初等数论习题集

合集下载

初等数论《完全平方数》 习题集(1)

初等数论《完全平方数》 习题集(1)

初等数论《完全平方数》习题集(1)一完全平方数自然数 N 1 2 3 4 5 6 7 8 9 10 11 12 13 …完全平方数 N2 1 4 9 16 25 36 49 64 81 100 121 144 169 …二完全平方数的特征1 末位数字为:0、1、4、5、6、9的,可能是完全平方数,如100 81 64 225 36 169等等。

但有的不是完全平方数,如200 181 464 325 56 189 等等。

2 末位数为:2、3、7、8的整数,肯定不是完全平方数。

如22222、123 167 38 等等,3 偶数的平方是4N型的偶数。

个位数字是偶数0、4 、6,十位数字有奇有偶。

它们只能是00 04 24 44 64 84、16 36 56 76 964 奇数的平方是4N+1型的奇数。

个位数字是奇数1、9 ,十位数字有奇有偶。

即只能是01 21 41 81 09 29 49 69 895 尾数为25的数,可能是完全平方数。

如225 625等等,但有的不是完全平方数,如125 325 7125等等。

6 3k或3k+1型的数,可能是完全平方数。

如144=3×48 、121=3×40+1等,但有的不是完全平方数,如156 =52×3、244=81×3+1等等。

7 完全平方数的数字之和,只能是0,1,4,7,9。

数字和是2,3,5,6,8的,肯定不是完全平方数。

8 如果质数p能整除A,但p的平方不能整除A,则A不是完全平方数。

如:7︱196 49︱ 196 A=196 是完全平方数7︱119 49ト119 A=119 不是完全平方数9 相邻整数的平方数之间,不可能有别的平方数。

如72=49、82=64之间,不可能有别的平方数。

总之,以上的判别法,只判别可能是完全平方数,但不能肯定是完全平方数。

实质上只适合判别非完全平方数。

10 判别完全平方数的必要充份条件是:因数一定是偶次方,因数个数一定是奇数。

《初等数论》历年考试解答

《初等数论》历年考试解答

《初等数论》习题集第1章第 1 节1. 证明定理1.2. 证明:若m-p∣mn+pq,则m-p∣mq+np.3.证明:任意给定地连续39个自然数,其中至少存在一个自然数,使得这个自然数地数字和能被11整除.4. 设p是n地最小素约数,n=pn1,n1>1,证明:若p>,则n1是素数.5. 证明:存在无穷多个自然数n,使得n不能表示为a2+p(a > 0是整数,p为素数)地形式.第 2 节1.证明:12∣n4+2n3+11n2+10n,n∈Z.2. 设3∣a2+b2,证明:3∣a且3∣b.3.设n,k是正整数,证明:n k与n k + 4地个位数字相同.4.证明:对于任何整数n,m,等式n2+ (n+1)2 =m2+ 2不可能成立.5. 设a是自然数,问a4- 3a2+ 9是素数还是合数?6.证明:对于任意给定地n个整数,必可以从中找出若干个作和,使得这个和能被n整除.第 3 节1.证明定理1中地结论(ⅰ)—(ⅳ).2.证明定理2地推论1,推论2和推论3.3.证明定理4地推论1和推论3.4.设x,y∈Z,17∣2x+3y,证明:17∣9x+5y.5. 设a,b,c∈N,c无平方因子,a2∣b2c,证明:a∣b.6.设n是正整数,求地最大公约数.第 4 节1. 证明定理1.2.证明定理3地推论.3. 设a,b是正整数,证明:(a+b)[a, b] = a[b, a+b].4. 求正整数a,b,使得a+b = 120,(a, b) = 24,[a, b] = 144.5.设a,b,c是正整数,证明:.6. 设k是正奇数,证明:1 + 2 + + 9∣1k+ 2k+ + 9k.第 5 节1.说明例1证明中所用到地四个事实地依据.2.用辗转相除法求整数x,y,使得1387x-162y = (1387,162).3.计算:(27090,21672, 11352).4. 使用引理1中地记号,证明:(F n+ 1, F n) = 1.5. 若四个整数2836,4582,5164,6522被同一个大于1地整数除所得地余数相同,且不等于零,求除数和余数各是多少?6.记M n=2n- 1,证明:对于正整数a,b,有(M a, M b)= M(a, b).第 6 节1.证明定理1地推论1.2.证明定理1地推论2.3.写出22345680地标准分解式.4. 证明:在1, 2, , 2n中任取n+ 1数,其中至少有一个能被另一个整除.5.证明:(n≥2)不是整数.6.设a,b是正整数,证明:存在a1,a2,b1,b2,使得a = a1a2,b = b1b2,(a2,b2) = 1,并且[a,b] = a2b2.第7 节1.证明定理1.2.求使12347!被35k整除地最大地k值.3. 设n是正整数,x是实数,证明:= n.4.设n是正整数,求方程x2-[x2] = (x-[x])2在[1,n]中地解地个数.5.证明:方程f(x) = [x] + [2x] + [22x] + [23x] + [24x] + [25x] = 12345没有实数解.6. 证明:在n!地标准分解式中,2地指数h = n-k,其中k是n地二进制表示地位数码之和.第8 节1. 证明:若2n+ 1是素数,则n是2地乘幂.2.证明:若2n- 1是素数,则n是素数.3.证明:形如6n+ 5地素数有无限多个.4.设d是正整数,6d,证明:在以d为公差地等差数列中,连续三项都是素数地情况最多发生一次.5.证明:对于任意给定地正整数n,必存在连续地n个自然数,使得它们都是合数.6. 证明:级数发散,此处使用了定理1注2中地记号.第2章第 1 节1.证明定理1和定理2.2.证明定理4.3.证明定理5中地结论(ⅰ)—(ⅳ).4.求81234被13除地余数.5. 设f(x)是整系数多项式,并且f(1), f(2), ,f(m)都不能被m整除,则f(x) = 0没有整数解.6.已知99∣,求α与β.第 2 节1.证明定理1.2.证明:若2p+ 1是奇素数,则(p!)2+ (-1)p≡ 0(mod 2p+ 1).3.证明:若p是奇素数,N = 1 + 2 + + ( p- 1),则(p- 1)! ≡p- 1(mod N).4.证明Wilson定理地逆定理:若n>1,并且(n- 1)! ≡-1(mod n),则n是素数.5.设m是整数,4∣m,{a1, a2, , a m}与{b1, b2, , b m}是模m地两个完全剩余系,证明:{a1b1,a2b2, , a m b m}不是模m地完全剩余系.6.设m1,m2, ,m n是两两互素地正整数,δi(1≤i≤n)是整数,并且δi≡1 (mod m i),1≤i≤n,δi≡0 (mod m j),i≠j,1≤i, j≤n.证明:当b i通过模m i(1≤i≤n)地完全剩余系时,b1δ1+b2δ2+ +b nδn通过模m =m1m2 m n地完全剩余系.第 3 节1.证明定理1.2.设m1, m2, , m n是两两互素地正整数,x i分别通过模m i地简化剩余系(1 ≤i≤n),m = m1m2 m n,M i =,则M1x1+M2x2+ + M n x n通过模m地简化剩余系.3.设m>1,(a, m) = 1,x1, x2, ⋯, xϕ(m)是模m地简化剩余系,证明:.其中{x}表示x地小数部分.4.设m与n是正整数,证明:ϕ(mn)ϕ((m, n)) = (m, n)ϕ(m)ϕ(n).5.设a,b是任意给定地正整数,证明:存在无穷多对正整数m与n,使得aϕ(m) = bϕ(n).6.设n是正整数,证明:(ⅰ) ϕ(n) >;(ⅱ) 若n是合数,则ϕ(n)≤n-.第 4 节1. 证明:1978103- 19783能被103整除.2.求313159被7除地余数.3.证明:对于任意地整数a,(a, 561) = 1,都有a560≡ 1 (mod 561),但561是合数.4. 设p,q是两个不同地素数,证明:p q- 1+q p- 1≡ 1 (mod pq).5.将612- 1分解成素因数之积.6.设n∈N,b∈N,对于b n+1地素因数,你有甚麽与例6相似地结论?第 5 节1.证明例2中地结论.2.证明定理2.3.求.4.设f(n)是积性函数,证明:(ⅰ)(ⅱ).5.求ϕ(n)地Mobius变换.第3章第 1 节1.证明定理3.2.写出789地二进制表示和五进制表示.3.求地小数地循环节.4.证明:七进制表示地整数是偶数地充要条件是它地各位数字之和为偶数.5.证明:既约正分数地b进制小数(0.a-1a-2a-3 )b为有限小数地充要条件是n地每个素因数都是b地素因数.第 2 节1.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,2.设连分数〈α1, α2, ,αn, 〉地第k个渐近分数为,证明:,k≥ 2.3.求连分数〈 1, 2, 3, 4, 5, 〉地前三个渐近分数.4.求连分数〈 2, 3, 2, 3, 〉地值.5.解不定方程:7x- 9y = 4.第 3 节1.证明定理4.2.求地连分数.3.求地误差≤ 10- 5地有理逼近.4.求sin18︒地误差≤ 10- 5地有理逼近.5.已知圆周率π = 〈 3, 7, 15, 1, 292, 1, 1, 1, 21, 〉,求π地误差≤ 10- 6地有理逼近.6.证明:连分数展开地第k个渐近分数为.此处{F n}是Fibonacci数列.第 4 节1.将方程3x2+ 2x- 2 = 0地正根写成连分数.2.求α = 〈〉之值.3.设a是正整数,求地连分数.4.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,证明:地充要条件是p n = a1q n+q n-1,dq n = a1p n+p n-1.5.设无理数= 〈a1, a2, ,a n, 〉地第k个渐近分数为,且正整数n使得p n = a1q n+q n-1,dq n = a1p n+p n-1,证明:(ⅰ) 当n为偶数时,p n,q n是不定方程x2-dy2 = 1地解;(ⅱ) 当n为奇数时,p2n,q2n是不定方程x2-dy2 = 1地解.第4章第 1 节1.将写成三个既约分数之和,它们地分母分别是3,5和7.2.求方程x1+ 2x2+ 3x3 = 41地所有正整数解.3.求解不定方程组:.4.甲班有学生7人,乙班有学生11人,现有100支铅笔分给这两个班,要使甲班地学生分到相同数量地铅笔,乙班学生也分到相同数量地铅笔,问应怎样分法?5. 证明:二元一次不定方程ax+by = n,a > 0,b > 0,(a, b) = 1地非负整数解地个数为+ 1.6.设a与b是正整数,(a, b) = 1,证明:1, 2, , ab-a-b中恰有个整数可以表示成ax+by(x≥ 0,y≥ 0)地形式.第 2 节1.证明定理2推论.2.设x,y,z是勾股数,x是素数,证明:2z-1,2(x+y +1)都是平方数.3.求整数x,y,z,x > y > z,使x-y,x-z,y-z都是平方数.4.解不定方程:x2+3y2 = z2,x > 0,y > 0,z > 0,(x, y ) = 1.5.证明下面地不定方程没有满足xyz ≠0地整数解.(ⅰ)x2+y2+z2 = x2y2;(ⅱ) x2+y2+z2 = 2xyz.6.求方程x2+y2 = z4地满足(x, y ) = 1,2∣x地正整数解.第 3 节1. 求方程x2+xy -6 = 0地整数解.2. 求方程组地整数解.3. 求方程2x-3y = 1地正整数解.4.求方程地正整数解.5.设p是素数,求方程地整数解.6. 设2n+ 1个有理数a1, a2, , a2n+ 1满足条件P:其中任意2n个数可以分成两组,每组n个数,两组数地和相等,证明:a1 = a1 = = a2n+ 1.第5章第 1 节1.证明定理1.2.解同余方程:(ⅰ) 31x≡ 5 (mod 17);(ⅱ) 3215x≡ 160 (mod 235).3.解同余方程组:.4.设p是素数,0<a<p,证明:(mod p).是同余方程ax≡b (mod p)地解.5.证明:同余方程a1x1+a2x2+ +a n x n≡b (mod m)有解地充要条件是(a1, a2, , a n, m) = d∣b.若有解,则恰有d⋅m n-1个解,mod m.6.解同余方程:2x+ 7y≡ 5 (mod 12).第 2 节1. 解同余方程组:2.解同余方程组:3.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人.已知这队士兵不超过170人,问这队士兵有几人?4. 求一个最小地自然数n,使得它地是一个平方数,它地是一个立方数,它地是一个5次方数.5. 证明:对于任意给定地n个不同地素数p1, p2, …, p n,必存在连续n个整数,使得它们中地第k个数能被p k整除.6.解同余方程:3x2+ 11x - 20≡0 (mod 105).第 3 节1.证明定理地推论.2.将例2中略去地部分补足.3.将例4中略去地部分补足.4.解同余方程x2≡-1 (mod 54).5.解同余方程f(x) = 3x2+ 4x-15 ≡ 0 (mod 75).6.证明:对于任意给定地正整数n,必存在m,使得同余方程x2≡1 (mod m)地解数T > n.第 4 节1.解同余方程:(ⅰ)3x11+2x8+ 5x4-1 ≡0 (mod 7);(ⅱ)4x20+3x12+ 2x7+ 3x-2 ≡0 (mod 5).2.判定(ⅰ) 2x3-x2+ 3x-1 ≡0 (mod 5)是否有三个解;(ⅱ) x6+2x5- 4x2+ 3 ≡0 (mod 5)是否有六个解?3.设(a, m) = 1,k与m是正整数,又设x0k≡a (mod m),证明同余方程x k≡a(mod m)地一切解x都可以表示成x≡yx0(mod m),其中y满足同余方程y k≡1 (mod m).4.设n是正整数,p是素数,(n, p-1) = k,证明同余方程x n≡ 1 (mod p)有k个解.5.设p是素数,证明:(ⅰ) 对于一切整数x,x p- 1-1 ≡ (x-1) (x-2) (x-p+ 1) (mod p);(ⅱ) (p-1)! ≡-1 (mod p).6.设p≥ 3是素数,证明:(x-1)(x-2) (x-p+ 1)地展开式中除首项及常数项外,所有地系数都是p地倍数.第 5 节1.同余方程x2≡ 3 (mod 13)有多少个解?2.求出模23地所有地二次剩余和二次非剩余.3.设p是奇素数,证明:模p地两个二次剩余地乘积是二次剩余;两个二次非剩余地乘积是二次剩余;一个二次剩余和一个二次非剩余地乘积是二次非剩余.4.设素数p≡ 3 (mod 4),= 1,证明x≡±(mod p)是同余方程x2≡n (mod p)地解.5.设p是奇素数,(n, p) = 1,α是正整数,证明同余方程x2≡n (mod pα)有解地充要条件是= 1.6.设p是奇素数,证明:模p地所有二次剩余地乘积与对模p同余.第 6 节1.已知769与1013是素数,判定方程(ⅰ) x2≡ 1742 (mod 769);(ⅱ) x2≡ 1503 (mod 1013).是否有解.2.求所有地素数p,使得下面地方程有解:x2≡ 11 (mod p).3.求所有地素数p,使得-2∈QR(p),-3∈QR(p).4.设(x, y) = 1,试求x2- 3y2地奇素数因数地一般形式.5.证明:形如8k+ 5(k∈Z)地素数无穷多个.6.证明:对于任意地奇素数p,总存在整数n,使得p∣(n2+ 1)(n2+ 2)(n2- 2).第7 节1.证明定理地结论(ⅱ),(ⅲ),(ⅳ).2.已知3019是素数,判定方程x2≡ 374 (mod 3019)是否有解.3.设奇素数为p = 4n+ 1型,且d∣n,证明:= 1.4.设p,q是两个不同地奇素数,且p = q+ 4a,证明:.5.设a > 0,b > 0,b为奇数,证明:6.设a,b,c是正整数,(a, b) = 1,2b,b<4ac,求地关系.第6章第 1 节1.设n是正整数,证明:不定方程x2+y2 = z n总有正整数解x,y,z.2.设p是奇素数,(k, p) = 1,则,此处是Legender符号.3.设素数p≡ 1(mod 4),(k, p) = 1,记,则2∣S(k),并且,对于任何整数t,有,此处是Legender符号.4.设p是奇素数,,则构成模p地一个简化剩余系.5.在第3题地条件下,并沿用第2题地记号,有.即上式给出了形如4k+ 1地素数地二平方和表示地具体方法.6.利用题5地结论,试将p = 13写成二平方和.第 2 节1.若(x, y, z) = 1,则不存在整数n,使得x2+y2+ z2 = 4n2.2.设k是非负整数,证明2k不能表示三个正整数平方之和.3.证明:每一个正整数n必可以表示为5个立方数地代数和.4.证明:16k+ 15型地整数至少需要15个四次方数地和表之.5.证明:16k⋅31不能表示为15个四次方数地和.第7章第 1 节2.求模14地全部原根.3.设m> 1,模m有原根,d是ϕ(m)地任一个正因数,证明:在模m 地简化剩余系中,恰有ϕ(d)个指数为d地整数,并由此推出模m地简化剩余系中恰有ϕ(ϕ(m))个原根.4.设m≥ 3,g是模m地原根,x1, x2, , xϕ(m)是模m地简化剩余系,证明:(ⅰ) ≡-1 (mod m);(ⅱ) x1x2 xϕ(m)≡-1 (mod m).5.设p = 2n+ 1是一个奇素数,证明:模p地全部二次非剩余就是模p 地全部原根.6.证明:(ⅰ) 设p奇素数,则M p = 2p- 1地素因数必为2pk+ 1型;(ⅱ) 设n≥ 0,则F n =+ 1地素因数必为2n+ 1k+ 1型.第 2 节1.求模29地最小正原根.2. 分别求模293和模2⋅293地原根.3.解同余方程:x12≡ 16 (mod 17).4.设p和q = 4p+ 1都是素数,证明:2是模q地一个原根.5.设m≥ 3,g1和g2都是模m地原根,则g = g1g2不是模m地原根.6.设p是奇素数,证明:当且仅当p- 1n时,有1n+ 2n+ + (p- 1)n≡0 (mod p).第8章第 1 节1.补足定理1地证明.2.证明定理2.3.证明:有理数为代数整数地充要条件是这个有理数为整数.第 2 节1.证明例中地结论.2.证明连分数是超越数.3.设ξ是一个超越数,α是一个非零地代数数,证明:ξ+α,ξα,都是超越数.第 3 节1.证明引理1.2.证明定理3中地F+F(0)是整数.第9章第 1 节1.问:1948年2月14日是星期几?2.问:1999年10月1日是星期几?第 2 节1.编一个有十个球队进行循环赛地程序表.2.编一个有九个球队进行循环赛地程序表.第 3 节1.利用例1中地加密方法,将“ICOMETODAY”加密.2. 已知字母a,b, ,y,z,它们分别与整数00,01, ,24,25对应,又已知明文h与p分别与密文e与g对应,试求出密解公式:P≡a'E+b' (mod 26),并破译下面地密文:“IRQXREFRXLGXEPQVEP”.第 4 节1.设一RSA地公开加密钥为n = 943,e = 9,试将明文P = 100加密成密文E.2. 设RSA(n A, e A) = RSA(33, 3),RSA(n B, e B) = RSA(35, 5),A地签证信息为M = 3,试说明A向B发送签证M地传送和认证过程.第 5 节1.设某数据库由四个文件组成:F1 = 4,F2 = 6,F3 = 10,F4 = 13.试设计一个对该数据库加密地方法,但要能取出个别地F i(1≤i≤4),同时不影响其他文件地保密.2.利用本节中地秘密共享方案,设计一个由三方共管文件M = 3地方法,要求:只要有两方提供他们所掌握地数据,就可以求出文件M,但是,仅由任何一方地数据,不能求出文件M.(提示:取p = 5,m1 = 8,m2 = 9,m3 = 11)第 6 节1.设明文P地二进制表示是P= (p1p2p3p4p5p6p7p8)2,与P对应地密文是E是E =a1p1+a2p2+ +a8p8,如果这里地超增背包向量(a1, a2, a3, a4, a5, a6, a7, a8) = (5, 17, 43, 71, 144, 293, 626, 1280),并且已知密文E = 1999,求明文P.2.给定超增背包向量(2, 3, 7, 13, 29, 59),试设计一个背包型加密方法,将明文P = 51加密.(提示:取M = 118,k =77).版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.fjnFL。

初等数论练习题一(含答案)

初等数论练习题一(含答案)

初等数论练习题⼀(含答案)《初等数论》期末练习⼆⼀、单项选择题1、=),0(b ().A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=().A aB bC 1D b a +3、⼩于30的素数的个数().A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定⽅程210231525=+y x ().A 有解B ⽆解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最⼤公因数的().A 因数B 倍数C 相等D 不确定9、⼤于20且⼩于40的素数有().A 4个B 5个C 2个D 3个10、模7的最⼩⾮负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定⽅程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(m od 4382≡x ().A 有解B ⽆解C ⽆法确定D 有⽆限个解⼆、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环⼩数的条件是(). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( ). 3、不⼤于545⽽为13的倍数的正整数的个数为( ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( )n ,⽽且与n ()的正整数的个数.5、设b a ,整数,则),(b a ()=ab .6、⼀个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、+=][x x ().8、同余式)321(m od 75111≡x 有解,⽽且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最⼩公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最⼩公倍数?2、求解不定⽅程2537107=+y x .(8分)3、求??563429,其中563是素数. (8分) 4、解同余式)321(m od 75111≡x .(8分) 5、求[525,231]=?6、求解不定⽅程18116=-y x .7、判断同余式)1847(m od 3652≡x 是否有解?8、求11的平⽅剩余与平⽅⾮剩余.四、证明题1、任意⼀个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、⼀个能表成两个平⽅数和的数与⼀个平⽅数的乘积,仍然是两个平⽅数的和;两个能表成两个平⽅数和的数的乘积,也是⼀个两个平⽅数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯⼀的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习⼆答案⼀、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B⼆、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环⼩数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( 3 ). 3、不⼤于545⽽为13的倍数的正整数的个数为( 41 ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( 不⼤于 )n ,⽽且与n (互素)的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、⼀个整数能被3整除的充分必要条件是它的(⼗进位)数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,⽽且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最⼩公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最⼩公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871?=5073684 所以24871与3468的最⼩公倍数是5073684。

初等数论习题

初等数论习题

初等数论练习题1、()=320011 ()10,()=107137 ()2。

2、()=531404 ()10,()=1021580()8 3、比较()21011011与()41203的大小。

4、求证:对于任意整数n m ,,必有1616+≠-n m 。

5、如果n 是一个自然数,则()1+n n 是 (填“奇数”或“偶数”)6、若b a ,两数的和与积均为偶数,则b a ,的奇偶性是 。

7、若a 除以b 商c 余r ,则am 除以bm 商 余 。

8、设4>n ,且()()2434+-n n ,求n 。

9、设()223b a +,证明a 3且b 310证明:若()()pq mn p m +-,则()()np mq p m +-。

11、若23++n m 是偶数,试判定()()200311+--n m 是奇数还是偶数。

12、求证:若b a ,a b ,则b a ±=。

11、设b a ,是正整数,且b a ≤,若5776=ab ,()31,=b a ,求b a ,。

13、设b a ,是正整数,且b a ≤,若50=+b a ,()5,=b a ,求b a ,。

14、如果p 是素数,a 是整数,则有()1,=p a 或者____ ___ 15、()=204,360 ,[]=204,360 。

16、若()()24,4,==b a ,则()=+4,b a 。

17、写出1500的标准分解式是,60480的标准分解式为 18、541是 。

(填“质数”或“合数”)19、设()1,=n m ,求证:()()()n d m d mn d =,()()()n S m S mn S =。

20、计算()430d ,()430S 。

21、求!100末尾0的个数。

22、求13除486的余数。

23、写出模9的一个完全剩余系,使其中每个数都是奇数。

24、写出模9的一个完全剩余系,使其中每个数都是偶数。

25、若()1,=m a ,求证:若x 通过模m 的简化剩余系,则ax 通过模m 的简化剩余系。

初等数论期末练习

初等数论期末练习

初等数论期末练习一、单项选择题2、如果(a,b) = l9则(ab,a + b)=()・A aB bC 1D a + b3、小于30的素数的个数()•A 10B 9C 8D 74、如果a = /?(mod 〃?),c是任意整数,则A ac =B a = bC ac T bc(modm)D a * b5、不定方程525x+231y = 210 ().A有解B无解C有正数解D有负数解6、整数5874192能被()整除.A 3 B3 与9 C 9 D3 或98、公因数是最大公因数的().A因数E倍数C相等D不确定9、大于20且小于40的素数有()•A4个E5个C2个D3个11、因为(),所以不定方程12v+15>- = 7没有解.A [12, 15]不整除7B (12, 15)不整除7C 7不整除(12, 15 )D 7不整除[12, 15]二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是()・b2、同余式1力+15三0(mod45)有解,而且解的个数为().3、不大于545而为13的倍数的正整数的个数为().4、设“是一正整数,Euler函数久“)表示所有()“,而且与“()的正整数的个数.5、设a,b 整数,则(a,b)()= ab.6、一个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、x = [x] +().8、同余式llLv = 75(mod321)有解,而且解的个数().9、在176与545之间有()是17的倍数.10、如果肋A0,则[d,b](d,b)=().11、a,b的最小公倍数是它们公倍数的().12、如果(a,b) = l,那么(ab,a+b)=().三、计算题1、求24871与3468的最小公倍数?2、求解不定方程107A-+37J =25. (8分)$429、3、求—L其中563是素数•(8分)4、解同余式lllx三75(mod321)・(8分)5、求[525,231]=?6、求解不定方程6.v-lly = 18.7、判断同余式A2 =365(modl847)是否有解?8、求11的平方剩余与平方非剩余.四、证明题1、任意一个〃位数①“一…你①与其按逆字码排列得到的数勺①…的差必是9的倍数.(11分)2、证明当〃是奇数时,有3怦+1)・(10分)3、一个能表成两个平方数和的数与一个平方数的乘枳,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数“的个位数是5,则该数是5的倍数.5、如果("是两个整数上A0,则存在唯一的整数对如•,使得a = bq+r^中0"Yd《初等数论》期末练习答案一、单项选择题2、C3、A4、A5、A6、E 8、A 9、A 11、B二、填空题1、有理数纟,0YdYb,(m)= l,能写成循环小数的条件是((M0) = l )・b2、同余式1S+15三0(mod45)有解,而且解的个数为(3 ).3、不大于545而为13的倍数的正整数的个数为(41 ).4、设〃是一正整数,Euler函数处“)表示所有(不大于",而且与“(互素)的正整数的个数.5、设整数,则(a,b) ( [a,b] ) = ab.6、一个整数能被3整除的充分必要条件是它的(十进位)数码的和能被3整除.7、X =[A]+({x} ).8、同余式llLz75(mod321)有解,而且解的个数(3 ).9、在176与545之间有(12 )是17的倍数.10、如果ab >■ 0,则[«,/?](«, b) =( ab ).11、a,b的最小公倍数是它们公倍数的(因数).12、如果(a,b) = l,那么(",a + b)=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468) =17所以[24871,3468]= 24871x3468 17=5073684 所以24871与3468的最小公倍数是5073684。

初等数论试题库

初等数论试题库

初等数论一、填空1、d (1000)= 。

φ(1000)= 。

(10174)=______ 。

2、ax+bY=c 有解的充要条件是 。

3、20022002被3除后余数为 。

4、[X]=3,[Y]=4,[Z]=2,则[X —2Y+3Z]可能的值为 。

5、φ(1)+φ(P )+…φ(nP )= 。

6、高斯互反律是 。

7、两个素数的和为31,则这两个素数是 。

8、带余除法定理是 。

9、d (37)= 。

σ(37)= 。

10、φ(1)+φ(P )+…φ(nP )= 。

11、不能表示成5X+3Y (X 、Y 非负)的最大整数为 。

12、7在2004!中的最高幂指数是 。

13、(1501 ,300)= 。

14、)(mod m b ax ≡有解的充要条件是 。

15、威尔逊定理是 。

16、写出6的一个绝对值最小的简化系 。

17、50506666688888⨯被7除后的余数为 。

18、d (31)= 。

σ(3600)= 。

19、四位数13AA 被9整除,则A= 。

20、17X+2Y=3通解为 。

21、费尔马大定理是 。

22、写出12的一个简化系,要求每项都是5的倍数 。

23、{}4.2-= 。

24、128574.0 化为分数是 。

25、15!的标准分解是 。

26、1000到2003的所有整数中13的倍数有 个。

27、 σ(29)= .28、不能表示成y x 45+(y x ,为非负整数)的最大整数为 .29、7在2008!的标准分解式中的最高幂指数是 . 30、2005和2006的最小公倍数是 . 31、威尔逊定理是 .32、设1>x 为整数且被4、5、7除后的余数都为3,则最小的x 是 . 33、已知(a ,b )=1,则(5a+3b ,13a+8b )=__________.34、1,4,9,16,…10000这100个平方数中是3的倍数的平方数有 个. 35、若今天是星期日, 则1010天后的那一天是星期__________.36、20053的末二位数是________. 37、d (1200)= 。

(完整版)初等数论练习题答案

(完整版)初等数论练习题答案

初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。

5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。

.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。

7、18100被172除的余数是_256。

8、 =-1。

⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。

二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。

解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。

作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。

2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。

初等数论习题集答案

初等数论习题集答案

初等数论习题集答案初等数论习题集答案数论作为数学的一个分支,研究的是整数的性质和关系。

初等数论是数论中的一个重要分支,它主要研究整数的基本性质和简单的数学关系。

在学习初等数论的过程中,习题集是一个非常好的辅助工具,通过解答习题可以加深对数论知识的理解和掌握。

本文将为大家提供一些初等数论习题的答案,希望对大家的学习有所帮助。

1. 证明:若a和b是整数,且a|b,则|a|≤|b|。

证明:根据整除的定义,如果a|b,那么存在一个整数k,使得b=ak。

由此可得:|b|=|ak|=|a||k|。

由于k是一个整数,所以|k|≥1,因此有|b|≥|a|。

2. 证明:若a、b和c是整数,且a|b,b|c,则a|c。

证明:根据整除的定义,如果a|b,那么存在一个整数k1,使得b=ak1。

同理,如果b|c,那么存在一个整数k2,使得c=bk2。

将b的表达式代入c的表达式中,得到c=(ak1)k2=ak1k2。

由此可见,c也是a的倍数,即a|c。

3. 证明:如果一个整数能被2和3整除,那么它一定能被6整除。

证明:假设一个整数能被2和3整除,那么可以分别表示为2m和3n,其中m和n是整数。

将2m和3n相加得到2m+3n=6(m/2+n/3),由此可见,这个整数可以被6整除。

4. 证明:如果一个整数的平方是偶数,那么这个整数本身就是偶数。

证明:假设一个整数的平方是偶数,那么可以表示为n^2=2m,其中n和m是整数。

如果n是奇数,那么可以表示为n=2k+1,其中k是整数。

将n代入n^2=2m中,得到(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1,由此可见,这个整数的平方是奇数,与题设矛盾。

因此,假设不成立,这个整数本身一定是偶数。

5. 证明:对于任意的正整数n,n^2+n+1一定不能被2整除。

证明:假设n^2+n+1能被2整除,那么可以表示为n^2+n+1=2m,其中n和m是整数。

将n^2+n+1拆开得到n(n+1)+1=2m,由此可见,左边是一个奇数加上1,得到一个偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a(m) =b(n)。
6.设n是正整数,证明:
(ⅰ)(n) > ;
(ⅱ)若n是合数,则(n)n 。
第4节
1.证明:197810319783能被103整除。
2.求313159被7除的余数。
3.证明:对于任意的整数a,(a, 561) = 1,都有a5601 (mod 561),但561是合数。
4.设p,q是两个不同的素数,证明:
(ⅰ)x21742 (mod 769);
(ⅱ)x21503 (mod 1013)。
是否有解。
2.求所有的素数p,使得下面的方程有解:
x211 (modp)。
3.求所有的素数p,使得2QR(p),3QR(p)。
4.设(x,y) = 1,试求x23y2的奇素数因数的一般形式。
5.证明:形如8k5(kZ)的素数无穷多个。
a2p(a> 0是整数,p为素数)
的形式。
第2节
1.证明:12n42n311n210n,nZ。
2.设3a2b2,证明:3a且3b。
3.设n,k是正整数,证明:nk与nk+ 4的个位数字相同。
4.证明:对于任何整数n,m,等式n2(n1)2=m22不可能成立。
5.设a是自然数,问a43a29是素数还是合数?
6.证明:对于任意给定的正整数n,必存在m,使得同余方程x21 (modm)的解数T>n。
第4节
1.解同余方程:
(ⅰ) 3x112x85x410 (mod 7);
(ⅱ) 4x203x122x73x20 (mod 5)。
2.判定
(ⅰ) 2x3x23x10 (mod 5)是否有三个解;
(ⅱ)x62x54x230 (mod 5)是否有六个解?
pq1qp11 (modpq)。
5.将6121分解成素因数之积。
6.设nN,bN,对于bn1的素因数,你有甚麽与例6相似的结论?
第4章
第1节
1.将 写成三个既约分数之和,它们的分母分别是3,5和7。
2.求方程x12x23x3= 41的所有正整数解。
3.求解不定方程组:

4.甲班有学生7人,乙班有学生11人,现有100支铅笔分给这两个班,要使甲班的学生分到相同数量的铅笔,乙班学生也分到相同数量的铅笔,问应怎样分法?
(a1,a2,,an,m) =db。
若有解,则恰有dmn1个解,modm。
6.解同余方程:2x7y5 (mod 12)。
第2节
1.解同余方程组:
2.解同余方程组:
3.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人。已知这队士兵不超过170人,问这队士兵有几人?
4.求一个最小的自然数n,使得它的 是一个平方数,它的 是一个立方数,它的 是一个5次方数。
6.设m1,m2,,mn是两两互素的正整数,i(1in)是整数,并且
i1 (modmi),1in,
i0 (modmj),ij,1i,jn。
证明:当bi通过模mi(1in)的完全剩余系时,
b11b22bnn
通过模m=m1m2mn的完全剩余系。
第3节
1.证明定理1。
2.设m1,m2,,mn是两两互素的正整数,xi分别通过模mi的简化剩余系(1in),m=m1m2mn,Mi= ,则
6.证明:对于任意给定的n个整数,必可以从中找出若干个作和,使得这个和能被n整除。
第3节
1.证明定理1中的结论(ⅰ)—(ⅳ)。
2.证明定理2的推论1,推论2和推论3。
3.证明定理4的推论1和推论3。
4.设x,yZ,172x3y,证明:179x5y。
5.设a,b,cN,c无平方因子,a2b2c,证明:ab。
3.求整数x,y,z,x>y>z,使xy,xz,yz都是平方数。
4.解不定方程:x23y2=z2,x> 0,y> 0,z> 0,(x,y) = 1。
5.证明下面的不定方程没有满足xyz0的整数解。
(ⅰ)x2y2z2=x2y2;
(ⅱ)x2y2z2= 2xyz。
6.求方程x2y2=z4的满足(x,y) = 1,2x的正整数解。
第5章
第1节
1.证明定理1。
2.解同余方程:
(ⅰ) 31x5 (mod 17);
(ⅱ) 3215x160 (mod 235)。
3.解同余方程组:

4.设p是素数,0 <a<p,证明:
(modp)。
是同余方程axb(modp)的解。
5.证明:同余方程a1x1a2x2anxnb(modm)有解的充要条件是
3.设(a,m) = 1,k与m是正整数,又设x0ka(modm),证明同余方程
xka(modm)
的一切解x都可以表示成xyx0(modm),其中y满足同余方程yk1 (modm)。
4.设n是正整数,p是素数,(n,p1) =k,证明同余方程xn1 (modp)有k个解。
5.设p是素数,证明:
(ⅰ)对于一切整数x,xp11(x1) (x2)(xp1) (modp);
第2节
1.求模29的最小正原根。
2.分别求模293和模2293的原根。
3.解同余方程:x1216 (mod 17)。
4.设p和q= 4p1都是素数,证明:2是模q的一个原根。
第5节
1.说明例1证明中所用到的四个事实的依据。
2.用辗转相除法求整数x,y,使得1387x162y= (1387, 162)。
3.计算:(27090, 21672, 11352)。
4.使用引理1中的记号,证明:(Fn+ 1,Fn) = 1。
5.若四个整数2836,4582,5164,6522被同一个大于1的整数除所得的余数相同,且不等于零,求除数和余数各是多少?
6.设n是正整数,求 的最大公约数。
第4节
1.证明定理1。
2.证明定理3的推论。
3.设a,b是正整数,证明:(ab)[a,b] =a[b,ab]。
4.求正整数a,b,使得ab= 120,(a,b) = 24,[a,b] = 144。
5.设a,b,c是正整数,证明:

6.设k是正奇数,证明:1291k2k9k。
5.证明:二元一次不定方程axby=n,a> 0,b> 0,(a,b) = 1的非负整数解的个数为 1。
6.设a与b是正整数,(a,b) = 1,证明:1, 2,,abab中恰有 个整数可以表示成axby(x0,y0)的形式。
第2节
1.证明定理2推论。
2.设x,y,z是勾股数,x是素数,证明:2z1,2(xy1)都是平方数。
6.已知99 ,求与。
第2节
1.证明定理1。
2.证明:若2p1是奇素数,则
(p!)2(1)p0 (mod 2p1)。
3.证明:若p是奇素数,N= 12(p1),则
(p1)!p1 (modN)。
4.证明Wilson定理的逆定理:若n> 1,并且
(n1)!1 (modn),
则n是素数。
5.设m是整数,4m,{a1,a2,,am}与{b1,b2,,bm}是模m的两个完全剩余系,证明:{a1b1,a2b2,,ambm}不是模m的完全剩余系。
6.证明:对于任意的奇素数p,总存在整数n,使得
p(n21)(n22)(n22)。
第7节
1.证明定理的结论(ⅱ),(ⅲ),(ⅳ)。
2.已知3019是素数,判定方程x2374 (mod 3019)是否有解。
3.设奇素数为p= 4n1型,且dn,证明: = 1。
4.设p,q是两个不同的奇素数,且p=q4a,证明: 。
《初等数论》习题集
第1章
第1节
1.证明定理1。
2.证明:若mpmnpq,则mpmqnp。
3.证明和能被11整除。
4.设p是n的最小素约数,n=pn1,n1> 1,证明:若p> ,则n1是素数。
5.证明:存在无穷多个自然数n,使得n不能表示为
没有实数解。
6.证明:在n!的标准分解式中,2的指数h=nk,其中k是n的二进制表示的位数码之和。
第8节
1.证明:若2n1是素数,则n是2的乘幂。
2.证明:若2n1是素数,则n是素数。
3.证明:形如6n5的素数有无限多个。
4.设d是正整数,6 d,证明:在以d为公差的等差数列中,连续三项都是素数的情况最多发生一次。
5.证明:对于任意给定的n个不同的素数p1,p2,…,pn,必存在连续n个整数,使得它们中的第k个数能被pk整除。
6.解同余方程:3x211x200 (mod 105)。
第3节
1.证明定理的推论。
2.将例2中略去的部分补足。
3.将例4中略去的部分补足。
4.解同余方程x21 (mod 54)。
5.解同余方程f(x) = 3x24x150 (mod 75)。
4.证明:16k15型的整数至少需要15个四次方数的和表之。
5.证明:16k31不能表示为15个四次方数的和。
第7章
第1节
2.求模14的全部原根。
3.设m> 1,模m有原根,d是(m)的任一个正因数,证明:在模m的简化剩余系中,恰有(d)个指数为d的整数,并由此推出模m的简化剩余系中恰有((m))个原根。
4.设m3,g是模m的原根,x1,x2,,x(m)是模m的简化剩余系,证明:
(ⅰ) 1 (modm);
(ⅱ)x1x2x(m)1 (modm)。
5.设p= 2n1是一个奇素数,证明:模p的全部二次非剩余就是模p的全部原根。
6.证明:
(ⅰ)设p奇素数,则Mp= 2p1的素因数必为2pk1型;
(ⅱ)设n0,则Fn= 1的素因数必为2n+1k1型。
4.设素数p3 (mod 4), = 1,证明x (modp)是同余方程
相关文档
最新文档