初等数论习题
初等数论练习题及答案

初等数论练习题一一、填空题1、τ(2420)=27;ϕ(2420)=_880_2、设a ,n 是大于1的整数,若a n —1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,—2,-1,0,1,2,3,4}。
4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x —23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_.78、⎪⎭⎫ ⎝⎛10365 =—1。
9、若p 是素数,则同余方程xp - 1≡1(mod p )的解数为二、计算题1、解同余方程:3x 2+11x -20≡0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3),同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5),同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
3、求(127156+34)28除以111的最小非负余数.解:易知1271≡50(mod 111)。
初等数论期末试题及答案

初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。
解答:观察可知,1到100之间的奇数是等差数列,公差为2。
根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。
解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。
根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。
证明:设n是一个平方数,即n = m^2,其中m是一个正整数。
我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。
对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。
所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。
而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。
初等数论习题

初等数论练习题1、()=320011 ()10,()=107137 ()2。
2、()=531404 ()10,()=1021580()8 3、比较()21011011与()41203的大小。
4、求证:对于任意整数n m ,,必有1616+≠-n m 。
5、如果n 是一个自然数,则()1+n n 是 (填“奇数”或“偶数”)6、若b a ,两数的和与积均为偶数,则b a ,的奇偶性是 。
7、若a 除以b 商c 余r ,则am 除以bm 商 余 。
8、设4>n ,且()()2434+-n n ,求n 。
9、设()223b a +,证明a 3且b 310证明:若()()pq mn p m +-,则()()np mq p m +-。
11、若23++n m 是偶数,试判定()()200311+--n m 是奇数还是偶数。
12、求证:若b a ,a b ,则b a ±=。
11、设b a ,是正整数,且b a ≤,若5776=ab ,()31,=b a ,求b a ,。
13、设b a ,是正整数,且b a ≤,若50=+b a ,()5,=b a ,求b a ,。
14、如果p 是素数,a 是整数,则有()1,=p a 或者____ ___ 15、()=204,360 ,[]=204,360 。
16、若()()24,4,==b a ,则()=+4,b a 。
17、写出1500的标准分解式是,60480的标准分解式为 18、541是 。
(填“质数”或“合数”)19、设()1,=n m ,求证:()()()n d m d mn d =,()()()n S m S mn S =。
20、计算()430d ,()430S 。
21、求!100末尾0的个数。
22、求13除486的余数。
23、写出模9的一个完全剩余系,使其中每个数都是奇数。
24、写出模9的一个完全剩余系,使其中每个数都是偶数。
25、若()1,=m a ,求证:若x 通过模m 的简化剩余系,则ax 通过模m 的简化剩余系。
初等数论练习题

初等数论练习题"信阳职业技术学院2010年12月~初等数论练习题一一、填空题1、d(2420)=___________; ϕ(2420)=___________。
2、设a,n 是大于1的整数,若a n -1是质数,则a=___________。
3、模9的绝对最小完全剩余系是___________。
4、同余方程9x+12≡0(mod 37)的解是__________。
5、不定方程18x-23y=100的通解是___________。
6、分母是正整数m 的既约真分数的个数为_______。
7、18100被172除的余数是___________。
8、⎪⎭⎫⎝⎛10365 =___________。
—9、若p 是素数,则同余方程x p 11(mod p )的解数为 。
二、计算题 1、解同余方程:3x 211x 200 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解3、求(127156+34)28除以111的最小非负余数。
三、证明题1、已知p 是质数,(a,p )=1,证明:(1)当a 为奇数时,a p-1+(p-1)a ≡0 (mod p); (2)当a 为偶数时,a p-1-(p-1)a ≡0 (mod p)。
(2、设a 为正奇数,n 为正整数,试证n2a ≡1(mod 2n+2)。
3、设p 是一个素数,且1≤k ≤p-1。
证明:k p 1C -(-1 )k(mod p )。
4、设p 是不等于3和7的奇质数,证明:p 6≡1(mod 84)。
初等数论练习题二一、填空题1、d(1000)=__________;σ(1000)=__________。
2、2010!的标准分解式中,质数11的次数是__________。
)3、费尔马(Fermat)数是指Fn=n22+1,这种数中最小的合数Fn 中的n=_________。
4、同余方程13x ≡5(mod 31)的解是__________。
初等数论期末练习

初等数论期末练习一、单项选择题2、如果(a,b) = l9则(ab,a + b)=()・A aB bC 1D a + b3、小于30的素数的个数()•A 10B 9C 8D 74、如果a = /?(mod 〃?),c是任意整数,则A ac =B a = bC ac T bc(modm)D a * b5、不定方程525x+231y = 210 ().A有解B无解C有正数解D有负数解6、整数5874192能被()整除.A 3 B3 与9 C 9 D3 或98、公因数是最大公因数的().A因数E倍数C相等D不确定9、大于20且小于40的素数有()•A4个E5个C2个D3个11、因为(),所以不定方程12v+15>- = 7没有解.A [12, 15]不整除7B (12, 15)不整除7C 7不整除(12, 15 )D 7不整除[12, 15]二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是()・b2、同余式1力+15三0(mod45)有解,而且解的个数为().3、不大于545而为13的倍数的正整数的个数为().4、设“是一正整数,Euler函数久“)表示所有()“,而且与“()的正整数的个数.5、设a,b 整数,则(a,b)()= ab.6、一个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、x = [x] +().8、同余式llLv = 75(mod321)有解,而且解的个数().9、在176与545之间有()是17的倍数.10、如果肋A0,则[d,b](d,b)=().11、a,b的最小公倍数是它们公倍数的().12、如果(a,b) = l,那么(ab,a+b)=().三、计算题1、求24871与3468的最小公倍数?2、求解不定方程107A-+37J =25. (8分)$429、3、求—L其中563是素数•(8分)4、解同余式lllx三75(mod321)・(8分)5、求[525,231]=?6、求解不定方程6.v-lly = 18.7、判断同余式A2 =365(modl847)是否有解?8、求11的平方剩余与平方非剩余.四、证明题1、任意一个〃位数①“一…你①与其按逆字码排列得到的数勺①…的差必是9的倍数.(11分)2、证明当〃是奇数时,有3怦+1)・(10分)3、一个能表成两个平方数和的数与一个平方数的乘枳,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数“的个位数是5,则该数是5的倍数.5、如果("是两个整数上A0,则存在唯一的整数对如•,使得a = bq+r^中0"Yd《初等数论》期末练习答案一、单项选择题2、C3、A4、A5、A6、E 8、A 9、A 11、B二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是((M0) = l )・b2、同余式1S+15三0(mod45)有解,而且解的个数为(3 ).3、不大于545而为13的倍数的正整数的个数为(41 ).4、设〃是一正整数,Euler函数处“)表示所有(不大于",而且与“(互素)的正整数的个数.5、设整数,则(a,b) ( [a,b] ) = ab.6、一个整数能被3整除的充分必要条件是它的(十进位)数码的和能被3整除.7、X =[A]+({x} ).8、同余式llLz75(mod321)有解,而且解的个数(3 ).9、在176与545之间有(12 )是17的倍数.10、如果ab >■ 0,则[«,/?](«, b) =( ab ).11、a,b的最小公倍数是它们公倍数的(因数).12、如果(a,b) = l,那么(",a + b)=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468) =17所以[24871,3468]= 24871x3468 17=5073684 所以24871与3468的最小公倍数是5073684。
初等数论试卷模拟试题和答案

初等数论试卷一一、单项选择题:(1分/题×20题=20分)1.设为实数,为的整数部分,则( )A.; B.;C.; D..2.下列命题中不正确的是( )A.整数的公因数中最大的称为最大公因数;B.整数的公倍数中最小的称为最小公倍数C.整数与它的绝对值有相同的倍数D.整数与它的绝对值有相同的约数3.设二元一次不定方程(其中是整数,且不全为零)有一整数解,则此方程的一切解可表为( )A.B.C.D.4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25;C.3,4,5; D.8,16,175.下列推导中不正确的是( )A.B.C.D.6.模10的一个简化剩余系是( )A. B.C. D.7.的充分必要条件是( )A. B.C. D.8.设,同余式的所有解为( )A.或 B.或C.或 D.无解.9、设f(x)=其中为f(x)的一个解则:( )A.B.C.D.10.则同余式:()A.有时大于p但不大于n; B.可超过pC.等于p D.等于n11.若2为模p的平方剩余,则p只能为下列质数中的 :( )A.3 B.11 C.13 D.2312.若雅可比符号,则 ( )A.B.;C.;D..13.( )A. 4 B. 3 C. 2 D. 114.模12的所有可能的指数为;( )A.1,2,4 B.1,2,4,6,12 C.1,2,3,4,6,12 D.无法确定15.若模m的单根存在,下列数中,m可能等于: ( )A. 2 B. 3 C. 4 D. 1216.对于模5,下列式子成立的是: ( )A. B.C. D.17.下列函数中不是可乘函数的是: ( )A.茂陛鸟斯(mobius)函数w(a) ;B.欧拉函数;C.不超过x的质数的个数;D.除数函数;18.若对模的指数是,>0,>0,则对模的指数是( )A. B. C. D.无法确定19.,均为可乘函数,则( )A.为可乘函数; B.为可乘函数C.为可乘函数; D.为可乘函数20.设为茂陛乌斯函数,则有( )不成立A. B. C. D.二.填空题:(每小题1分,共10分)21. 3在45中的最高次n= ____________________;22.多元一次不定方程:,其中,,…,,N均为整数,,有整数解的充分必要条件是___________________;.有理数,,,能表成纯循环小数的充分必要条件是_____;24.设为一次同余式,的一个解,则它的所有解为_________________________;25.威尔生(wilson)定理:________________________________________;26.勒让德符号=________________________________________;27.若,则是模的平方剩余的充分必要条件是_____________(欧拉判别条件);28.在模的简化剩余系中,原根的个数是_______________________;29.设,为模的一个原根,则模的一个原根为_____________;30._________________________________。
(完整版)初等数论练习题答案

初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
初等数论习题

《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m pmn pq,则m pmq np。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p是n的最小素约数,n = pn1,n1 > 1,证明:若p >,则n1是素数。
5. 证明:存在无穷多个自然数n,使得n不能表示为a2 p(a > 0是整数,p为素数)的形式。
第 2 节1. 证明:12n4 2n3 11n2 10n,nZ。
2. 设3a2 b2,证明:3a且3b。
3. 设n,k是正整数,证明:nk与nk + 4的个位数字相同。
4. 证明:对于任何整数n,m,等式n2 (n 1)2 = m2 2不可能成立。
5. 设a是自然数,问a4 3a2 9是素数还是合数?6. 证明:对于任意给定的n个整数,必可以从中找出若干个作和,使得这个和能被n整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x,yZ,172x 3y,证明:179x 5y。
5. 设a,b,cN,c无平方因子,a2b2c,证明:ab。
6. 设n是正整数,求的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a,b是正整数,证明:(a b)[a, b] = a[b, a b]。
4. 求正整数a,b,使得a b = 120,(a, b) = 24,[a, b] = 144。
5. 设a,b,c是正整数,证明:。
6. 设k是正奇数,证明:1 2 91k 2k 9k。
第 5 节1. 说明例1证明中所用到的四个事实的依据。
2. 用辗转相除法求整数x,y,使得1387x 162y = (1387, 162)。
3. 计算:(27090, 21672, 11352)。
4. 使用引理1中的记号,证明:(Fn + 1, Fn) = 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数4. 5.第 2 1. 2. 3. 4. 5. 6. n 整除。
第 3 1. 2. 3. 4. 5. 6. 设n 第 4 1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
6. 设k 是正奇数,证明:1 + 2 + + 9∣1k + 2k + + 9k 。
第 5 节1.说明例1证明中所用到的四个事实的依据。
2.用辗转相除法求整数x,y,使得1387x - 162y = (1387, 162)。
3.计算:(27090, 21672, 11352)。
4. 使用引理1中的记号,证明:(F n + 1, F n) = 1。
5. 若四个整数2836,4582,5164,6522被同一个大于1的整数除所得的余数相同,且不等于零,求除数和余数各是多少?6.记M n=2n- 1,证明:对于正整数a,b,有(M a, M b)= M(a, b)。
第 61.2.3.4.5.6.并且[a, b第71.2.3.4.在[1, n]5.6. 证明:在n!的标准分解式中,2的指数h = n -k,其中k是n的二进制表示的位数码之和。
第8 节1. 证明:若2n+ 1是素数,则n是2的乘幂。
2.证明:若2n- 1是素数,则n是素数。
3.证明:形如6n+ 5的素数有无限多个。
4.设d是正整数,6|/d,证明:在以d为公差的等差数列中,连续三项都是素数的情况最多发生一次。
5. 证明:对于任意给定的正整数n ,必存在连续的n 个自然数,使得它们都是合数。
6. 证明:级数∑∞=11n np 发散,此处使用了定理1注2中的记号。
第2章第 1 节1. 证明定理1和定理2。
2. 证明定理4。
3. 4. 5. 没有整数解。
6. 已知第 2 1. 2. 3. 4. 则n 5. 明:{a 1b 6. δi ≡ 1 (mod m i ), 1 ≤ i ≤ n , δi ≡ 0 (mod m j ),i ≠ j ,1 ≤ i , j ≤ n 。
证明:当b i 通过模m i (1 ≤ i ≤ n )的完全剩余系时,b 1δ1 + b 2δ2 + + b n δn通过模m = m 1m 2 m n 的完全剩余系。
第 3 节1. 证明定理1。
2. 设m 1, m 2, , m n 是两两互素的正整数,x i 分别通过模m i 的简化剩余系(1 ≤ i ≤ n ),m = m 1m 2 m n ,M i =im m,则 M 1x 1 + M 2x 2 + + M n x n通过模m 的简化剩余系。
3. 设m > 1,(a , m ) = 1,x 1, x 2, ⋯, x ϕ(m )是模m 的简化剩余系,证明:其中{x }4. 5. 6. (ⅰ) (ⅱ)第 4 1. 2. 3. 4. 5. 6. 设n 第 5 1. 2. 证明定理2。
3. 求∑n d d |1。
4. 设f (n )是积性函数,证明: (ⅰ) ∏∑-=np nd p f d f d ||))(1()()(μ(ⅱ)∏∑+=np nd p f d f d ||2))(1()()(μ。
5. 求ϕ(n )的Mobius 变换。
第3章第 1 节1. 证明定理3。
2. 写出789的二进制表示和五进制表示。
3. 求218的小数的循环节。
4. 证明:七进制表示的整数是偶数的充要条件是它的各位数字之和为偶数。
5. 证明:既约正分数nm的b 进制小数(0.a -1a -2a -3 )b 为有限小数的充要条件是n 的每第 2 1. 2. 3. 4. 5.第 3 1. 2. 求13的连分数。
3. 求32+的误差≤ 10 - 5的有理逼近。
4. 求sin18︒的误差≤ 10 - 5的有理逼近。
5. 已知圆周率π = 〈 3, 7, 15, 1, 292, 1, 1, 1, 21, 〉,求π的误差 ≤ 10 - 6的有理逼近。
6. 证明:251+连分数展开的第k 个渐近分数为kk F F1+。
此处{F n }是Fibonacci 数列。
第 4 节1. 将方程3x 2 + 2x - 2 = 0的正根写成连分数。
2. 求α = 〈3,2,1 〉之值。
3. 设a 是正整数,求12+a 的连分数。
4. 证明:〈=1a d5. 证明:(ⅰ) (ⅱ)第4第 1 1. 2. 3. 4. 甲班有学生7人,乙班有学生11人,现有100支铅笔分给这两个班,要使甲班的学生分到相同数量的铅笔,乙班学生也分到相同数量的铅笔,问应怎样分法?5. 证明:二元一次不定方程ax + by = n ,a > 0,b > 0,(a , b ) = 1的非负整数解的个数为][][abn ab n或+ 1。
6. 设a 与b 是正整数,(a , b ) = 1,证明:1, 2, , ab - a - b 中恰有2)1)(1(--b a 个整数可以表示成ax + by (x ≥ 0,y ≥ 0)的形式。
第 2 节1. 证明定理2推论。
2. 设x ,y ,z 是勾股数,x 是素数,证明:2z - 1,2(x + y + 1)都是平方数。
3. 求整数x ,y ,z ,x > y > z ,使x - y ,x - z ,y - z 都是平方数。
4. 解不定方程:x 2 + 3y 2 = z 2,x > 0,y > 0,z > 0,(x , y ) = 1。
5. 证明下面的不定方程没有满足xyz ≠ 0的整数解。
(ⅰ) x 2 + y 2 + z 2 = x 2y 2; (ⅱ) x 2 + y 2 + z 2 = 2xyz 。
6. 求方程x 2 + y 2 = z 4的满足(x , y ) = 1,2∣x 的正整数解。
第 3 节1. 求方程x 2 + xy - 6 = 0的整数解。
2. 3. 4. 5. 6. 每组n第5第 1 1. 2. (ⅰ) (ⅱ) 3. ⎩⎨⎧≡-≡+)47(mod 10)47(mod 3853y x y x 。
4. 设p 是素数,0 < a < p ,证明:!)1()2)(1()1(1a a p p pb x a +-⋅⋅⋅---≡-(mod p )。
是同余方程ax ≡ b (mod p )的解。
5. 证明:同余方程a 1x 1 + a 2x 2 + + a n x n ≡ b (mod m )有解的充要条件是(a 1, a 2, , a n , m ) = d ∣b 。
若有解,则恰有d ⋅m n -1个解,mod m 。
6. 解同余方程:2x + 7y ≡ 5 (mod 12)。
第 2 节1. 解同余方程组:⎪⎪⎩⎪⎪⎨⎧≡≡≡≡。
)11(mod )7(mod )6(mod )5(mod 4321b xb x b xb x2.⎪⎧≡)15(mod 8x 3. 余34. 51是一个55. 6.第 3 1. 2. 3. 4. 5. 6. T > n 。
第 4 1. (ⅰ) (ⅱ) 4x 20 + 3x 12 + 2x 7 + 3x - 2 ≡ 0 (mod 5)。
2. 判定(ⅰ) 2x 3 - x 2 + 3x - 1 ≡ 0 (mod 5)是否有三个解; (ⅱ) x 6 + 2x 5 - 4x 2 + 3 ≡ 0 (mod 5)是否有六个解?3. 设(a , m ) = 1,k 与m 是正整数,又设x 0k ≡ a (mod m ),证明同余方程x k ≡ a (mod m )的一切解x 都可以表示成x ≡ yx 0 (mod m ),其中y 满足同余方程y k ≡ 1 (mod m )。
4. 设n 是正整数,p 是素数,(n , p - 1) = k ,证明同余方程x n ≡ 1 (mod p )有k 个解。
5. 设p 是素数,证明:(ⅰ) 对于一切整数x ,x p - 1 - 1 ≡ (x - 1) (x - 2) (x - p + 1) (mod p ); (ⅱ) (p - 1)! ≡ - 1 (mod p )。
6. 设p ≥ 3是素数,证明:(x - 1)(x - 2) (x - p + 1)的展开式中除首项及常数项外,所有的系数都是p 的倍数。
第 5 节1. 同余方程x 2 ≡ 3 (mod 13)有多少个解?2. 求出模23的所有的二次剩余和二次非剩余。
3. 4. 的解。
5. 6.第 6 1. (ⅰ) (ⅱ) 2. 3. 4. 5. 证明:形如8k + 5(k ∈Z )的素数无穷多个。
6. 证明:对于任意的奇素数p ,总存在整数n ,使得p ∣(n 2 + 1)(n 2 + 2)(n 2 - 2)。
第 7 节1. 证明定理的结论(ⅱ),(ⅲ),(ⅳ)。
2. 已知3019是素数,判定方程x 2 ≡ 374 (mod 3019)是否有解。
3. 设奇素数为p = 4n + 1型,且d ∣n ,证明:)(pd= 1。
4. 设p ,q 是两个不同的奇素数,且p = q + 4a ,证明:)()(qa p a=。
5. 设a > 0,b > 0,b 为奇数,证明:⎪⎩⎪⎨⎧≡-≡=+。
,当,当)4(mod 32)4(mod 102)()()(a ba ab a b a a6. 设a ,b ,c 是正整数,(a , b ) = 1,2|/b ,b < 4ac ,求)()(4ba b ac a与-的关系。
第6第 1 1. 2. 此处)(pa3. 则2∣S (k )此处)(pa4. )2(21221)(⋅⋅⋅⋅⋅⋅n n n m m m ,,,,,,, 构成模p 的一个简化剩余系。
5. 在第3题的条件下,并沿用第2题的记号,有22)()()(21)(21n S m S p +=。
即上式给出了形如4k + 1的素数的二平方和表示的具体方法。
6. 利用题5的结论,试将p = 13写成二平方和。
第 2 节1.若(x, y, z) = 1,则不存在整数n,使得x2+y2+ z2 = 4n2。
2.设k是非负整数,证明2k不能表示三个正整数平方之和。