初等数论

合集下载

初等数论及其应用

初等数论及其应用
= 7 × 85 + 5 × 84 + 3 × 83 + 4 × 82 + 0 × 8 + 1
= 251649
16
课堂练习
计算: 将237894与251649都转换为二进制.
解: 其八进制表示分别为(720506) 8与(753401)8
易知对八进制0 − 7有如下二进制转换
0 −> 000 1 −> 001 2 −> 010 3 −> 011
4 −> 100 5 −> 101 6 −> 110 7 −> 111
因此, (720506) 8 = (111010000101000110) 2
(753401) 8 = (111101011100000001) 2
17
总结
自然数或者正整数指的是数1, 2,…, 而整数指的是数
0,±1,±2,⋯. 全体整数的集合记为ℤ, 而全体正整数或
除法:
66 = 2 × 33 + 0 (低位)
33 = 2 × 16 + 1
16 = 2 × 8 + 0
8=2×4+0
4=2×2+0
2=2×1+0
1 = 2 × 0 + 1 (高位)
按从低位到高位顺序, 依次取出上述除法中的余数, 得到
(66)10 = (1000010)2.
12
余数的定义
定义1.1.2 带余除法 = + 中的为用除得出
② 如果|, ≠ 0, 那么|.
③ 如果|, |, 那么对任意, ∈ ℤ, 有| + .
④ 如果|, |, 那么 = 或 = −.

初等数论

初等数论

3 同余
性质:同余关系是等价关系。 模m等价类: 在模m同余关系下的等价类. [a]m, 简记作[a]。 Zm: Z在模m同余关系下的商集。 在Zm上定义加法和乘法如下: a, b, [a]+[b]=[a+b], [a]· [b]=[ab]. 例6:写出Z4的全部元素以及Z4上的加法表和乘法表. 解 Z4={[0],[1],[2],[3]}, 其中[i]={4k+i |k∈Z}, i=0,1,2,3. + [0] [1] [2] [3] [0] [1] [2] [3] [0] [1] [2] [3] [1] [2] [3] [0] [2] [3] [0] [1] [3] [0] [1] [2] · [0] [1] [2] [3] [0] [0] [0] [0] [0] [1] [0] [1] [2] [3] [2] [0] [2] [0] [2] [3] [0] [3] [2] [1]
解 150=2×3×52, 168=23×3×7. gcd(150,168)=21×31×50×70=6, lcm(150,168)=23×31×52×71=4200.
欧几里得算法-辗转相除法
除法算法: a=qb+r, 0≤r <|b|, 记余数r=a mod b
例如, 20 mod 6=2, 13 mod 4=3, 10 mod 2=0
RSA公钥密码
私钥密码:加密密钥和解密密钥都必须严格保密 公钥密码 (W.Diffie,M.Hellman,1976 ):加密密钥公开,解密 密钥保密
整数. 则 min( rk , sk ) min( r1 , s1 ) min( r2 , s2 ) gcd(a,b)= p1 p2 pk ,
max( rk , sk ) max( r1 , s1 ) max( r2 , s2 ) p p p lcm(a,b)= 1 2 k

初等数论 高等数论

初等数论 高等数论

1111
数论是一门研究整数性质的数学分支,它包括了初等数论和高等数论两个方面。

初等数论主要研究整数的基本性质,如整除性、质数、合数、最大公约数、最小公倍数等。

这些概念和性质在小学和初中的数学课程中就已经涉及到了,因此也被称为“小学数论”或“初中数论”。

初等数论的研究方法主要是通过观察、归纳和证明来得出结论,它的研究对象比较具体,结论也比较直观。

高等数论则是在初等数论的基础上,进一步深入研究整数的性质和结构。

它涉及到的概念和方法更加抽象和复杂,如素数分布、数的几何、代数数论、解析数论等。

高等数论的研究需要运用到高等数学的知识和方法,如微积分、线性代数、抽象代数等。

高等数论的研究成果不仅在数学领域有着广泛的应用,而且在计算机科学、物理学、密码学等领域也有着重要的应用。

总的来说,初等数论是高等数论的基础,高等数论则是初等数论的延伸和深化。

无论是初等数论还是高等数论,它们都是数学中非常重要的分支,对于我们深入理解整数的性质和结构、推动数学的发展都有着重要的意义。

初等数论(闵嗣鹤版课件

初等数论(闵嗣鹤版课件
因而a个余数r0, r1, , ra1仅可能取a 1个值, 因此其中必有两个相等。
设为ri,rk,不妨设0 i k a,因而有 a(qk qi ) 2k 2i 2i (2ki 1)
因而a个余数r0, r1, , ra1仅可能取a 1个值, 因此其中必有两个相等。
• 我国近代:在解析数论、丢番图方程,一致分布 等方面有过重要贡献,出现了华罗庚、闵嗣鹤等 一流的数论专家,其中华罗庚在三角和估值、堆 砌素数论方面的研究享有盛名。
• 特别是在“篩法”、歌德巴赫猜想方面的研究, 已取得世界领先的优异成绩。陈景潤在1966年证 明歌德巴赫猜想方面证明了”1+2”(一个大偶数可 以表示为一个素数和一个不超过两个素数的乘积 之和)
m|aq
3、带余数除法
带余数除法的第二种表示 定理4 若a,b是两个整数,其中b 0,则存在着两个整数 q及r,使得 a bq r, 0 r b 成立,而且q及r是唯一的。
证明分析:作整数序列 ,-3 b ,-2 b ,- b ,0,b ,2 b ,3 b ,
则a必满足q b a<(q+1) b , 其中q Z , 令a q b r可得到a b q r,分b 0和 b 0来讨论q, 进一步证明q, r的唯一性。
(i)若在r1, , r5中数0,1,2都出现,不妨设
r1 0, r2 1, r3 2,
此时
a1 a2 a3 3(q1 q2 q3 ) 3
可以被3整除。
(ii)若在r1, , r5中数0,1,2至少有一个不出现,
这样至少有3个ri要取相同的值,不妨设
r1 r2 r3 r(r 0,1或2),
近代初等数论的发展得益於费马、欧拉、拉格朗日、 勒让德和高斯等人的工作。1801年,德国数学家高斯集 中前人的大成,写了一本书叫做《算术探究》,开始了 现代数论的新纪元。高斯还提出:“数学是科学之王, 数论是数学之王”。

初等数论

初等数论

序言数论是研究整数性质的一门很古老的数学分支,其初等部分是以整数的整除性为中心的,包括整除性、不定方程、同余式、连分数、素数(即整数)分布以及数论函数等内容,统称初等数论(Elementary Number Theory)。

初等数论的大部份内容早在古希腊欧几里德的《几何原本》中就已出现。

欧几里得证明了素数有无穷多个,他还给出求两个自然数的最大公约数的方法,即所谓欧几里得算法。

我国古代在数论方面亦有杰出之贡献,现在一般数论书中的“中国剩余定理”正是我国古代《孙子算经》中的下卷第26题,我国称之为“孙子定理”。

近代初等数论的发展得益于费马、欧拉、拉格朗日、勒让德和高斯等人的工作。

1801年,高斯的《算术探究》是数论的划时代杰作。

“数学是科学之王,数论是数学之王”。

-----高斯由于自20世纪以来引进了抽象数学和高等分析的巧妙工具,数论得到进一步的发展,从而开阔了新的研究领域,出现了代数数论、解析数论、几何数论等新分支。

而且近年来初等数论在计算器科学、组合数学、密码学、代数编码、计算方法等领域内更得到了广泛的应用,无疑同时间促进着数论的发展。

数论是以严格和简洁著称,内容既丰富又深刻。

我将会介绍数论中最基本的概念和理论,希望大家能对这门学问产生兴趣,并且对中小学时代学习过的一些基本概念,例如整除性、最大公因子、最小公倍数、辗转相除法等,有较深入的了解。

第一章整数的整除性§1.1整除的概念一、基本概念1、自然数、整数2、正整数、负整数3、奇数、偶数一个性质:整数+整数=整数整数-整数=整数整数*整数=整数二、整除1、定义:设a,b是整数,b≠0。

如果存在一个整数q使得等式:a=bq成立,则称b能整除a或a能被b整除,记作b∣a;如果这样的q不存在,则称b不能整除a。

2、整除的性质(1)如果b∣a,c∣b,则c∣a.(2)如果b∣a,则cb∣ca.(3)如果c∣a,则对任何整数d,c∣da.(4)如果c∣a,c∣b,则对任意整数m,n,有c∣ma+nb.(5)如果a∣b,b∣a,则a=±b.3、质数、合数质数(素数)是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除(除0以外)的数称之为素数(质数)。

初等数论的性质与定理总结

初等数论的性质与定理总结

初等数论的性质与定理总结初等数论是数论中的一个基础分支,研究整数的性质和整数运算规律。

本文将总结初等数论中的一些重要性质与定理。

一、整数的整除性质1. 整数的除法基本性质:对于任意整数a、b和非零整数c,存在唯一的整数q使得a = bq + c。

2. 整除关系的传递性:如果a能整除b,且b能整除c,则a能整除c。

3. 整除关系的辗转相除法:对于任意整数a和非零整数b,存在唯一的整数q和r使得a = bq + r(其中0 ≤ r < |b|)。

二、质数与合数1. 质数的定义:质数是指大于1且只能被1和自身整除的整数。

例如,2、3、5、7等都是质数。

2. 质因数分解定理:每个大于1的整数都可以唯一地表示为若干个质数的乘积。

3. 最大公约数与最小公倍数的性质:对于任意整数a和b,记a和b 的最大公约数为gcd(a, b),最小公倍数为lcm(a, b),则有以下性质: - gcd(a, b) = gcd(b, a)- gcd(a, 0) = |a|- lcm(a, b) = |ab| / gcd(a, b)三、模运算与同余1. 模运算的基本性质:对于任意整数a、b和正整数n,有以下性质:- (a + b) mod n = (a mod n + b mod n) mod n- (a - b) mod n = (a mod n - b mod n) mod n- (a * b) mod n = (a mod n * b mod n) mod n2. 同余关系的性质:对于任意整数a、b和正整数n,如果a与b模n同余(记作a ≡ b (mod n)),则有以下性质:- a + c ≡ b + c (mod n)- ac ≡ bc (mod n)- 如果a ≡ b (mod n),则a^k ≡ b^k (mod n)对于任意正整数k四、费马小定理与欧拉定理1. 费马小定理:如果p是质数,a是任意正整数且p不整除a,则有a^(p-1) ≡ 1 (mod p)。

初等数论闵嗣鹤第三版pdf

初等数论闵嗣鹤第三版pdf

初等数论闵嗣鹤第三版pdf初等数论是数学的一个分支,它主要研究自然数的性质和规律,以及数字之间的关系,是数学的基础之一。

其中,闵嗣鹤所撰写的《初等数论》是一本经典的教材,在广大数学爱好者和学生中享有很高的声誉。

下面是闵嗣鹤第三版《初等数论》的主要内容及划分:一、自然数与整数自然数和整数是初等数论的基础,闵嗣鹤在第一章中详细地探讨了这两个概念的定义、性质和运算法则。

其中,自然数之间的关系包括大小关系、奇偶性、质因数分解等,而整数之间的关系包括最大公因数、最小公倍数、同余等。

二、素数与分解定理素数是指在大于1的自然数中,除了1和本身之外,没有其他因数的数。

在第二章中,闵嗣鹤详细探讨了素数的性质、分布规律、筛法等,并引入了分解定理,即任何大于1的自然数都可以唯一地写成素数的积的形式。

三、同余与模运算同余是指两个数除以同一个自然数的余数相等。

闵嗣鹤在第三章中解释了同余的概念和性质,并介绍了模运算,即对于任何整数a和正整数n,都可以得到一个余数r,也就是a mod n=r。

四、数论函数与数论约束问题数论函数是指把自然数映射为自然数的函数,闵嗣鹤在第四章中介绍了数论函数的类型、性质和应用,如欧拉函数、莫比乌斯函数等。

另外,数论约束问题是数论中一个重要的研究方向,指在一定条件下求出自然数的个数或性质,如高斯整数环中最大不同平方因子数量的值等。

五、二次剩余与离散对数二次剩余是指一个数的平方模一个素数后的余数,闵嗣鹤在第五章中详细探讨了二次剩余的性质和应用,如欧拉定理、勒让德符号等。

离散对数则是指解一个同余方程中未知数的问题,其在密码学领域中有重要应用。

六、多项式与代数数论多项式是数论中的一个重要分支,涉及到的问题包括多项式的根、因式分解等。

闵嗣鹤在第六章中介绍了多项式的性质和运算法则,以及代数数论的相关知识。

综上所述,闵嗣鹤第三版《初等数论》是一本内容丰富、系统完备、知识详尽的经典教材,不仅适用于初学者,也适合用于深入研究数论的专业人士。

初等数论

初等数论

初等数论初等数论从表面意义来讲,就是作为一门研究数的相关性质的数学学科。

准确地按照潘承洞、潘承彪两位数论大师的说法:初等数论是研究整数最基本的性质,是一门十分重要的数学基础课。

它不仅是中、高等师范院校数学专业,大学数学各专业的必修课,而且也是计算机科学等相关专业所需的课程。

纵观数论发展过程,我国出现了许许多多的数论大师,如:华罗庚的早期研究方向、陈景润、潘承洞等。

第一部分:整除初接触初等数论,经过《初等数论》课本知整除理论是初等数论的基础。

整除理论首先涉及整除。

现向上延伸则想到整除的对象,即自然数、整数。

从小学、中学再到大学,我们从接触最初的1、2、3再到后来的有理数、无理数、实数再到复数,可谓种类繁多。

但数论中的整除运算仅仅局限于自然数及其整数等相关范围内。

首先大学数学中绝大多数数学定义中的自然数不包括0 ,这似乎与中学有一点差别,当然整数的定义改变就相对少得多。

另外,自然数、整数的相关基本性质需懂得及灵活利用,如分配律、交换律、反对称性等。

在初等代数中曾系统地介绍了自然数的起源问题:自然数源于经验,自然数的本质属性是由归纳原理刻画的,它是自然数公理化定义的核心。

自然数集合严格的抽象定义是由Peano定理给出的,他刻画了自然数的本质属性,并导出有关自然数的有关性质。

Peano定理:设N是一个非空集合,满足以下条件:(ⅰ)对每一个n∈N,一定有唯一的一个N中的元素与之对应,这个元素记作n+,称为是n的后继元素(或后继);(ⅱ)有元素e∈N,他不是N中任意元素的后继;(ⅲ)N中的任意一个元素至多是一个元素的后继,即从a+=b+ 一定可以推出a=b;(ⅳ)(归纳原理)设S是N的一个子集合,e∈S, 如果n∈S则必有n+ ∈S,那么,S=N.这样的集合N称为自然数集合,它的元素叫做自然数。

其中的归纳原理是我们常用的数学归纳法的基础。

数学归纳法在中学已属重点内容,此处就不作介绍。

主要描述一下推广状态下的第二种数学归纳法:(第二种数学归纳法)设P(n)是关于自然数n的一种性质或命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数论初等数论从表面意义来讲,就是作为一门研究数的相关性质的数学学科。

准确地按照潘承洞、潘承彪两位数论大师的说法:初等数论是研究整数最基本的性质,是一门十分重要的数学基础课。

它不仅是中、高等师范院校数学专业,大学数学各专业的必修课,而且也是计算机科学等相关专业所需的课程。

纵观数论发展过程,我国出现了许许多多的数论大师,如:华罗庚的早期研究方向、陈景润、潘承洞等。

第一部分:整除初接触初等数论,经过《初等数论》课本知整除理论是初等数论的基础。

整除理论首先涉及整除。

现向上延伸则想到整除的对象,即自然数、整数。

从小学、中学再到大学,我们从接触最初的1、2、3再到后来的有理数、无理数、实数再到复数,可谓种类繁多。

但数论中的整除运算仅仅局限于自然数及其整数等相关范围内。

首先大学数学中绝大多数数学定义中的自然数不包括0 ,这似乎与中学有一点差别,当然整数的定义改变就相对少得多。

另外,自然数、整数的相关基本性质需懂得及灵活利用,如分配律、交换律、反对称性等。

在初等代数中曾系统地介绍了自然数的起源问题:自然数源于经验,自然数的本质属性是由归纳原理刻画的,它是自然数公理化定义的核心。

自然数集合严格的抽象定义是由Peano定理给出的,他刻画了自然数的本质属性,并导出有关自然数的有关性质。

Peano定理:设N是一个非空集合,满足以下条件:(ⅰ)对每一个n∈N,一定有唯一的一个N中的元素与之对应,这个元素记作n+,称为是n的后继元素(或后继);(ⅱ)有元素e∈N,他不是N中任意元素的后继;(ⅲ)N中的任意一个元素至多是一个元素的后继,即从a+=b+ 一定可以推出a=b;(ⅳ)(归纳原理)设S是N的一个子集合,e∈S, 如果n∈S则必有n+ ∈S,那么,S=N.这样的集合N称为自然数集合,它的元素叫做自然数。

其中的归纳原理是我们常用的数学归纳法的基础。

数学归纳法在中学已属重点内容,此处就不作介绍。

主要描述一下推广状态下的第二种数学归纳法:(第二种数学归纳法)设P(n)是关于自然数n的一种性质或命题。

如果(1)当n=1时,P(1)不成立;(2)设n>1,若对所有的自然数m<n,P(m)成立,则必可推出P(n)成立。

那么,P(n)对所有的自然数都成立。

数学归纳法是一种非常常用的数学方法,其重要性不必多说。

另外,由归纳法原理还可推出两个在数学中,特别是初等数论中常用的自然数的性质,即最小自然数原理和最大自然数原理。

并且最小自然数原理是我们常用的第二数学归纳法的基础。

此外,在初等数论中还经常用到的一个工具,那就是鸽巢原理,也就是同等意义下的在组合数学中的抽屉原理。

介绍完自然数和整数及其性质定理等数论基础后,下面来关注初等数论的一写重要方面,即整除、带余数除法、辗转相除法、素数、约数、最大公约数理论、算术基本定理等等。

整除既然是初等数论的基础内容,看似简单的整除,若要领略各中精髓以及其中之奥妙,仍需下一番苦功夫。

单从整除的定义就有各种解释方法:1)设a,b∈Z,a≠0,如果存在q∈Z,使得b=aq,那么就说b可被a整除,记作a∣b.2) Z上定义一种关系R,令R={(a,b)∣a≠0.b∈Z},且在<Z + &S226;>使ax=b有解,称为Z上的整除关系。

(任意的δ∈R,存在a,b∈Z,使得δ=(a,b)∈R,一般写成aRb,称为a与b有整除关系,也称a是b的约数,也称b是a的倍数。

)aRb令为a∣b,这就回到了第一种定义,其实这两种定义方式看似一样,其数学内涵却大有不同:第一种定义方法是从最原始的观点出发,也可说从“整除”的字面意思来定义,也是中学最常用的一种定义方式,因此只能算作一种简单明了的数学思维,并不能真正体现数学的高等数论。

尽管初等数论是一种初等思想去解决一些高等难题。

第二种定义方法则焦点于高等代数中的环、域定义。

环、域定义让我们的数学定义方式更加广泛,这是初等数学中所没有的,因此有的时候初等数学解决不了的问题就可以用此种定义去解决,这给了我们更广泛的思维空间。

对整除的各方面性质可以归纳如下:1)序关系≤ (N,<) 这来源于近似代数,故不做研究。

2)等价关系① aRa 自反关系② aRb =>bRa对称关系③ aRb,bRc=>aRc 传递性注意:整除不是等价关系3)整除具有线性可加性a∣bi (1≤i≤n) ó a∣∑bixi xi∈Z4)整除可约性a∣bó ma∣mb(m≠0)5)整除与符号无关a∣bó∣a∣∣∣b∣ ó -a∣bóa∣-b6)a∣b(b≠0)=>∣a∣≤∣b∣上面这些性质可以灵活的加以利用,其魅力就可显现出来:已知a,b∈Z.a2+b2≠0,存在x,y∈Z使得ax+by=1.若a∣bq,则可证a∣qA ,b同例1存在ax+by=1 如果a∣n,b∣n 则ab∣n整除的这些性质应用可谓变幻无穷。

特别是在后面的素数、合数的相关性质方面及其证明中。

下面就来介绍一下关于素数的一些性质,当然介绍素数的同时还涉及到关于合数的问题。

点到部分再一一介绍。

从目前所学的内容来看关于素数的性质占了很大的比重,应该说是素数和整除的性质占了很大的部分,故彰显其重要性。

素数的概念与中学学的相差不大,只存在名称的扩充问题。

显然约(因、除)数,非显然约(因、除)数,真约(因、除)数的辨别问题。

当然须指出的是以后所介绍的素数一般指正的。

知道素数的概念后就应该思考一下关于素数的基本求法。

在课本随后的介绍中讲到了Eratosthenes筛法(在本书的第八章:素数分布的初等结果中有详细的讲解)来自书中的推论6即为该筛法的相关理论背景:推论6:设整数a≥2.(ⅰ) 若a是合数,则必有不可约数p∣a,p≤a1/2(Ⅱ) 若a=p1p2…ps的表示式,则必有不可约数p|a,p≤a1/s其主要原理就来自于这个推论6。

当然此种意义下的Eratosthenes筛法是最简单的了。

对于它的推广应用还很多,比如说:如何找出1,2,…,N中至多两个素数的乘积的数?这就是推广意义下的应用,只是在推论6的理论下a的二分之一的情况改为三分之一的情况,这也可以看出推论6也可以推广的。

故我们知道该筛法有很多种应用情况,比如说至少两个素数的乘积的情况,至多三个的情况,至少三个的情况等等。

我们可以明显地观察出上面的这些解法是在有限的情况下来讨论的,故我们需要研究一下再不知道具体情况下的素数的一些情况。

在不明确范围的情况下有很多种状况:如:①设n≥1,2n+1是素数的必要条件是n=2k;②2n-1是素数的必要条件是n为素数;其证明也很简单:①若n≠2,则n=am,2不等于大于1的m2n+1=(2a)m+1=(2a+1)((2a)m-1-(2a)m-2+…+1)便可得到②若n是合数,则n=am.a>1,m>12n-1=(2a)m-1=(2a-1)((2a)m-1+(2a)m-2+…+1)便可得到其中数学中的一个著名定理是:不可约数(素数)有无穷多个。

除了课本中给出的证明方法以外,在习题中也有一些证明方式来进行证明:如:1)设n≥0,Fn=2的2N次加上1(它称为Fermat数)再设m≠n,且d|Fn,则dFn由此推出素数有无穷多个,且可得到Fn+1=Fn … F0 +2 ;2) 设F1 =2, An+1=A2n – AN +1,再设n≠m,若d|An,d>1,则 d 不整除于Am,由此推出素数有无穷多个,且可得到An+1=An … A1 +1.(设m>1,m|(m-1)!+1,可得到m是素数。

)有了素数及整除的定义后,首先要考虑的就是公约数、最大公约数、公倍数、最小公倍数。

乍一看,这似乎就是中学内容。

不错,根据初等数论的低落脚点,这属于中学知识的衍生而已。

除了其定义是通过整除来定义以外,其他的性质也有适当的延伸。

其中较重要的一个就是:如果存在整数x1,x2,x2,…,xk,使得a1x1+a2x2+a3x3+…+akxk=1,则a1,a2,…,ak是既约的,即使互素的。

--------(1)这一定理在后面部分有着十分重大的作用。

如在实现建立最大公约数理论的第二个途径处:设a1,…,ak是不全为零的整数,有1)(a1,a2,…,ak)=min{s=a1x1+a2x2+…+akxk;xj∈Z(1≤j≤k),s>0},即a1,…,ak 的最大公约数等于a1,…,ak的所有整系数线性组合组成的集合S中的最小正整数。

2)一定存在一组整数x1,0, … ,xk,0 使得(a1, … ,ak )=a1 x1,0 + … + ak xk,0 ---------(2)要论及上面这个定理得应用,下面可以举一个简单的例子:若(a,b)=1则任一整数n必可表示为n=ax+by,x,y是整数。

由(a,b)=1及上定理(2)知存在x0,y0, 使得ax0+by0=1,因而取x=nx0,y=ny0, 即满足要求。

此题属于定理(1)(2)得综合运用,仍可想到的是在定理(2)有一种特殊情况,若其中的每一个元素均两两互素,那么情况(2)也就变成情况(1)了,因此情况(2)可以看作此种情况(1)的推广,情况(1)就看作情况(2)得特殊情况而已。

在构造一系列既约数方面应用得较多的方法就是下面这个方法:(a1/(a1,…,ak),…,ak/(a1,…,ak))=1关于最大公约数理论和最小公倍数理论的进一步性质推广,重在利用带余数除法在最大公约数理论部分讨论。

整数集合最重要的特性就在于其中可以实现带余数除法(也称带余除法或除法算法),它是初等数论中的证明中最重要、最基本、最直接的工具。

具体应用带余数除法时常取以下更灵活的形式:设a,b是两个给定的整数,a≠0,再设d 是一给定的整数,那么,一定存在唯一的一对整数q1与r1,满足b=q1a+r1,d≤r1<|a|+d.此时,a|b的充要条件是a|r。

另外这个时候还应该灵活区分最小非负余数、绝对最小余数、最小正余数、余数。

此类应该在具体计算中有更广泛的作用,当然对于明确此类定义有很大的帮助。

依据带余数除法定义,可得出推论:设a>0,任一整数被a除后所得的最小非负余数是且仅是0,1,…,a-1这a个数中的一个。

这个推论最直接的用法就是整数分类以及进位制表示法,间接影响到辗转相除法。

首先来看整除分类:j mod m称为j关于除数m所在的剩余类,则有0 mod a∪1 mod a∪…∪(a-1) mod a=Z,其中0≤i≠j≤(a-1)是集合j mod a 和j’ mod a 不相交。

此时是利用全体整数按被a除后所得的最小非负余数分类,分成了两两不相交的a个类,这对诠释整除的含义有更积极的意义。

相关文档
最新文档