³=27()³=64 ()³=125 ()³=-1( )³=-8 ( )³=-27 ( )³=0问题2:如图,要做一个容积是64立方分米的正方体木箱,问它的棱长是多少分米?解:设正方体木箱的棱长为x 分米。

根据题意,得X³=64 观察得第2题和问题2有什么共同的特点? 都是已知一个数的立法,求这个数的问题。

由此引入立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根,记做,读作“三次根号a”,其中a 叫做被开方数,3叫做根指数。

上面,由于43=64,所以4是64的立方根。

注意:1.求一个数的立方根的运算叫做开立方。

2.开立方和立方互为逆运算 (二)探究新知 求下列各数的立方根:3a1,27,0,-64,-125(1)因为1³=1,所以1的立方根是1;(2)因为3³=27,所以27的立方根是3;(3)因为0³=0,所以0的立方根是0;(4)因为(-4)³=-64,所以-64的立方根是-4;(5)因为(-5)³=-125,所以-125的立方根是-5;观察,我们可以得到什么?(学生讨论并总结)总结:1、正数的立方根是正数;2、负数的立方根是负数;3、0的立方根是0;4、任何数都有立方根。

新沪科版七年级数学下册《6章 实数 6.1 平方根、立方根》教案_6

新沪科版七年级数学下册《6章 实数  6.1 平方根、立方根》教案_6

6.1 平方根、立方根(2)一、知识与技能目标1.了解立方根的概念,能够用根号表示一个数的立方根.2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.二、过程与方法目标用类比的方法探寻出立方根的运算及表示方法,•并能自我总结出平方根与立方根的异同.三、情感态度与价值观目标发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.教材解读由正方体的边长与体积的关系引出立方运算,转入立方根运算.于是发现立方根运算与立方运算互为逆运算,很容易联想到平方运算与平方根运算之间的关系,于是立方根的表示,运算等问题就留给同学去发现.学情分析在学习完平方根运算后继而学习立方根运算,•通过列举一些有代表意义的数求立方运算可发现立方根比平方根更容易掌握.一、创设情境,导入新课劳动节即将来临,学生们纷纷给他们敬爱的老师奉献他们的心意,刘老师所任教的两个班的科代表一同前往老师办公室,他们手中捧着两个形状、•大小一模一样的礼盒,并对老师说:“我代表我班的同学向老师敬礼,并以此小礼物代表我们对老师的敬意”.说完,两个科代表相视一笑,请老师猜一猜里面装的东西是否一样,里面物体的体积是否一样.老师知道,他们葫芦里肯定又要卖什么药了,•就郑重其事地说出两个盒子的大小形状虽然一样,但里面所装的物体的形状肯定不一样,并且它们的体积也相同,但一定有其它不相同的地方.刘老师打开纸盒一看,•发现里面装的果然是两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方体,并且盒子里面各有一张纸条内容相同,经过测算,其体积为125cm3.同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?•那就是球的半径与正方体的边长,你能求出这个半径和边长吗?要求出这两个量,•我们就来学习开方中的另一种运算:开立方运算.二、师生互动,课堂探究(一)提出问题,引发讨论在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=______ ;(-2)3=______; 0.53=_____;(-0.5)3=______;(23)3=_____;-(23)3•=_____ ; 03=______.(1)经计算发现正数,0,负数的立方值与平方值有何不同之处?23=8;(-2)3=-8; 0.53=0.125; (-0.5)3=-0.125;(23)3=827; -(23)3=-827; 03=0.我们发现,求立方运算时,当底数互为相反数时,其立方值也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方值相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个值了,什么是立方根呢?类似平方根定义可知,若x3=a则x为a的立方根,记为3a,读作三次根号a.负数没有平方根,负数有无立方根呢?从(-2)3=-8,(-0.5)3=-0.125,(23)3=-827,可知负数有立方根,•并且其立方根仍为负数.(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,•故请根据上述等式,写出这些互为相反数的立方根.8的立方根为2,-8的立方根为-2,记为38=2, 38-=-20.125的立方根为0.5,-0.125的立方根为-0.5,记为30.125=0.5, 30.125-=-0.58 27的立方根为23,-827的立方根为-23,记为3827=23,3827-=-230的立方根为0,记为30=0上述过程都是求一个数的立方根的运算,把求一个数的立方根的运算,叫做开立方,开立方与立方运算互为逆运算.故正方体的体积为125时,其边长为3125=5,而球的体积为43πr3 =125时,r≈3.1.(二)导入知识,解释疑难1.例题求解既然正数的立方是正数,负数的立方是负数,那么正数的立方根为正数,•负数的立方根为负数,同样0的立方是0,则0的立方根是0,可记为33a=a(a为任意数),或者若a3=M,则有3M=a,其中M为被开方数,3为根指数,且根指数为3时,不能省略,•只有当根指数为2时,才能省略不写.例2:求下列各数的立方根。

新沪科版七年级数学下册《6章 实数 6.1 平方根、立方根》教案_13

新沪科版七年级数学下册《6章 实数  6.1 平方根、立方根》教案_13

《6.1平方根》教案教学目的:1、使学生理解数的平方根的概念,能运用根号表示一个数的平方根.2、掌握用平方运算求某些数的平方根的方法.教学重点和难点:重点:平方根的概念及求某些数的平方根的方法.难点:平方根的概念.关键:对符号“”意义的理解.教学过程:一、引入新课:我们学习了有理数的加、减、乘、除和乘方运算,但在现实生活中,有些问题仅运用这五种运算是无法解决的.例如已知正方形一边长是4厘米,那么它的一条对角线的长是多少厘米?解决这个问题就要运用一种新的运算方法,这种运算叫做开方.这节课我们就要学习开方运算和平方根.二、新课学习:思考与探索1.一个数的平方是9,这个数是什么数?2.一个数的平方是,这个数是多少?3.填空:①()2 = 16 ②()2 = 0.25③( ) 2 = 0 ④()2 = 0.491、知识设疑:(1)计算:42;(-4)2;(23)2;(0.8)2;(-0.8)2(2)如果已知一个数的平方等于16,怎样求这个数?2、知识形成:知识点一:我们可以设这个数为x,则x2=16,问题归结为求x.这个问题可以通过乘方运算来解决.因为42=16所以x=4;又因为(-4)2=16,所以x=-4.4或-4的平方都等于16,可以表示为(±4)2=16.因为4或-4的平方都等于16,我们把4及-4叫做16的平方根.概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根).就是说,如果x2=a,那么x就叫做a的平方根.如:1.2与-1.2都是1.44的平方根.因为(±1.2)2=1.44,所以±1.2是1.44的平方根.问:(1)16,49,100,1 100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么?概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.知识点二:概括:求一个数a(a≥0)的平方根的运算,叫做开平方.开平方运算是已知指数和幂求底数.平方与开平方互为逆运算.一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0.但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0.负数没有平方根.因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根.知识点三:(1)625的平方根是多少?这两个平方根的和是多少?-7和7是哪个数的平方根?正数m的平方根怎样表示?(2)下列各数的平方根各是什么?9;0.25;0.36;-16;(-4)3(3)已知正方形的面积等于a,那么它的边长等于多少?3、例题讲解:例1、求下列各数的平方根.(1)81;(2)1916;(3)0.09.例2、下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64;(2)0;(3)(-4)2例3、判断正误,并把错的改正:(1)非负数(正数和零统称非负数)一定有平方根;(2)100的平方根是10;(3)2.25的平方根是1.5(4)2 的平方根是2;4、课堂小结①了解了平方根和算术平方根的概念;②掌握了平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根;③学会了平方根和算术平方根的表示方法;④学会了求一个数的平方根,了解开平方和平方互为逆运算.复兴九年一贯制学校丁前进。

新沪科版七年级数学下册《6章 实数 6.1 平方根、立方根》教案_30

新沪科版七年级数学下册《6章 实数  6.1 平方根、立方根》教案_30

6.1 平方根、立方根沪科版数学七年级下册教材分析本节内容是有理数相关内容的延续与推广,它不仅仅是后面学习二次根式,一元二次方程方程以及解三角形等知识的基础,也为学习高中数学不等式、函数以及平面解析几何等知识做好准备。

因此,教学中需注意平方根与算术平方根知识间的区别与联系,充分利用类比的方法。

学生通过类比旧知识学习新知识,形成正迁移。

学情分析从学习内容的角度看,在学习本节课之前学生已经学习了乘方运算,能迅速求出一个数的乘方,理解乘方运算的本质,对加减、乘除互逆运算的本质有了明晰的认识。

从认识的角度看,学生已经能从具体事例中归纳问题本质,通过观察、类比等活动抽象出问题的规律。

从学习能力看,在前面的学习过程中积累了自主合作探究的经验,具备合作交流和概括的能力。

教学目标知识与技能1、掌握平方根及算术平方根的概念。

2、理解一个正数有两个平方根,它们互为相反数,零的平方根是零,负数没有平方根。

3、了解平方运算与开平方运算的互逆关系,能利用这种互逆关系,求一个非负数的平方根及算术平方根。

过程与方法通过探求正方形画布边长的过程,培养学生学会从现实情境中去认识,了解抽象出来的数学概念——平方根,进而引出算术平方根。

通过对平方运算与开平方运算互逆关系的探究,加深学生对平方根概念的理解,并进一步理解正数和零的平方根的求法。

情感、态度与价值观通过在实际情境中的学习,了解开平方运算的概念和求平方根的过程,培养和发展学生的逆向思维和发散思维能力,学生在思维的形成过程中学习知识。

教学重点平方根和算术平方根的概念和性质。

教学难点求非负数的平方根与算术平方根。

教学准备多媒体课件、投影仪等。

教学方法引导发现法、合作探究式教学法、情景讲授法、练习相结合等。

教学过程一、创设情境,导入新课 多媒体展示 :学校开展“后研学活动”,征集优秀作品,小明裁了一块边长为dm 7的正方形画布,画上自己的得意之作参加了这次比赛,这块正方形画布的面积是多少?小聪也参加了比赛,他裁出一块面积为225dm 的正方形画布,这块正方形画布的边长应取多少? 二、实践探究,归纳总结由正方形的面积容易得到当正方形边长为dm 7时,面积为249dm ;面积225dm 的正方形边长为dm 5,因为2552=,那么还有其他数的平方等于25吗?填空:()252=, ()12= ()362= ()25.02=(2)你能指出它们的共同特点吗?一般地,如果有一个数的平方等于a ,那么这个数叫作a 的平方根,也叫作二次方根. 都是已知一个数的平方,求这个数的问题. 1、平方根的定义: 换句话说,如果a x =2,那么x 叫做a 的平方根。

七年级数学下册第6章实数6.1平方根立方根教案新版沪科版

七年级数学下册第6章实数6.1平方根立方根教案新版沪科版

平方根、立方根
项目内容
课题 6.1平方根、立方根(共2课时,第1课时)修改与创新
教学目标(1)了解平方根和算术平方根的概念,会用根号表示一个数的平方根及算术平方根.
(2)了解平方运算与开平方的互逆关系,会求一个非负数的平方根及算术平方根.
(3)会用计算器计算一个正数的算术平方根.
教学重、难点
平方根、算术平方根的概念和求法.
平方根、算术平方根的概念以及符号表示.教学准备多媒体PPT
教学过程一、温故旧知
1.平方:“
2
a
a
a=
⋅”,读作a的平方或a的二次方.
2.平方的性质:任何数的平方都是非负数;
3.如果知道一个数的乘方的幂,你能逆向类比,计算出这个数是多少吗?
二、创设情境,引入新课
问题:装修房屋,选用了某种型号的正方形地砖,如果问,当这种地砖一块的边长为0.5m时,它的面积是多少?这可通过乘方求得:0.52=0.25(m2).反之,如果问,当这块正方形地砖面积为0.25m2时,它的边长是多少,该怎样算呢?
通过分析得到,此实际问题对应的数学问题就是:已知一个数的平方,求这个数。

三、讲授新课:。

初中数学沪科版七年级下册《第6章 实数 6.1 平方根 立方根》教材教案

初中数学沪科版七年级下册《第6章 实数 6.1 平方根 立方根》教材教案

6.1.1《平方根》一、教材分析1、教材的地位与作用:《平方根》是上海科学技术出版社的第6章第一节的内容。

本节主要学习平方根和算术平方根的概念和性质,在运算方面,引入了开方运算,使学生掌握的代数运算由原来的加、减、乘、除、乘方五种扩展到六种,建立起较完善的代数运算体系。

本节内容既是对前面所学知识的深化和发展,也是今后学习二次根式、实数的预备知识,还是用直接开平方法、公式法解一元二次方程的重要依据。

因此,本节处于非常重要的地位,起着承前启后的作用。

2、教材的处理:立足教材,依据学情对教材进行有机整合。

二、教学目标【知识与技能】掌握平方根与算术平方根的概念,能通过开方运算求一个非负数的平方根及算术平方根,理解平方与开平方互为逆运算。

【过程与方法】通过对平方根算术平方根概念及性质的探究,渗透分类讨论数学思想方法,提高数学探究能力和归纳表达能力。

【情感、态度与价值观】鼓励学生积极主动地参与教与学的整个过程,激发学生求知的欲望,增加学生学习数学的兴趣与信心。

三、教学重、难点重点:平方根与算术平方根的概念和性质。

难点:平方根与算术平方根的区别与联系。

四、教学方法这是一节概念教学课,本节课的基本环节是概念的提出——概念的生成——概念的深化——概念的辨析最后是巩固与提升,各环节环环相扣、层层深入,使学生对概念有了一个清晰、全面、完整的认识。

五、教学过程设计(一)温故知新,引入新课1.比一比,看谁算得快1).练习1 计算:⑴23 ⑵221)( ⑶ 221⎪⎭⎫ ⎝⎛- ⑷ 202).练习2 填空: ⑴9) (2= 41) ( (2)2= 0) ( (3)2= 师生活动:学生分组比赛,教师巡视指导,比一比哪一组算得又快又好。

设计意图:练习1、2,显然是互逆运算,通过计算,让学生熟悉平方的运算,同时为新概念的引入埋下伏笔。

第一个练习应该没问题,第二个练习,学生有可能会漏掉负值,一旦出错,及时纠正。

2.要做一张边长是3分米的方桌面,它的面积是多少?(这个问题实际上就是求:3的平方等于多少,这是已知底数和指数,求幂的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正数 的正的平方根 叫做 的算术平方根。
0的算术平方根是0,即 =0 。
“± ”表示非负数a的平方根,读作“正负根号a” ;
“ ”表示非负数a的算术平方根
例如9的平方根是:± =±3. 9的算术平方根是: =3 .
11的平方根是:± .11的算术平方根是
3、开平方运算
(1)求一个数的平方根的运算叫做开平方。
与“平方根”类似, 你能找一个数,使这个数的立方等于125吗?
二、讲授新课
1、立方根的概念:
类似平方根定义可得 ,若 = 则 为 的立方根, 记为 , 读作“三次根号 ”
如, 因为 ,所以5是125的立方根,即
2、求一个数的立方根的运算,叫做开立方。
3、开立方与立方互为逆运算。
自主练习:
求下列各数的立方根:(1) -216 ; (2)0.064 ; (3) -
(2)0.16的平方根是,它们的关系是;
(3)0的平方根是,它们的关系是;
(4)-9有没有平方根?为什么?
归纳总结:
(1)正数有两个平方根,它们互为相反数。
用 表示其中正的平方根,读作“根号 ” ,另一个负的平方根记为 ,其中 叫做被开方数。(2)0的平方根是0。(3)负数没有平方根。
2、算术平方根概念
试一试:
先来算一算一些数的立方:
23=______ ; (-2)3=______; 0.53=_____; (-0.5)3=______;
( )3=_____; (- )3=_____ ; 03=______.
由上面计算探究立方根的性质:
(1)正数的立方根是正数;负数的立方根是负数;0的立方根是0。
(2)一般地, 。
补充练习:
1.下列说法正确的是( ).
A.非负数才有立方根; B.任何数的立方根都于这个数的符号相同;
C.一个数总大于它的立方根; D. 除零以外的任何数都有两个立方根.
2.如果一个数的立方根等于它的本身,那么这个数是
3.若一个立方体的体积变为原来的8倍,则它的表面积变为原来的倍.
4.若 与 互为相反数,求x-3的立方根?
三、课堂小结:由学生总结,老师再补充概括
板书设计
教学反思
通过分析得到,此实际问题对应的数学问题就是:已知一个数的平方,求这个数。
三、讲授新课:
1、平方根概念
一般地,如果一个数的平方等于a,a,那么x 叫做a 的平方根.
巩固反思:
因为10 =,(-10) =,所以100的平方根是。
探索交流: (1) 的平方根是,它们的关系是;
平方根、立方根
项目
内容
课题
6.1平方根、立方根(共2课时,第1课时)
修改与创新
教学目标
(1)了解平方根和算术平方根的概念,会用根号表示一个数的平方根及算术平方根.
(2)了解平方运算与开平方的互逆关系,会求一个非负数的平方根及算术平方根.
(3) 会用计算器计算一个正数的算术平方根.
教学重、难点
平方根、算术平方根的概念和求法.
教学准备
应用投影仪,投影片。
教学过程
一、温故旧知
1.立方: “ ”, 读作a的立方或a的三次方.
2.立方的性质:正数的立方是正数,零的立方是零,负数的立方是负数.
3.如果知道一个数的立方的幂,你能逆向类比,计算出这个数是多少吗?
一、创设情境,引入新课
问题:要做一只容积为125cm3的正方体木箱,它的棱长是多少?
3、 的化简结果是( )A.2B.-2 C.2或-2D.4
4、9的算术平方根是( )A.±3 B.3 C.± D.
5、下列式子中,正确的是( )
A. B.- =-0.6 C. =13D. =±6
6、如果一个数的两个平方根分别是a+3与2a-15,那么这个数是。
四、课堂小结:由学生总结,老师再补充概括
平方根、算术平方根的概念以及符号表示.
教学准备
多媒体PPT
教学过程
一、温故旧知
1.平方: “ ”, 读作a的平方或a的二次方.
2.平方的性质:任何数的平方都是非负数;
3.如果知道一个数的乘方的幂,你能逆向类比,计算出这个数是多少吗?
二、创设情境,引入新课
问题:装修房屋,选用了某种型号的正方形地砖,如果问,当这种地砖一块的边长为0.5m时,它的面积是多少?这可通过乘方求得:0.5 =0.25(m ).反之,如果问,当这块正方形地砖面积为0.25m 时,它的边长是多少,该怎样算呢?
(2)探索开平方与平方的互为逆运算关系。
(3)利用开平方与平方运算的互逆关系,可以求一个数的平方根。
自主练习:
1、求下列各数的平方根和算术平方根:
(1)25 ; (2)1 ;(3) ; (4)0.0196 ; (5)0 .
2、巩固练习:
补充练习:
1、 的算术平方根是_________;2、、(- )2的算术平方根是_________;
板书设计
教学反思
项目
内容
课题
6.1平方根、立方根(一)(共2课时,第2课时)
修改与创新
教学目标
(1)了解立方根的概念,会用根号表示一个数的立方根;
(2)了解开立方与立方互为逆运算,会求一个数的立方根;
(3)会用计算器求一个数的立方根。
教学重、难点
立方根的概念和求法.
立方根的概念以及某些数的立方根的求法;立方根与平方根的区别。
相关文档
最新文档