初等数论总复习题及知识点总结

初等数论总复习题及知识点总结
初等数论总复习题及知识点总结

初等数论总复习题及知识点总结

最后,给大家提一点数论的学习方法,即一定不能忽略习题

的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经

说过如果学习数论时只注意到它的内容而忽略习题的作用,则相

当于只身来到宝库而空手返回而异。数论有丰富的知识和悠久的

历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅

导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马

大定理的阅读材料。初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法最大公因数和辗转相除法整除的进一步性质和最小公倍数素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求:2,3 ;:4 ;:1;:

1,2,5;:1。第二章:不定方程(4学时)自学12学时二元一次不定方程多元一次不定方程勾股数费尔马大定理。习题要求:1,2,4;:2,3。第三章:同余(4学时)自学12学时同余的定义、性质剩余类和完全剩余系欧拉函数、简化剩余系欧拉定理、

费尔马小定理及在循环小数中的应用习题要求:2,6;:1;:

2,3;1,2。第四章:同余式(方程)(4学时)自学12学时同余方程概念孙子定理高次同余方程的解数和解法素数模的同余方

程威尔逊定理。习题要求:1;:1,2;:1,2。第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余勒让德符号二次互反律雅可比符号、素数模同

余方程的解法习题要求:2;:1,2,3;:1,2;:2;:1。第一章:原根与指标(2学时)自学8学时指数的定义及基本性质原根存在的条件指标及n次乘余模2及合数模指标组、特征函数习题要求:3。

第一章整除

一、主要内容整除的定义、带余除法定理、余数、最大公因数、最小公倍数、辗转相除法、互素、两两互素、素数、合数、算术基本定理、Eratosthesen筛法、[x]和{x}的性质、n!的标准分解式。

二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。能熟练求出二个整数的最大公因数和最小公倍数,掌握高斯函数[x]的性质及其应用。

三、重点和难点(1)素数以及它有关的性质,判别正整数a 为素数的方法,算术基本定理及其应用。(2)素数有无穷多个的证明方法。(3)整除性问题的若干解决方法。(4)[x]的性质及其应用,n!的标准分解式。

四、自学指导整除是初等数论中最基本的概念之一,b∣a的意思是存在一个整数q,使得等式a=bq成立。因此这一标准作为

我们讨论整除性质的基础。也为我们提供了解决整除问题的方法。即当我们无法用整除语言来叙述或讨论整除问题时,可以将其转化为我们很熟悉的等号问题。对于整除的若干性质,最主要的性质为传递性和线性组合性,即(1)a∣b, b∣c, 则有a∣c (2)a∣b, a∣c, 则有a∣mb+nc读者要熟练掌握并能灵活应用。特别要注意,数论的研究对象是整数集合,比小学数学中非负整数集合要大。本章中最重要的定理之一为带余除法定理,即为设a是整数,b是非零整数,则存在两个整数q,r,使得

a=bq+r (0)它可以重作是整除的推广。同时也可以用带余除法定理来定义整除性,(即当余数r=0时)。带余除法可以将全体整数进行分类,从而可将无限的问题转化为有限的问题。这是一种很重要的思想方法,它为我们解决整除问题提供了又一条常用的方法。同时也为我们建立同余理论建立了基础。读者应熟知常用的分类方法,例如把整数可分成奇数和偶数,特别对素数的分类方法。例全体奇素数可以分成4k+1,4k+3;或6k+1,6k+5等类型。和整除性一样,二个数的最大公约数实质上也是用等号来定义的,因此在解决此类问题时若有必要可化为等式问题,最大公因数的性质中最重要的性质之一为 a=bq+c,则一定有(a,b)=(b,c),就是求二个整数的最大公约数的理论根据。也是解决关于最大公约数问题的常用方法之一。读者应有尽有认真体会该定理的证明过程。互素与两两互素是二个不同的概念,既有联系,又有区别。要认真体会这些相关的性质,例如,对于任意

a ,b∈Z,可设(a ,b)=d,则a=da1 ,b=db1,则(a1 ,b1)=1,于是可对a1 ,b1使用相应的定理,要注意,相关定理及推论中互素的条件是经常出现的。读者必须注意定理成立的条件,也可以例举反例来进行说明以加深影响。顺便指出,若a∣c,b∣c,(a ,b)=1,则ab∣c是我们解决当除数为合数时的一种方法。好处是不言而喻的。最小公倍数实际上与最大公因数为对偶命题。特别要指出的是a和b的公倍数是有无穷多个。所以一般地在无穷多个数中寻找一个最小数是很困难的,为此在定义中所有公倍数中的最小的正整数。这一点实际上是应用自然数的最小自然数原理,即自然数的任何一个子集一定有一个最小自然数有在。最小公倍数的问题一般都可以通过以下式子转化为最大公因数的问题。两者的关系为a ,b∈N,

[a ,b]=上述仅对二个正整数时成立。当个数大于2时,上述式子不再成立。证明这一式子的关键是寻找a , b的所有公倍数的形式,然后从中找一个最小的正整数。解决了两个数的最小公倍数与最大公因数问题后,就可以求出n个数的最小公倍数与最大公因数问题,可以两个两个地求。即有下面定理设是n个整数,则()=设则有[]=素数是数论研究的核心,许多中外闻名的题目都与素数有关。除1外任何正整数不是质数即为合数。判断一个已知的正整数是否为质数可用判别定理去实现。判别定理又是证明素数无穷的关键。实际上,对于任何正整数n>1,由判别定理一定知存在素数p,使得p∣n 。即任何大于1的整数一定存在

一个素因数p 。素数有几个属于内在本身的性质,这些性质是在独有的,读者可以用反例来证明:素数这一条件必不可少。以加深对它们的理解。其中p∣abp∣a或p∣b也是常用的性质之一。也是证明算术基本定理的基础。算术基本定理是整数理论中最重要的定理之一,即任何整数一定能分解成一些素数的乘积,而且分解是唯一的,不是任何数集都能满足算术基本定理的,算术基本定理为我们提供了解决其它问题的理论保障。它有许多应用,由算术基本定理我们可以得到自然数的标准分解问题。设a=,

b=,则有(a,b)=

[a,b]= 例如可求最大公约数,正整数正约数的个数等方面问题,对具体的n,真正去分解是件不容易的事。对于较特殊的n,例如n!分解还是容易的。应用[x]的性质,n!的标准分解式可由一个具体的公式表示出来,这一公式结合[x]的性质又提供了解决带有乘除符号的整除问题的方法。本章的许多问题都围绕着整除而展开,读者应对整除问题的解决方法作一简单的小结。

五、例子选讲补充知识①最小自然数原理:自然数的任意非空子集中一定存在最小自然数。②抽屉原理:(1)设n是一个自然数,有n个盒子,n+1个物体,把n+1个物体放进n个盒子,至少有一个盒子放了两个或两个以上物体;(2)km+1个元素,分成k组,至少有一组元素其个数大于或等于m+1;(3)无限个元素分成有限组,至少有一组其元素个数为无限。③梅森数:形如2n-1的数叫梅森数,记成Mn=2n-1。④费尔马数:n为非负整数,形

如的数叫费尔马数,记成Fn=。⑤设n=,设n的正因子个数为

d(n),所有正因子之和为,则有⑥有关技巧

1、整数表示a=a010n+a110n-1+…+an,a=2kb(b为奇数)

2、整除的常用方法a、用定义b、对整数按被n除的余数分类讨论c、连续n个整数的积一定是n的倍数d、因式分解an-bn=(a-b)M1,an+bn=(a+b)M2,2 ne、用数学归纳法f、要证明a|b,只要证明对任意素数p,a中p的幂指数不超过b中p的幂指数即可,用p(a)表示a中p的幂指数,则a|bp(a)p(b)例题选讲例

1、请写出10个连续正整数都是合数、解:11!+2,

11!+3,……,11!+11。例

2、证明连续三个整数中,必有一个被3整除。证:设三个连续正数为a,a+1,a+2,而a只有3k,3k+1,3k+2三种情况,令a=3k,显然成立,a=3k+1时,a+2=3(k+1),a=3k+2时,

a+1=3(k+1)。例

3、证明lg2是无理数。证:假设lg2是有理数,则存在二个正整数p,q,使得lg2=,由对数定义可得10=2,则有25 =2,则同一个数左边含因子5,右边不含因子5,与算术基本定理矛盾。∴lg2为无理数。例

4、求(21n+4,14n+3)解:原式

=(21n+4,14n+3)=(7n+1,14n+3)=(7n+1,7n+2)=(7n+1,1)=1例

5、求2004!末尾零的个数。解:因为10=25,而2比5多,所以只要考虑2004!中5的幂指数,即5(2004!)=例

6、证明(n!)(n-1)!|(n!)!证:对任意素数p,设(n!)(n-1)!中素数p的指数为,(n!)!中p的指数β,则,,即,即左边整除右边。例

7、证明2003|(+-xx)证:∵ =(2003-1)2002=2003M1+1=(2003+1)2002=2003M2+1∴+-xx=2003(M1+M2-1)由定义2003|(+-xx)例

8、设d(n)为n的正因子的个数, (n)为n的所有正因子之和,求d(1000), (1000)。解:∵1000=2353∴

d(1000)=(3+1)(3+1)=16, (1000)=例

9、设c不能被素数平方整除,若a2|b2c,则a|b证:由已知p(c)≤1,且p(a2)≤p(b2c)∴2p(a)≤2p(b)+p(c)

, ∴ p(a)≤p(b)+即p(a)

≤p(b)

, ∴ a|b例

10、若Mn为素数,则n一定为素数。证:若n为合数,则设n=ab,(1

1、证明对任意m,n,m≠n, (Fn,Fm)=1。证:不妨设n>m,则Fn-2=()()=(Fn-1-2)

()= Fn-1Fn-2……Fm- F0设(Fn,Fm)=d,则d|Fn,

d|Fmd|2但Fn为奇数,∴d=1, 即证。例

12、设m,n是正整数。证明证 : 不妨设。由带余数除法得我们有由此及得,=注意到,若,则,结论成立、若,则继续对作同样的讨论,由辗转相除法知,结论成立。显见,2用任一大于1的自然a代替,结论都成立。例

13、证明:对任意的正整数,成立如下不等式。其中是数的以10为底的对数,是的不同的素因数(正的)的个数。证:设是大于1的整数(如果=1,上述不等式显然成立,因=0),是的个相异的素因素。的素因数分解式为、()

, 由于,从而,而,故。将上述不等式取对数(设底),则有。特别有。例

14、试证明任意一个整数与它的数字和的差必能被9整除,并且它与它的数字作任意调后换后所成整数的差也能被9整除。证:

设整数m的个位、位、百位…的数字分别为,,…,,则可表作:

所以因为,,…,都是整数,所以任一整数与其数字之和的差必能被9整除。再设将,,…,按任一种顺序排成,,…,,并令,,,。根据前面证明的结果,知存在整数A,B,使因为,所以。由于A-B是整数,这就证明了能被9整除。注:若对某个整

数,有,但当时,,则此时为整数:即。如前证,此时结论正确。又当为负整数及零时,结论显然正确。

第二章不定方程

一、主要内容一次不定方程有解的条件、解数、解法、通解表示,不定方程x2+y2=z2通解公式、无穷递降法、费尔马大定理。

二、基本要求

1、了解不定方程的概念,理解对“解”的认识,掌握一次不定方程有解的条件,能熟练求解一次不定方程的特解,正整数解及通解。了解多元一次不定方程有解的条件,在有解的条件下的解法。

2、掌握不定方程x2+y2=z2在一定条件下的通解公式,并运用这个通解公式作简单的应用。

3、对费尔马大定理应有在常识性的了解,掌握无穷递降法求证不定方程x4+y4=z2无解的方法。

4、掌握证明不定方程无解的若干方法。

三、难点和重点(1)重点为求解一次不定方程的方法(2)掌握第二节中引证的应用。(1)费尔马无穷递降法。

四、自学指导不定方程主要讲解以下几个问题(i)给定一类不定方程,判别在什么条件下有解。(ii)在有解的条件下,有多少解(iii)在有解的条件下,求出所给的不定方程的所有解。

二元一次不定方程的一般形式为ax+by=c 。若(a ,b)∣c,则该二元一次不定方程一定有解,若已知一个特解,则一切解可以用公式表示出来,因此求它的通解只要求出一个特解即可。求解二元一次不定方程的一个通解有好多种方法。读者应该总结一下,各种方法都有独到之处。特别要指出用最大公因数的方法。它的根据是求(a ,b)时所得的结果。由于注意通解公式x=x0-

b1t,y=y0+a1t中a1,b1的意义和位置。以免出错。多元一次不定方程也有类似的结果,但在求解的过程中将它转化二元一次不定方程组,从最后一个二元一次不定方程解起,可逐一解出

x1 ,x2 ,……xn 。所用的方法一般选择最大公因数的方法。由于n元一次不定方程可转化为n-1个二元一次不定方程组,故在通解中依赖于n-1个任意常数。但不象二元一次不定方程那样有公式来表示。x2+y2=z2的正整数解称为勾股数,在考虑这个方程时,我们对(x ,y)作了一些限制,而这些限制并不影响其一般性。在条件x>0,y>0,z>0,(x,y)=1,2∣x的条件可以给出

x2+y2=z2的通解公式,x=2ab,y=a2-b2,z2=a2+b2,a>b>0 , (a ,b)=1,a ,b一奇一偶。若将2∣x限为2∣y,则也有相应的一个通解公式。在证明这个通解公式的过程中,用到了引理

uv=w2,u>0,v>0,(u ,v)=1,则u=a2,v=b2,w=ab 。a>0,b>0,(a ,b)=1 。利用这个结论可以求解某些不定方程。特别当w=1或素数p 。则由uv=1或uv=P 可将原不定方程转化为不定

方程组。从而获得一些不定方程的解。上述解不定方程的方法叫因子分解法。希望读者能掌握这种方法。

为了解决著名的费尔马大定理:xn+yn=zn ,n≥3无正整数解时,当n=4时可以用较初等的方法给出证明。证明由费尔马本人给出的,一般称为费尔马无穷递降法。其基本思想为由一组解出发通过构造得出另一组解,使得两组解之间有某种特定的关系,而且这种构造可以无限重复的。从而可得到矛盾。因此无穷递降法常用来证明某些不定方程无整数解。证明一类不定方程无解是研究不定方程邻域中常见的形式,一般的要求解不定方程比证明不定方程无解要容易些。证明不定方程无解的证明方法常采用以下形式:(反证法)若A有解A1有解A2有解……An有解,而An 本身无解,这样来构造矛盾。从而说明原不定方程无解。对于证明不定方程的无解性通常在几种方法,一般是总的几种方法交替使用。特别要求掌握:简单同余法、因子分解法、不等式法,以及中学数学中所涉及的判别式法。

五、例子选讲例1:利用整数分离系数法求得不定方程

15x+10y+6z=61。解:注意到z的系数最小,把原方程化为z=令

t1=,即-3x+2y-6t1+1=0此时y系数最小,令t2 =,即,反推依次可解得y=x+3t1+t2=2t2+1+3t1+t2=1+3t1+3t2z=-2x-2y+10+t1=6-5t1+10t2∴原不定方程解为t1t2∈z、例2:证明是无理数证:假设是有理数,则存在自数数a,b使得满足即,容易知道a是偶数,设a=2a1,代入得,又得到b为偶数,,设,则,这里这样可以

进一步求得a2,b2…且有a>b>a1>b1> a2>b2>…但是自然数无穷递降是不可能的,于是产生了矛盾,∴为无理数。例3:证明:整数勾股形的勾股中至少一个是3的倍数。证:设N=3m1(m为整数),∴N2=9m26m+1=3(3m22m)+1即一个整数若不是3的倍数,则其平方为3k+1,或者说3k+2不可能是平方数,设x,y为勾股整数,且x,y都不是3的倍数,则x2,y2都是3k+1,但

z2=x2+y2=3k+2形,这是不可能,∴勾股数中至少有一个是3的倍数。例4:求x2+y2=328的正整数解解:∵328为偶数,∴x,y奇偶性相同,即xy为偶数,设x+y=2u, x-y=2v,代入原方程即为u2+v2=164,同理令u+v=2u1,u-v=2v1有为一偶一奇,且

0

x=1,y=

5、例6:证明不定方程x2-2xy2+5z+3=0无整数解。解:若不定方程有解,则但y4≡0,1(mod5), ∴ 对y,z ,y4-5z-3≡2,3(mod5)而一个平方数≡0,1,4(mod5)∴ y4-5z-3不可能为完全平方,即不是整数,所以原不定方程无解。例7:证明:无整数解证:若原方程有解,则有注意到对于模8,有因而每一个整数对于模8,必同余于0,1,4这三个数。不论如何变化,只能有而,故不同余于关于模8,所以假设错误,即,从而证明了原方程无解。例8:某人到银行去兑换一张d元和c分的支票,出纳员出

错,给了他c元和d元,此人直到用去23分后才发觉其错误,此时他发现还有2d元和2c分,问该支票原为多少钱?解:由题意立式得:即令得令得所以为任意整数),代入得:(1)其中v是任意整数。又根据题意要求:、根据(1),仅当v=8时满足此要求,从而因此该支票原为25元51分、第三章同余

一、主要内容同余的定义、性质、剩余类和完全剩余系、欧拉函数、简化剩余系、欧拉定理、费尔马小定理、循环小数、特殊数2,3,4,5,6,7,8,9,11,13的整除规律

二、基本要求通过本章的学习,能够掌握同余的定义和性质,区别符号:“三”和=”之间的差异。能利用同余的一些基本性质进行一些计算,深刻理解完全剩余系,简化剩余系的定义、性质及构造。能判断一组数是否构成模m的一个完全剩余系或一个简化剩余系。能计算欧拉函数的值,掌握欧拉定理、费尔马小定理的内容以及证明方法。能应用这二个定理证明有关的整除问题和求余数问题。能进行循环小数与分数的互化。

三、难点和重点(1)同余的概念及基本性质(2)完全剩余系和简化剩余系的构造、判别(3)欧拉函数计算、欧拉定理、费尔马小定理的证明及应用(4)循环小数与分数的互化(5)特殊数的整除规律。

四、自学指导同余理论是初等数论中最核心的内容之一,由同余定义可知,若a≡b(mod m),则a和b被m除后有相同的余数。这里m为正整数,一般要求m大于1,称为模,同余这一思想

本质上是将整数按模m分类,然后讨论每一个类中整数所具有的共性及不同类之间的差异。第一章中用带余除法定理将整数分类解决一些问题的方法只不过是同余理论中的一个特殊例子。从同余的定理上看,同余和整除实际上是同一回事,故同余还有二个等价的定义:①用整除来定义即m∣a-b 。②用等号来定义

a=b+mt 。值得注意a和b关于m同余是个相对概念。即它是相对于模m来讲,二个整数a和b关于一个整数模m同余。则对于另一个整数模m,a和b未必会同余。从定义上看,同余和整除是同一个事情,但引进了新的符号“三”后,无论从问题的叙述上,还是解决问题的方法上都有了显著的变化,同时也带来了一些新的知识和方法。在引进了同余的代数性质和自身性质后,同余符号“三”和等号“=”相比,在形式上有几乎一致的性质,这便于我们记忆。事实上在所有等号成立的运算中,只有除法运算是个例外,即除法的消去律不成立。为此对于同余的除法运算我们有二种除法:(i)模不改变的除法,若ak≡bk(mod m),(k,m)=1,则a≡b(mod m)(ii)模改变的除法, 若ak≡bk(mod m)

(k,m)=d,则a≡b这一点读者要特别注意。完全剩余系和简化剩余系是二个全新的概念,读者只要搞清引成这些概念的过程。因为同余关系是一个等价关系,利用等价关系可以进行将全体整数进行分类,弄清来胧去脉,对于更深刻理解其本质是很有好处的。完全剩余系或简化剩余系是一个以整数为元素的集合,在每个剩余类各取一个数组成的m个不同数的集合,故一组完全剩余

系包含m个整数,由于二个不同的剩余类中的数关于m两两不同余,故可得判别一组数是否为模m的一个完全剩余系的条件有二条为(1)个数=m(2)关于m两两不同余另外要能用已知完全剩余系构造新的完全剩余系。即有定理设(a,m)=1,x为m的完全剩余系,则ax+b也是m的完全剩余系。当时,能由的完全剩余系和的完全剩余系,构造完全剩余系。为讨论简化剩余系,需要引进欧拉函数φ(m),欧拉函数φ(m)定义为不超过m且与m互素的正整数的个数,记为φ(m),要掌握φ(m)的计算公式,了解它的性质。这些性质最主要的是当(a ,b)=1时,φ(ab) = φ(a)

φ(b),和现在在剩余类中把与m互素的集合分出来,从中可在各个集合中任取一个数即可构造模m的一个简化剩余系。另一方面,简化剩余数也可从模m的一个完全剩余系中得到简化剩余系,一组完全剩余系中与m互素的的数组成的φ(m)个不同数的集合称为m简化剩余系。同样简化剩余系也有一个判别条件。判别一组整数是否为模m的简化剩余系的条件为(2)个数=φ(m)(3)关于m两两不同余(3)每个数与m互素关于m的简化剩余系也能用已知完全剩余系构造新的简化剩余系。设(a,m)

=1,x为m的简化剩余系,则ax也是m的简化剩余系。当时,能由的简化剩余系和的简化剩余系,构造简化剩余系。欧拉定理、费尔马小定理是同余理论非常重要的定理之一。要注意欧拉定理和费尔马定理的条件和结论。欧拉定理:设m为大于1的整数,

(a,m)=1,则有费尔马小定理:若p是素数,则有除此以外,欧拉定理的证明的思想是非常好的,在各个地方都有应用。就欧拉定理、费尔马小定理来讲,它在某些形如a数的整除问题应用起来显得非常方便。同余方法也是解决整除问题的方法之一。另外同余方法在证明不定方程时也非常有用,即要掌握同余“三”和相等“=”的关系:相等必同余,同余未必相等,不同余肯定不相等。对于特殊数的整除规律要求能掌握其一般定理的证明,并熟记一些特殊数的整除规律

1、一个整数被2整除的充要条件是它的末位为偶数。

2、一个整数被3整除的充要条件是它的各位数字之和能被3整除。

3、一个整数被9整除的充要条件是它的各位数字之和能被9整除。

4、一个整数被5整除的充要条件是它的末位为0或5。

5、一个整数被4,25整除的充要条件是它的末二位能被4,25整除。

6、一个整数被8,125整除的充要条件是它的末三位能被8,125整除。

7、设,则7或11或13整除a的充要条件是7或11或13整除

五、例子选讲例1:求3406的末二位数。解:∵ (3,100)=1,∴3≡1(mod100)(100)= (2252)=40,

∴340≡1(mol100)∴3406=(340)1036≡(32)232≡-199≡-

171≡29(mod100)∴ 末二位数为29。例2:证明(a+b)

p≡ap+bp(mod p)证:由费尔马小定理知对一切整数有:ap≡a (p),bp≡b(P),由同余性质知有:ap+bp≡a+b(p)又由费尔马小定理有(a+b)p≡a+b (p)(a+b)p≡ap+bp(p)例3:设素数p>2,则2P-1的质因数一定是2pk+1形。证:设q是2-1的质因数,由于2-1为奇数,∴ q≠2,∴ (2q)=1,由条件q|2p-1,即2≡1(mod q),又∵ (q,2)=1,2≡1(mod q)设i是使得

2≡1(mod p)成立最小正整数若1

1=2pk , 即q=2pk+1例4:证明13|42n+1+3n+2证:

∵42n+1+3n+2≡416n+93n ≡3n

(4+9)≡133n≡0(13)∴13|42n+1+3n+2例5:证明5y+3=x2无解证明:若5y+3=x2有解,则两边关于模5同余有5y+3≡x2(mod5)即3≡x2(mod5)而任一个平方数x2≡0,1,4(mod5)∴30,1,4(mod5)∴ 即得矛盾,即5y+3=x2无解例6:求被7除的余数。解:∵被7整除,∴≡11(mod7)≡4(mod7),即余数为4。例7:把化为分数。解:设b=,从而1000b=,b=,99000b=4263-42b==。当然也可用直化分数的方法做。例8:设一个数为62XY427是9,11的倍数,求X,Y解:因为9|62XY427所以9|6+2+X+Y+4+2+7,即

9|21+X+Y又因为11|62XY427,有11 |(7+4+X+6-2-Y-2)即11|(X-Y+13)因为0X,Y9,所以有2121+X+Y39,4 X-Y+1322,由

此可知21+X+Y=27,X-Y+13=11或21+X+Y=36,X-Y+13=22X+Y=6,X-Y=-2或X+Y=15,X-Y=9,解得X=2,Y=4。例9:证明:8a+7不可能是三个整数的平方和。证:由于每一个整数对于8,必同余于0,1,2,3,4,5,6,7这八个数之一注意到对于模8,有因而每一个整数对于模8,必同余于0,1,4这三个数不能如何变化,只能有而,故不同余于关于模8,从而证明了结论。

第四章同余式

一、主要内容同余方程概念及次数、解的定义,一次同余方程ax≡b(mod m)有解的充分必要条件,一次同余方程组,孙子定理,高次同余方程,素数模的同余方程,威尔逊定理。

二、基本要求通过本章的学习要求掌握同余方程的一些基本概念,例同余方程的次数、解等,能解一次同余方程,一次同余方程组,理解孙子定理并用它来解一次同余方程组,会解高次同余方程,对于以素数模的同余方程的一般理论知识能理解。

三、重点和难点(1)孙子定理的内容与证明,从中学会求出一次同余方程组的解并从中引伸更一般的情形,即模不二二互素的情形。(2)素数模的同余方程的一些基本理论性问题,并能与一般方程所类似的性质作比较。

四、自学指导同余方程和不定方程一样,我们同样要考虑以下三个问题,即有解的条件,解数及如何求解,一般地说,对于一般的同余方程,由于仅有有限个解,只要把模m的一个完全剩余系一一代入验算总解组则所需的结果。因此上述三个问题已基

本解决,只不过具体到某一个同余方程计算起来困难一点而异。但对于解数,传统的结果不再成立。例如一个同余方程的解数可以大于其次数。读者可以举出反例来证明这一事实。要学好同余方程这一章。必须首先弄清同余方程的概念,特别是同余方程解的概念,互相同余的解是同一个解。其次有使原同余方程和新的同余方程互相等价的若干变换。移项运算是传统的,同余方程两边也可以加上模的若干倍。相当于同余方程两边加“零”。无论是乘上一数k或除去一个数k,为了保持其同解性,必须(k ,m)=1,这一点和同余的性质有区别。一次同余方程的一般形式为

ax≡b(mod m),我们讨论的所有内容都在这标准形式下进行的。总结一次同余方程与二元一次不定方程有相当的联系,一次同余方程的求解可以由二元一次不定方程的求解方式给出。反之亦然。但要注意在对“解”的认识上是不一致的,从而导致有无穷组解和有限个解的区别。为了求ax≡b(mod m)的一个特解,可在条件(a ,m)=1下进行。教材上有若干种求解方式,供读者在同样问题选择使用。一次同余方程组的标准形式为x≡b1(mod

m1)x≡b2(mod m2)…… (1)x≡bn(mod mn)若给出的同余方程组不是标准形式,必须注意化为标准形式,同时我们得到的有解的判别定理及求法方法都是这一标准形式得到的。同余方程组(1)有解的条件(mi ,mj)

∣bi-bj ,1≤i,j≤k 。在使用时一定要对所有可解进行验算,进行有解的判别求解一次同余方程组(1)有两种方法:待定

系数法和孙子定理。二种方法各有特长。待定系数法适应的范围较广,对模没有什么要求。孙子定理有一个具体的公式,形式也较漂亮。但对模要求是二二互素。孙子定理为下面定理:(孙子定理)两两互素,则一次同余式组的解为其中对待定系数法和孙子定理要有深刻的理解。体会其实质,这样不必死记硬背。次数大于1的同余方程称为高次同余方程,一般地高次同等方程可转化一系列的高次同余方程组。然后将每一个高次同余方程的解都求出,最后利用孙子定理也可求出原同余方程的解。求高次同余方程解的基本方法有两条,一是小模,二是降次。设m=;则要求f(x)

≡0(mod m)的解只要求f(x)

≡0(mod pα)

(2)的解即可,其中p为素数。α≥1 。对于(2)的解的求法我们用待定系数法。

设f(x)

≡0(mod p)的解为x≡x1(mod p)为解。则当p├ f′(x)时,f(x)

≡0(mod p)的一个解x1可求出f(x)

≡0(mod p2)的一个解。方法如下:将x=x1+pt1代入 f(x) ≡0(mod p2)有f(x1+pt1)

≡0(mod p2)f(x1)+pt1f′(x1)

≡0(mod p2)+ ≡0(mod p)

高中数学必修、选修全部知识点精华归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

初等数论

初等数论 初等数论从表面意义来讲,就是作为一门研究数的相关性质的数学学科。准确地按照潘承洞、潘承彪两位数论大师的说法:初等数论是研究整数最基本的性质,是一门十分重要的数学基础课。它不仅是中、高等师范院校数学专业,大学数学各专业的必修课,而且也是计算机科学等相关专业所需的课程。纵观数论发展过程,我国出现了许许多多的数论大师,如:华罗庚的早期研究方向、陈景润、潘承洞等。 第一部分:整除 初接触初等数论,经过《初等数论》课本知整除理论是初等数论的基础。整除理论首先涉及整除。现向上延伸则想到整除的对象,即自然数、整数。从小学、中学再到大学,我们从接触最初的1、2、3再到后来的有理数、无理数、实数再到复数,可谓种类繁多。但数论中的整除运算仅仅局限于自然数及其整数等相关范围内。首先大学数学中绝大多数数学定义中的自然数不包括0 ,这似乎与中学有一点差别,当然整数的定义改变就相对少得多。另外,自然数、整数的相关基本性质需懂得及灵活利用,如分配律、交换律、反对称性等。在初等代数中曾系统地介绍了自然数的起源问题:自然数源于经验,自然数的本质属性是由归纳原理刻画的,它是自然数公理化定义的核心。自然数集合严格的抽象定义是由Peano定理给出的,他刻画了自然数的本质属性,并导出有关自然数的有关性质。 Peano定理:设N是一个非空集合,满足以下条件: (ⅰ)对每一个n∈N,一定有唯一的一个N中的元素与之对应,这个元素记作n+,称为是n的后继元素(或后继); (ⅱ)有元素e∈N,他不是N中任意元素的后继; (ⅲ)N中的任意一个元素至多是一个元素的后继,即从a+=b+ 一定可以推出a=b; (ⅳ)(归纳原理)设S是N的一个子集合,e∈S, 如果n∈S则必有n+ ∈S,那么,S=N. 这样的集合N称为自然数集合,它的元素叫做自然数。 其中的归纳原理是我们常用的数学归纳法的基础。数学归纳法在中学已属重点内容,此处就不作介绍。主要描述一下推广状态下的第二种数学归纳法:(第二种数学归纳法)设P(n)是关于自然数n的一种性质或命题。如果 (1)当n=1时,P(1)不成立; (2)设n>1,若对所有的自然数m

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

初等数论总复习题及知识点总结

初等数论总复习题及知识点总结 最后,给大家提一点数论的学习方法,即一定不能忽略习题 的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经 说过如果学习数论时只注意到它的内容而忽略习题的作用,则相 当于只身来到宝库而空手返回而异。数论有丰富的知识和悠久的 历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅 导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马 大定理的阅读材料。初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法最大公因数和辗转相除法整除的进一步性质和最小公倍数素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求:2,3 ;:4 ;:1;: 1,2,5;:1。第二章:不定方程(4学时)自学12学时二元一次不定方程多元一次不定方程勾股数费尔马大定理。习题要求:1,2,4;:2,3。第三章:同余(4学时)自学12学时同余的定义、性质剩余类和完全剩余系欧拉函数、简化剩余系欧拉定理、 费尔马小定理及在循环小数中的应用习题要求:2,6;:1;: 2,3;1,2。第四章:同余式(方程)(4学时)自学12学时同余方程概念孙子定理高次同余方程的解数和解法素数模的同余方 程威尔逊定理。习题要求:1;:1,2;:1,2。第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余勒让德符号二次互反律雅可比符号、素数模同

余方程的解法习题要求:2;:1,2,3;:1,2;:2;:1。第一章:原根与指标(2学时)自学8学时指数的定义及基本性质原根存在的条件指标及n次乘余模2及合数模指标组、特征函数习题要求:3。 第一章整除 一、主要内容整除的定义、带余除法定理、余数、最大公因数、最小公倍数、辗转相除法、互素、两两互素、素数、合数、算术基本定理、Eratosthesen筛法、[x]和{x}的性质、n!的标准分解式。 二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。认真体会求二个数的最大公因数的求法的理论依据,掌握素数的定义以及证明素数有无穷多个的方法。能熟练求出二个整数的最大公因数和最小公倍数,掌握高斯函数[x]的性质及其应用。 三、重点和难点(1)素数以及它有关的性质,判别正整数a 为素数的方法,算术基本定理及其应用。(2)素数有无穷多个的证明方法。(3)整除性问题的若干解决方法。(4)[x]的性质及其应用,n!的标准分解式。 四、自学指导整除是初等数论中最基本的概念之一,b∣a的意思是存在一个整数q,使得等式a=bq成立。因此这一标准作为

整理全面《高中数学知识点归纳总结》

整理全面《高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向 量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

(完整版)最全教师版整理全面《高中数学知识点归纳总结》(最新整理)

引言 1.课程内容: 必修课程由5 个模块组成:教师版 2015 高中数学必修+选修知识点归纳 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) 必修 2:立体几何初步、平面解析几何初步。 必修 3:算法初步、统计、概率。 必修 4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修 5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有 4 个系列: 系列 1:由 2 个模块组成。 选修 1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修 1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列 2:由 3 个模块组成。 选修 2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修 2—2:导数及其应用,推理与证明、数系的扩充 与复数 选修 2—3:计数原理、随机变量及其分布列,统计案例。系列 3:由 6 个专题组成。 选修 3—1:数学史选讲。 选修 3—2:信息安全与密码。 选修 3—3:球面上的几何。选 修 3—4:对称与群。 要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最值、 反函数、三大性质、函数图象、指数与指数函 数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列 求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、和、差、 倍、半公式、求值、化简、证明、三角函数 的图象与性质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、数量积 及其应用 ⑹不等式:概念与性质、均值不等式、不等式的证明、 不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、 线性规划、圆、直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥 曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、 平面与平面、棱柱、棱锥、球、空间向量 ⑽排列、组合和概率:排列、组合应用题、二项式定理 及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正 态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修 1 数学知识点 第一章:集合与函数概念 §1.1.1、集合 1、把研究的对象统称为元素,把一些元素组成的总体 叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合 相等。 选修 3—5:欧拉公式与闭曲面分类。 选修 3—6:三等分角与数域扩充。 系列 4:由 10 个专题组成。 3、常见集合:正整数集合:N *或N + ,整数集合:Z , 选修 4—1:几何证明选讲。 选修 4—2:矩阵与变换。 选修 4—3:数列与差分。 选修 4—4:坐标系与参数方程。 选修 4—5:不等式选讲。 选修 4—6:初等数论初步。 选修 4—7:优选法与试验设计初步。 选修 4—8:统筹法与图论初步。 选修 4—9:风险与决策。 选修 4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合 A、B,如果集合 A 中任意 一个元素都是集合 B 中的元素,则称集合 A 是集合 B 的子集。记作A ?B . 2、如果集合A ?B ,但存在元素x ∈B ,且x ?A , 则称集合A 是集合B 的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作:?.并规 定:空集合是任何集合的子集. - 0 -

基本初等函数和函数的应用知识点总结

基本初等函数和函数的应用知识点总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根, 其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。 2、指数函数的图象和性质 a>1 0

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ? 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 《 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ' 指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321x x 、 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 ? 练习:(1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d | B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),

初等数论知识点汇总

第一节 整数的p 进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。 由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即 012 21 11010 10 a a a a A m m m m +?++?+?=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且 01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。在我们的日常 生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A 的p 进制表示: 012 21 1a p a p a p a A m m m m +?++?+?=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且 01≠-m a 。而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。 第二节 整数的性质及其应用(1) 基础知识 整数的性质有很多,这里我们着重讨论整数的整除性、整数的奇偶性,质数与合数、完全平方数及整数的尾数等几个方面的应用。 1.整除的概念及其性质 在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。 定义:设b a ,是给定的数,0≠b ,若存在整数c ,使得bc a =则称b 整除a ,记作a b |,并称b 是a 的一个约数(因子),称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a 记作b a 。 由整除的定义,容易推出以下性质: (1)若c b |且a c |,则a b |(传递性质);

最全教师版整理全面《高中数学知识点归纳总结》

教师版2015高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充 与复数 选修2—3:计数原理、随机变量及其分布列,统计案 例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充 要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最 值、反函数、三大性质、函数图象、指数与指 数函数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列 求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、和、差、 倍、半公式、求值、化简、证明、三角函 数的图象与性质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、数量积 及其应用 ⑹不等式:概念与性质、均值不等式、不等式的证明、 不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、 线性规划、圆、直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥 曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、 平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理 及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正 态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点 第一章:集合与函数概念 §1.1.1、集合 1、把研究的对象统称为元素,把一些元素组成的总体 叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集 合相等。 3、常见集合:正整数集合:* N或 + N,整数集合:Z,有理数集合:Q,实数集合:R. 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意 一个元素都是集合B中的元素,则称集合A是集合 B的子集。记作B A?. 2、如果集合B A?,但存在元素B x∈,且A x?,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作:?.并规 定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有n2个子 - 1 - / 35

三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180 360270360k k k Z αα??+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 任意角的概念 弧长公式 角度制与 弧度制 同角三角函数的基本关系式 诱导 公式 计算与化简 证明恒等式 任意角的 三角函数 三角函数的 图像和性质 已知三角函数值求角 和角公式 倍角公式 差角公式 应用 应用 应用 应用 应用 应用 应用

5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.01801≈=?π 815730.571801'?=?≈? =π 8、角度与弧度对应表: 角度 0? 30? 45? 60? 90 120? 135? 150? 180? 360? 弧度 6π 4π 3π 2π 23π 34π 56 π π 2π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,22r x y =+. 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”) 度 0 30 45 60 90 120 135 150 180 ? 270 360 弧度 6 π 4π 3π 2π 23π 34π 56π π 32 π 2π sin α 0 12 22 32 1 32 22 12 1 0 cos α 1 32 22 12 1 2- 22- 32- 1- 0 1 tan α 0 33 1 3 无 3- 1- 3 3 - 无 r y) (x,α P

初等数论知识点汇总

第一节整数的p进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m位的正整数A,其各位上的数字分别记为,则此数可以简记为:(其中)。 由于我们所研究的整数通常是十进制的,因此A可以表示成10的次多项式,即,其中 且,像这种10的多项式表示的数常常简记为。在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A的p进制表示: ,其中且。而仍然为十进制数字,简记为。 第二节整数的性质及其应用(1) 基础知识 整数的性质有很多,这里我们着重讨论整数的整除性、整数的奇偶性,质数与合数、完全平方数及整数的尾数等几个方面的应用。 1.整除的概念及其性质 在高中数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。 定义:设是给定的数,,若存在整数,使得则称整除,记作,并称是的一个约数(因子),称是的一个倍数,如果不存在上述,则称不能整除记作。

相关文档
最新文档