初中数学竞赛专题复习第三篇初等数论第20章同余试题新人教版

合集下载

初等数论§3同余

初等数论§3同余
不能成立。 反例:取m=6,c=2,a=20,b=23.
这时,有40 46(mod6), 但20 23(mod6)不成立!
2019/4/3
8
⑥ a b c(mod m ) a c b(mod m )
证:a b c(mod m ) m c a b
m (c b ) a a (c b)(mod m ).
由71 1(mod4), 72 1(mod4), 76 1(mod4), 7 1 3(mod4), r3
7
所以7 7r 7 3 7 2 7 ( 1) ( 3) 3(mod10).
77
即7 的个位数是3.
2019/4/3
77
13
一般地,求a 对模m的同余的步骤如下:
—— 7|a 7|a2a1a0 a5a4a3
7 11 13 1001 1000 1(mod7)
a n a n 1

a 0 a n a n 1
a3 1000 a2a1a0 a6
a2a1a0 anan1
(mod7).
a3 a2a1a0 a5a4a3 anan1
① 求出整数k,使ak 1 (mod m);
bc
② 求出正整数r,r < k,使得bc r (mod k);
——减小幂指数
③ a a (mod m )
r bc
练习:若a Z , 证明 10|a1985 a1949 . 提示: a 5 a(mod10)
2019/4/3
14
例4
3、9 的整除特征
——各位上的数字之和能被3(9)整除 10i 1mod(3)

初等数论同余

初等数论同余
即奇数位数字之和与偶数位数字之和的差能 被11整除的数能被11整除.
初等数论同余
规律(7)的证明
证: 100 0 1 (0 m 7)o 1 , d 00 1 (0m 7)od
一般地有 10 i 0 ( 1 )0 i(m 7 )io , 0 d ,1 , n
两边同乘 a i 有并对n+1个式子相加得
2121+X+Y 39,4 X-Y+13 22,由此
可知 21+X+Y=27,X-Y+13=11 或21+X+Y=36,X-Y+13=22 X+Y=6,X-Y=-2,或X+Y=15,X-Y=9, 解得X=2,Y=4。
初等数论同余
例3 :求111 被7除的余数。
50
解:∵111111被7整除,
∴ 111 ≡11(mod 7)≡4(mod 7)
dd
m| a b dd
初等数论同余
性质8 若ab(momd).则 (a,m)=(b,m) 证:由已知a=b+mt,故 (a,m)|a, (a,m)|m, 有(a,m)|b,所以有 (a,m)|(b,m), 同理可证(b,m)|(a,m), 即(a,m)=(b,m).
性质9 若 a b (m m i)o i .1 d ,2 ,3 k,则
初等数论同余
例2:证明5y+3=x2无解 证明:若5y+3=x2有解,则两边关于模5同余 有5y+3≡x2(mod 5) 即3≡x2(mod 5)
而任一个平方数x2≡0,1,4(mod 5) ∴ 3 ≡ 0,1,4(mod 5),不可能 ∴ 即得矛盾,即5y+3=x2无解 注:在证明方程无解时,经常用不同余就不相等的 方法。

初中数学竞赛专题复习第三篇初等数论第22章[x]与{x}试题新人教版

初中数学竞赛专题复习第三篇初等数论第22章[x]与{x}试题新人教版

第22章[]x与{}x22.1.1★求1-的值.解析因为1200712006+,又1200720071=+=<,所以200612007<.故12006=.22.1.2★若n是正整数,求的值.解析因为3321n n n n<+++()3323311n n n n<+++=+,所以1n n<=+,所以n=.22.1.13★数1232008A=⨯⨯⨯⨯的末尾有多少个连续的零?解析A的质因数分解式中,5的最高次方幂为23420082008200820085555⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦40080163499=+++=,所以1232008A=⨯⨯⨯⨯的末尾有499个零.评注在()!12n n=⨯⨯⨯中,质数p的最高次幂是()2!mn n np np p p⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中m p n≤,且1m p n+>.22.1.4★★设2221111232007S=++++,求[]S.解析要求[]S,只需证明S介于两个连续的整数之间.所以需要对S进行适当的变形,通过放大、缩小的手段求出S的范围,从而确定[]S的取值.由题设知,1S >.考虑到()2111111k k k k k<=---,k =2,3,4,…,2007,可以得到 11111111122320062007S ⎛⎫⎛⎫⎛⎫<<+-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1222007=-<, 所以[]1S =.评注 上述解题过程中,首先对S 进行了“放缩”,又通过“拆项”的方法使和式中前后两项能够相互抵消一部分,使和式化简,从而得到了S 的范围.在对和式取整时,利用和式本身的性质进行“缩放”的方法非常重要,需要在平时的学习中多积累一 些和式的性质以及变形技巧.22.1.5★★ 计算和式23123223100101101101⨯⨯⨯⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的值.解析 因为(23,101)=1,所以,当1,2,,100n =时,23101n 都不是整数,即23101n ⎧⎫⎨⎬⎩⎭都不为零.又因为()2310123101101n n -+ ()()23101231012323101101101101n n n n --⎡⎤⎧⎫⎡⎤⎧⎫=+++⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎩⎭⎣⎦⎩⎭ =23,而()231012302101101n n -⎧⎫⎧⎫<+<⎨⎬⎨⎬⎩⎭⎩⎭,且()2310123101101n n -⎧⎫⎧⎫+⎨⎬⎨⎬⎩⎭⎩⎭是整数,所以 ()23101231101101n n -⎧⎫⎧⎫+=⎨⎬⎨⎬⎩⎭⎩⎭, 则()231012323122101101n n -⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦. 从而,可以把231101⨯⎡⎤⎢⎥⎣⎦,232101⨯⎡⎤⎢⎥⎣⎦,…,23100101⨯⎡⎤⎢⎥⎣⎦首尾配对,共配成50对,每一对的和为22,所以 23123223100101101101⨯⨯⨯⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2251100=⨯=. 22.1.6★★ 已知01a <<,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,求[]10a 的值. 解析 因为122902303030a a a <+<+<<+<,所以130a ⎡⎤+⎢⎥⎣⎦,230a ⎡⎤+⎢⎥⎣⎦,…,2930a ⎡⎤+⎢⎥⎣⎦等于0或者1.由题设知,其中有18个等于1,所以12110303030a a a ⎡⎤⎡⎤⎡⎤+=+==+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,1213291303030a a a ⎡⎤⎡⎤⎡⎤+=+==+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以110130a <+<, 121230a +<≤. 故183019a <≤,于是196103a <≤,所以[]106a =. 22.1.7★★ 求满足{}[]25125x x +=的所有实数x 的和.解析 原方程可化为{}[]12525x x -=,所以[]1250125x -<≤,可得[]100125x <≤,于是[]x =101,102,…,125,从而,满足条件的实数x 为[]{}[][][]1252452525x x x x x x -=+=+=+ 24101525⋅=+,24102525⋅+,…,24125525⋅+, 它们的和为 ()24255101102125283725⨯++++=.22.1.8★★ 已知20032004T <<,如果要求[]{}x x ⨯是正整数,求满足条件所有实数x 的和. 解析 显然,[]2003x =,2003是质数,{}01x <<,设{}2003x p =,由题设,p 是整数,12003p <≤.20032003p x =+,p =1,2,3,…,2002. 和1232002200320022003S ++++=⨯+ 4011007=. 22.1.9★ 解方程[]722x x -=. 解析 原方程可改写为[]722x x =+, 将其代人[][]l x x x <+≤,可得[][][]72l 2x x x +<+≤. 解此不等式组,有 []7522x -<-≤, 即[]3.5 2.5x -<-≤,所以[]3x =-.将[]3x =-代入原方程,得52x =-. 所以,原方程的解是52x =-. 评注 若一次方程中同时出现x 和[]x 的一次项,可以通过以下的步骤进行求解:(1)从方程中解出[]x 或x ,分别代入不等式组[]1x x x -<≤或[][]1x x x <-≤,求解后得到[]x 或x 的范围,从而求得[]x 的“可能取值”(注意不一定是解!).(2)将这些“可能值”代人原方程进行求解.(3)检验.因为在(1)中将[]x 或x 代人不等式组,实际上是“放大”了x 的范围,所以必须验根!22.1.10★ 解方程:[]13122x x +=-.解析 设[]31x n +=,则n 为整数,且()0311x n +-<≤, ① 由原方程知122x n -=,即1124x n =+. ②3301124n n ++-<≤, 即7322n -<-≤.所以,3n =-或2n =-.代入②,得134x =-,254x =-.22.1.11★★ 解方程:[]33x x -=.解析 由原方程可化为[]33x x =-,代入不等式组[]1x x x -<≤,有[]313x x x x -<-=≤.整理后得到()2213x x <-≤.当0x <时,因为()210x x ->,所以210x -<,即10x -<<,所以()211x x -<,与()221x x <-矛盾. 当0x >时,因为()212x x ->,所以210x ->,即1x >.又因为()213x x -≤,所以2x <.所以12x <<,故[]1x =.代入原方程,得x =.22.1.12★★ 解方程[]2440510x x -+=.解析 这是一个关于x 的二次方程,如果从方程中解出[]x 或x ,并代入不等式组将会使问题复杂化.可 以利用[]x 的性质,通过建立不等关系缩小[]x 的取值范围,从而得到[]x 的可能取值.由原方程知,0x >.因为[][]1x x x <+≤,所以将[]x x =和[]1x x =+分别代入[]244051x x -+中,得到不等式组 [][][]()[]22440510,4140510,x x x x ⎧-+⎪⎨+-+>⎪⎩≤ 即[][][]317,22115,22x x x ⎧⎪⎪⎨⎪><⎪⎩≤≤或 所以[]3522x <≤或[]111722x <≤,[]x =2,6,7,8. 代入原方程得,得x经检验知,x =22.1.13★★ 已知x 、y 、z 满足:[]{}[]{}{}[]0.9,0.2,1.3,x y z x y z x y z ⎧++=-⎪++=-⎨⎪++=⎩①②③对于数a ,[]a 表示不大于a 的最大整数,{}[]a a a =-.求x 、y 、z 的值.解析 首先注意到,对于任意有理数a ,[]a a ≤,所以{}0a ≥.①+②+③得2220.6z y z ++=,即0.3z y z ++=. ④④-①得到{}[] 1.2y z +=,从而{}0.2y =,[]1z =;④-②得到{}[]0.1x y +=,从而{}0.1x =,[]0y =;④-③得到{}[]1x z +=-,因此{}1x =-,[]0z =.故0.9x =-,0.2y =,1z =.22.1.14★★ 解方程[][]999x x x x +=+(其中[]x 表示不超过x 的最大整数).解析 若x 是整数,则[]x x =,于是非零整数都是原方程的解.若x 不是整数,则[]x x ≠,由题设得[]()[]()990x x x x --=,所以[]99x x =.设[]x n =,则x n a =+,01a <<.代入上式得()99n a n +=.当0n >时,()2991n n n <<+,这样的整数n 不存在.当0n <时,()2199n n n +<<,只有整数10n =-满足,此时0.1a =.于是9.9x =-.综上所述,原方程的解为所有非零整数和-9.9.22.1.15★★ 证明:对于任意实数x ,有[][]122x x x ⎡⎤++=⎢⎥⎣⎦.解析 设{}[x x x =+,其中{}01x <≤,则有[]{}1122x x x +=++,[]{}222x x =+.当{}102x <≤时,{}11122x +<≤,{}102212x <⨯=≤,所以[]12x x ⎡⎤+=⎢⎥⎣⎦,[][]22x x =,于是[][][]1222x x x x ⎡⎤++==⎢⎥⎣⎦. 当{}112x <≤时,{}13122x +<≤,{}12212x <⨯=≤,所以[]{}[]11122x x x x ⎡⎤⎡⎤+=++=+⎢⎥⎢⎥⎣⎦⎣⎦,[][]{}[]22221x x x x =+=+⎡⎤⎣⎦,于是[][][]12122x x x x ⎡⎤++=+=⎢⎥⎣⎦.所以,对于任意实数x ,[][]122x x x ⎡⎤++=⎢⎥⎣⎦恒成立.说明 本题中的等式有更为一般的形式:对任意实数x ,有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中n 为大于l 的一切正整数.这个等式称为埃尔米特(Hermite )恒等式.22.1.16★★ 设x 、y 为正整数,(),1x y =,求证: ()()()11122y x x y x x y y y ---⎡⎤⎡⎤⎡⎤+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.解析 设r 为整数,且11r y -≤≤,则有()y r x yxrx rx x y y y y -⎡⎤⎡⎤⎡⎤=-=+-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1rx x y ⎡⎤=--⎢⎥⎣⎦, 两边同时叠加,得到()()121x y x y x y y y --⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()1211x y x x y x y y y ⎛⎫-⎡⎤⎡⎤⎡⎤=---+++ ⎪⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭. 所以()12y x x x y y y ⎛⎫-⎡⎤⎡⎤⎡⎤+++ ⎪⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎝⎭()()112x y --=.评注 对任意实数x ,有[][][]1,,x x x ⎧--⎪-=⎨-⎪⎩,.当不是整数当是整数(请读者自证)22.1.17★★★ 如果n 是正整数,求证:解析 任意正整数n ,总存在正整数m ,满足()221m n m <+≤,不妨设2n m k =+,其中02k m ≤≤.(1)当01k m -≤≤时,即221m n m m +-≤≤.则m12m =+. ①又因为2211m n m m +++≤≤,所以12mm <+. ②由①、②式,得221m m <<+,所以2m =.另一方面,224242442m n m m +++-≤≤,2m =<21m +,即2m =. 故当01k m -≤≤时,等式成立.(2)当2m k m ≤≤时,2222m m n m k m m +=++≤≤,1m +,1m =+.22m +. ③又,+因为 ()22m m =+, 所以 ()()221m m m m +++++()()()222221441m m m m m m m m >++++++=++.即()2221m >+.21m >+. ④由③、④式,得21m =+. 另一方面,2244242482m m n m m +++++≤≤,21m +22m =+.所以21m =+.故当2m k m ≤≤时,等式亦成立.综上所述,原等式成立.22.1.18★★ 设a 、b 、c 是正实数,求a b b c c a u c a b +++⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的最小值. 解析 对于实数x ,有[]1x x >-,所以a b b c c a u c a b +++⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 3a b b c c a c a b+++>++- 3a b b c c a b a c b a c ⎛⎫⎛⎫⎛⎫=+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22233++-=≥.由于u 是整数,所以4u ≥.当6a =,8b =,9c =时,4u =.故u 的最小值为4.22.1.19★★ 在1,2,…,2005这2005个正整数中,有多少个可以表示成[]x x ⎡⎤⎣⎦的形式,其中x 是正实数.(这里[]a 表示不超过a 的最大整数.)解析 令{}[]x x x =-,则{}[0,1)x ∈,于是[][]{}()[][]{}[]2x x x x x x x x ⎡⎤⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎣⎦,因为{}[][]0x x x <≤,所以{}[][]01x x x ⎡⎤-⎣⎦≤≤,令[]x n =,则[]x x ⎡⎤⎣⎦可以表示数2n ,21n +,…,21n n +-.由于2444319792005+=<,24520252005=>,所以,欲求的数的个数为 444512449902⨯+++==. 22.1.20★★★ 将正整数中所有被4整除以及被4除余1的数全部删去,剩下的数依照从小到大的顺序排成一个数列{}n a :2,3,6,7,10,11,….数列{}n a 的前n 项之和记为n S ,其中n =1,2,3,….求2006S S ⎡=+++⎣的值.(其中[]x 表示不超过x 的最大整数) 解析 易知2142n a n -=-,241n a n =-,1n =,2,…,因此()()()21234212n n n S a a a a a a -=++++++()5132183n =++++- ()258322n n n n +-==+, ()22122441n n n S S a n n n -=-=+--()221n n =-+, 所以()()222221n n S n <<+,()()2221212n n S n --<<, 故[]22n S n =,[]2121n S n -=-,从而[]n S n =,于是 [][][]122006S S S S =+++ 200620071220062⨯=+++= 2013021=.22.1.21★★★★ 在212006⎡⎤⎢⎥⎣⎦,222006⎡⎤⎢⎥⎣⎦,232006⎡⎤⎢⎥⎣⎦,…,220062006⎡⎤⎢⎥⎣⎦中,有多少个不同的整数?(其中,[]x 表示不超过x 的最大整数)解析 设()22006n f n =,则当n =2,3,…,1003时, 有()()()221120062006n n f n f n ---=- 2112006n -=<, 而,()10f =,()210031003501.52006f ==,所以,从0到501的整数都能取到. 当n =1004,1005,…,2006时,有()()()221120062006n n f n f n ---=- 2112006n -=>, 而()()22100311004100420062006f +== 1501.515022006=++>, 所以,210042006⎡⎤⎢⎥⎣⎦,210052006⎡⎤⎢⎥⎣⎦,…,220062006⎡⎤⎢⎥⎣⎦是互不相同的整数. 从而,在212006⎡⎤⎢⎥⎣⎦,222006⎡⎤⎢⎥⎣⎦,232006⎡⎤⎢⎥⎣⎦,…,220062006⎡⎤⎢⎥⎣⎦中,共有50210031505+=个不同的整数.。

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧(含例题练习及答案)

初中数学竞赛:数论的方法技巧数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=an10n+an-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2m t,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

初等数论 期末复习 同余精选例题分析

初等数论 期末复习 同余精选例题分析

第三章同余例题分析例1:求3406的末二位数。

解:∵(3,100)=1,∴3)100(φ≡1(mod 100)φ(100)=φ(22·52)=40,∴340≡1(mol 100)∴3406=(340)10·36≡(32)2·32≡-19×9≡-171≡29(mod 100)∴末二位数为29。

例2:证明(a+b )p ≡a p +b p (mod p )证:由费尔马小定理知对一切整数有:a p ≡a (p ),b p ≡b (P ),由同余性质知有:a p +b p ≡a+b (p )又由费尔马小定理有(a+b )p ≡a+b (p )(a+b )p ≡a p +b p (p )例3:设素数p >2,则2P -1的质因数一定是2pk +1形。

证:设q 是2p -1的质因数,由于2p -1为奇数,∴q ≠2,∴(2·q )=1,由条件q|2p -1,即2p ≡1(mod q ),又∵(q ,2)=1,2p ≡1(mod q )设i 是使得2x ≡1(mod p )成立最小正整数若1<i <p ,则有i |p 则与p 为素数矛盾∴i=p ,∴p |q -1又∵q -1为偶数,2|q -1,∴2p |q -1,q -1=2pk ,即q =2pk +1例4:证明13|42n +1+3n +2证:∵42n +1+3n +2≡4·16n +9·3n≡3n (4+9)≡13×3n ·≡0(13)∴13|42n +1+3n +2例5:证明5y +3=x 2无解证明:若5y +3=x 2有解,则两边关于模5同余有5y +3≡x 2(mod 5)即3≡x 2(mod 5)而任一个平方数x 2≡0,1,4(mod 5)∴30,1,4(mod 5)∴即得矛盾,即5y +3=x 2无解例6:求50111......被7除的余数。

初中数学竞赛专题复习 第三篇 初等数论 第21章 不定方程试题 新人教版-新人教版初中全册数学试题

初中数学竞赛专题复习 第三篇 初等数论 第21章 不定方程试题 新人教版-新人教版初中全册数学试题

第21章 不定方程§21.1 二元一次不定方程★求不定方程2x y -=的正整数解.解析 因为312-=,422-=,532-=,…,所以这个方程的正整数解有无数组,它们是2,,x n y n =+⎧⎨=⎩其中n 可以取一切正整数.★求11157x y +=的整数解.解析1 将方程变形得71511y x -=. 因为x 是整数,所以715y -应是11的倍数.由观察得02x =,01y =-是这个方程的一组整数解,所以方程的解为215,111,x t y t =-⎧⎨=-+⎩t 为整数. 解析2 先考察11151x y +=,通过观察易得()()1141531⨯-+⨯=,所以()()114715377⨯-⨯+⨯⨯=,可取028x =-,021y =.从而 2815,2111,x t y t =--⎧⎨=+⎩t 为整数. 评注 如果a 、b 是互质的整数,c 是整数,且方程ax by c +=①有一组整数解0x 、0y .则此方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩其中0t =,±1,±2,±3,….★求方程62290x y +=的非负整数解.解析 因为(6,22)=2,所以方程两边同除以2得31145x y +=. ①由观察知,14x =,11y =-是方程3111x y +=②的一组整数解,从而方程①的一组整数解为()00454180,45145,x y =⨯=⎧⎪⎨=⨯-=-⎪⎩ 所以方程①的一切整数解为18011,453.x t y t =-⎧⎨=-+⎩因为要求的原方程的非负整数解,所以必有180110,4530.t t -⎧⎨-+⎩≥③≥④ 由于t 是整数,由③、④得15≤t ≤16,所以只有t =15,t =16两种可能.当t =15时,x =15,0y =;当t =16时,x =4,y = 3.所以原方程的非负整数解是15,0,x y =⎧⎨=⎩4,3.x y =⎧⎨=⎩ ★求方程719213x y +=的所有正整数解.解析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数 的方法使系数变小,最后再用观察法求解.用方程719213x y +=①的最小系数7除方程①的各项,并移项得213193530277y y x y --==-+.② 因为x 、y 是整数,故357y u -=也是整数,于是有573y u +=.再用5除此式的两边得 373255u u y u --==-+.③令325u v -= (整数),由此得 253u v +=.④由观察知1u =-,1v =是方程④的一组解.将1u =-代入③得2y =.2y =代入②得x =25.于 是方程①有一组解025x =,02y =,所以它的一切解为2519,27.x t y t =-⎧⎨=+⎩0,1,2,t =±±由于要求方程的正整数解,所以25190,270.t t ->⎧⎨+>⎩ 解不等式,得t 只能取0,1.因此得原方程的正整数解为25,2,x y =⎧⎨=⎩6,9.x y =⎧⎨=⎩★求方程3710725x y +=的整数解.解析 因为10723733=⨯+,371334=⨯+,33841=⨯+.为用37和107表示1,我们把上述辗转相除过程回代,得1=33-8×4=37-4-8×4=37-9×4=37-9×(37-33)=9×33-8×37=9×(107-2×37)-8×37=9×107-26×37=37×(-26)+107×9,由此可知126x =-,19y =是方程371071x y +=的一组整数解.于是()02526650x =⨯-=-,0259225y =⨯=是方程3710725x y +=的一组整数解.所以原方程的一切整数解为650107,22537,x t y t =--⎧⎨=+⎩t 是整数. ★求方程92451000x y z +-=的整数解.解析 设9243x y t +=,即38x y t +=,于是351000t z -=.原方程可化为38,351000.x y t t z +=⎧⎨-=⎩①②用前面的方法可以求得①的解为38,3,x t u y t u =-⎧⎨=-+⎩u 是整数. ②的解为20005,10003,t v z v =+⎧⎨=+⎩v 是整数. 消去t ,得6000815,200035,10003,x u v y u v z v =-+⎧⎪=-+-⎨⎪=+⎩,u v 是整数.★求方程23723x y z ++=的整数解.解析 设23x y t +=,则23,723.x y t t z +=⎧⎨+=⎩①② 对于①,0x t =-,0y t =是一组特解,从而①的整数解为3,2,x t u y t u =--⎧⎨=+⎩u 是整数. 又02t =,03z =是方程②的一组特解,于是②的整数解为3,27,z v t v =-⎧⎨=+⎩v 是整数. 所以,原方程的整数解为273,272,3.x v u y v u z v =---⎧⎪=++⎨⎪=-⎩u 、v 是整数.★求方程组57952,35736x y z x y z ++=⎧⎨++=⎩的正整数解. 解析 消去z ,得 210z y +=. ①.易知04x =,02y =是它的一组特解,从而①的整数解为4,22,x t y t =-⎧⎨=+⎩t 是整数. 代入原方程组,得所有整数解为4,22,2.x t y t z t =-⎧⎪=+⎨⎪=-⎩t 是整数.由0x >,0y >,0z >得12t -<<,所以t =0,1,故原方程组的正整数解为4,2,2;x y z =⎧⎪=⎨⎪=⎩3,4,1.x y z =⎧⎪=⎨⎪=⎩★求方程351306x y +=的正整数解的组数.解析 因为130651435233y y x y -+==-+,所以0x =437,01y =-是一组特解.于是方程的整数 解为4375,13.x t y t =-⎧⎨=-+⎩t 是整数. 由43750,130.t t ->⎧⎨-+>⎩ 得143735t <<. 所以t =1,2,…,87.故原不定方程有87组正整数解.★★某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法? 解析 设需x 枚7分,y 枚5分恰好支付142分,于是75142x y +=.①所以1427222855x x y x --==--. 由于7x ≤142,所以x ≤20,并且由上式知()5|21x -.因为(5,2)=1,所以5|1x -,从而 x =1,6,11,16.①的非负整数解为1,6,11,16,27;20;13; 6.x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩所以,共有4种不同的支付方式.评注 当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.★★今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只,用100个钱买100只鸡,问公 鸡、母鸡、小鸡各买了多少只?解析 设公鸡、母鸡、小鸡各买x 、y 、z 只,由题意列方程组153100,3100.x y z x y z ⎧++=⎪⎨⎪++=⎩①② ①化简得159300x y z ++=.③③-②得148200,x y +=即74100.x y +=解741x y +=得1,2.x y =-⎧⎨=⎩于是74100x y +=的一个特解为00100,200.x y =-⎧⎨=⎩所以74100x y +=的所有整 数解为1004,2007,x t y t =-+⎧⎨=-⎩t 是整数. 由题意知,0x <,y ,100z <,所以,01004100,02007100.t t <-+<⎧⎨<-<⎩解得2550,241428.77t t <<⎧⎪⎨<<⎪⎩ 故425287t <<. 由于t 是整数,故t 只能取26,27,28,而且x 、y 、z 还应满足100x y z ++=.所以即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.★★小明玩套圈游戏,套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分.小明共套10次,每次都套中了,每个小玩具都至少被套中一次.小明套lO 次共得61分,问:小鸡至少被套中几次?解析 设套中小鸡x 次,套中小猴y 次,套中小狗z 次,则根据题意得95261,10.x y z x y z ++=⎧⎨++=⎩①② 我们要求这个方程组的正整数解.消去z :从①中减去②×2得7341x y +=,于是4173x y -=.③ 由③可以看出417x <.从而x 的值只能是1,2,3,4,5.将③写成 21323x y x -=-+, 由于y 是整数,所以2x -必须是3的倍数.从而只有2、5两个值满足这一要求.但2x =时,9y =,1z =-不是正整数.在5x =时,2y =,3z =是本题的解.因此小鸡被套中5次.评注 本题问“小鸡至少被套中几次?”实际上却只有一个解,“至少”两字可以省去.★★今有浓度为5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制成浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?解析 设甲、乙、丙盐水分别各取x 克、y 克、z 克,配成浓度为7%的盐水100克,依题意有 100,589700.x y z x y z ++=⎧⎨++=⎩其中060x ≤≤,0≤y ≤60,0≤z ≤47.解方程组可得2004,3100.y x z x =-⎧⎨=-⎩由0200460,0310047.x x -⎧⎨-⎩≤≤≤≤ 得3549x ≤≤.又35x =,60y =,5z =和49x =,4y =,47z =均满足题设,故甲种盐水最少可用35克,最 多可用49克.§21.2 勾股数★★★满足方程222x y z +=的一切基本勾股数x 、y 、z (y 为偶数),都可表示为以下形式:22x p q =-,2y pq =,22z p q =+,①其中p 、q 为正整数,(p ,q )=1,p q >,p 、q 一奇一偶.解析 设正整数p 、q 满足(p ,q )=1,p q >,p 、q 一奇一偶,则()()2222222x y p q pq +=-+ 42242224p p q q p q =-++()2222p q z =+=. 所以一切形如①的正整数x 、y 、z 都是方程222x y z +=的解.下面证明这样的x 、y 、z 是基本勾股 数.设(),,x y z d =,由于p 、q 一奇一偶,所以22p q -是奇数,由22|d x p q =-,于是d 是奇数.又由22|d p q +,得()()2222|d p q p q ++-,即2|2d p ,同理2|2d q .因为d 是奇数,所以2|d p ,2|d q ,于是()22|,d p q .由(),1p q =得()22,1p q =,所以1d =.这就证明了由①确定的x 、y 、z 是一组基本 勾股数.反过来,设x 、y 、z 是一组基本勾股数,且y 是偶数,x 和z 都是奇数,则2z x -和2z x +都是整数. 设,22z x z x d -+⎛⎫= ⎪⎝⎭,则存在正整数a 和b ,使 2z x da -=,2z x db +=,(),1a b =,于是()z d b a =+,()x d b a =-.由于(),1z x =,所以1d =,即,122z x z x -+⎛⎫= ⎪⎝⎭. 由222x y z +=得2222y z x z x +-⎛⎫=⋅ ⎪⎝⎭. 这就可推出上式中右面两个因式都是平方数.设22z x p +=,22z x q -=, 这里0p q >>.(,)1p q =,于是可得2222,2,x p q y pq z p q =-==+.由于z 是奇数,所以p 、q 一奇一偶.这就证明了方程222x y z +=的任意一组解x 、y 、z (y 为偶数) 都可由①表示.评注 如果正整数x 、y 、z 满足方程222x y z +=,那么就称x 、y 、z 是一组勾股数.边长为正整数的直角三角形就称为勾股三角形.在勾股数x 、y 、z 中,如果这三个数的最大公约数是1,那么这样的勾股数就称为基本勾股数.如果 (x ,y ,z )=1d >,那么设x dx =′,y dy =′,z dz =′,则有(x ′,y ′,z ′)=1,并且由222x y z +=得222222d x d y d z '+'=',两边除以2d ,得222x y z '+'='.所以我们只需研究基本勾股数.在基本勾股数x 、y 、z 中,x 和y 必定一奇一偶.这一点可以用反证法证明:假定x 和y 的奇偶性相同,那么有两种可能的情况:①x 和y 同奇,②x 和y 同偶.如果x 和y 同奇,由于奇数的平方是4的倍数加1,所以22x y +是4的倍数加2,于是2z 是偶数,z 也是偶数,而偶数的平方是4的倍数,这与4的倍数加2矛盾,所以x 和y 不能都是奇数.如果x 和y 都是偶数,那么z 也是偶数,这与x 、y 、z 是基本勾股数矛盾,所以x 和y 中一奇一偶.由此也可推出z 是奇数.★设x 、y 、z 是勾股数,x 是质数,求证:21z -和()21x y ++都是完全平方数. 解析()()222x z y z y z y =-=+-.因为x 是质数,所以2x 只有1、x 、2x 三个正约数.由于0z y z y +>->,所以有2,1.z y x z y ⎧+=⎨-=⎩由此得221z x -=,()21222x y x y ++=++()222121x x x =+-+=+, 所以21z -和2(1)x y ++都是完全平方数.★求证:222n n +、21n +、2221n n ++(n 是正整数)是一组勾股数.解析 因为n 是正整数,2222122n n n n ++>+,222121n n n ++>+.由 ()()2222221n n n +++ ()22222441n n n n =++++ ()()222222221n n n n =++++ ()22221n n =++, 所以222n n +、21n +、2221n n ++是一组勾股数.★若勾股数组中,弦与股的差为1,则勾股数组的形式为21n +、222n n +、2221n n ++,其中n 为正整数.解析 设弦长为c ,股长为1c -,勾为x .因为(c ,1c -)=1,所以x 、1c -、c 为一组基本勾股数.又c 为奇数,1c -为偶数,则x 为奇数. 设21x n =+,则()()222211n c c ++-=,得2221c n n =++,2122c n n -=+. 所以,勾股数组具有形式21n +、222n n +、2221n n ++.★★求证:勾股三角形的直角边的长能取任何大于2的正整数. 解析 当n 是大于1的奇数时,212n -和212n +都是正整数,并且 222221122n n n ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.当n 是大于2的偶数时,214n -和214n +都是正整数,并且222221144n n n ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭.由以上两式可以看出,勾股三角形的一直角边n 可取大于2的任何正整数. ★★求证:在勾股三角形中, (1)必有一条直角边的长是3的倍数; (2)必有一条直角边的长是4的倍数; (3)必有一条边的长是5的倍数.解析 设该勾股三角形的三边的长分别为a 、b 、c (c 是斜边),则222a b c +=.只要证明a 、b 、c 是基本勾股数时的情况.不失一般性,设b 为偶数,则 22a p q =-,2b pq =,22c p q =+,其中p 、q 满足上述定理中的条件.(1)若p 、q 中至少有一个是3的倍数,则b 是3的倍数;若p 、q 都不是3的倍数,设 31p k =±,31q l =±,则()()22223131a p q k l =-=±-±()22996k l k l =+±±是3的倍数.(2)由于p 、q 一奇一偶,所以2b pq =是4的倍数.(3)若a 、b 都不是5的倍数,则2a 的末位数是1或9;2b 的末位数字是4或6. 1+4=5,1+6=7,9+4=13,9+6=15,由于一个完全平方数的末位数不可能是7和3,所以 222c a b =+的末位数只可能是5.于是c 的末位数是5.评注 由此可推出,勾股三角形的面积必是6的倍数;三边之积必是60的倍数. ★★求基本勾股数组,其中一个数是16. 解析 设勾股数组x 、y 、z ,其中x =16. x =16=2×4×2=2×8×1,若4m =,2n =,有(,m n )-2≠1,从而只有8m =,1n =,(,)1m n =,且m 和n 为一奇一偶.于是22228163y m n =-=-=,22228165z m n =+=+=.从而,只有一组基本勾股数16、63、65.评注 若不要求基本勾股数,则x =16=2×4×2,设4m =,2n =,得 2212y m n =-=,2220z m n =+=.即16、12、20为一组勾股数.又22164322x ==⨯⨯,设232m =,22n =,得 2230y m n =-=,2234z m n =+=.即16、30、34为一组勾股数.★★设p 、m 、n 为一组勾股数,其中p 为奇质数,且n >p ,n >m .求证:21n -必为完全平方数. 解析 因为p 、m 、n 为一组勾股数,n p >,n m >,则有222n m p =+. ()()222m n p n p n p =-=+-,m n p >-.设()1m n r r p =-<≤,则有()()222222p n m n n r r n r =-=--=-.因为1r p <≤,p 为奇质数,则1r =(否则,若1r p <<,则|r 2p ,矛盾). 由1r =,得221p n =-,从而21n -是完全平方数.★★直角三角形的三边的长都是正整数,其中有一条直角边的长是35,它的周长的最大值和 最小值分别是多少?解析 设直角三角形的三边长分别是35,b ,c ,则 22235b c +=,即()()1225c b c b +-=.1225的大于35的正约数可作为c b +,其中最大的是1225,最小的是49,所以,直角三角形的周长的 最大值是 35+1225=1260, 最小值是35+49=84.★★设n 为大于2的正整数.证明:存在一个边长都是整数的直角三角形,它的一条直角边长 恰为n .解析 只需证明不定方程222x n z +=,有正整数解.利用()()2z x z x n -+=,结合z x -与z x +具有相同的奇偶性,故当n 为奇数时,由(z x -,z x +)=(1,2n ),可得不定方程的一组正整数解 (x ,z )=2211,22n n ⎛⎫-+ ⎪⎝⎭; 而当n 为偶数时,由条件,知n ≥4.利用 (z x -,z x +)=22,2n ⎛⎫⎪⎝⎭,可得不定方程的一组正整数解 (x ,z )=2244,44n n ⎛⎫-+ ⎪⎝⎭. 综上,可知命题成立。

初中竞赛培优 同余

初中竞赛培优  同余

A卷一、填空题01.a除以5余1,b除以5余4。

如果3a>b,那么3a−b除以5的余数是__________。

02. 71427和19的乘积被7除,余数是__________。

03. 1+22+33+44+55+66+77+88+99≡__________ (mod3)。

04. 一个数除以3余2,除以4余1,这个数除以12的余数是__________。

05. 今天是星期一,过21995是星期__________。

06. 10100被7除的余数是__________。

07. 1至5 000之间同时被3、5、7除都余2的数有__________个。

08. 1至1 000之间同时被2、3、7除都余1的数有__________个。

09.用199433333个除以7,余数是__________。

10. 1993年的元旦是星期五,那么1996年五月一日是星期__________。

二、解答题11.甲、乙两数都只含有质因数3和5,它们的最大公约数是75。

已知甲数有12个约数,乙数有10个约数,那么甲、乙两数的最小公倍数是多少?12. 试证不小于5的质数的平方与1的差必能被24整除。

B 卷一、填空题 01. 整数100011111个被6除的余数是__________。

02. (1989)1990的末二位数是__________。

03. 在所有的五位数中,各位数字之和等于43,并且能被11整除的数是__________。

04. 777777的末位数是__________。

05.令n 是一个奇数,则n 2除以8的余数是__________。

06. 21000除以13的余数是__________。

07.设a 、b 都是正整数,且a 被7除余数是2,b 被7除余数是5,则a 2+4b 被7除余数是__________。

08.如果m 是大于1的整数,69、90、125对于m 同余,那么m 的值是__________。

09. 19901990化为7进制数后的个位数字是__________。

奥数余数和同余讲义及答案

奥数余数和同余讲义及答案

数学教师解题能力培训之四数的整除(4)余数和同余教室姓名学号【知识要点】1、例如:37÷5=7……2,四者之间的数量关系:被除数=除数×商+余数2、同余的概念:两个整数,被同一个大于1的整数m除,所得余数如果相同,那么,这两个整数对于除数m来说是同余的。

例如:14和26这两个数虽然大小不同,但它们分别除以6所得的余数相同,我们把14和26叫做关于模6同余。

3、同余最基本的性质是:几个同余式(模相同)相加、减、乘、乘方仍然同余。

【典型例题】例1、两个整数相除商8,余16;并且被除数、除数、商及余数的和是463.那么被除数是多少?解:因为:被除数=除数×8+16,并且被除数+除数=463―8―16=439,所以除数=(439-16)÷(8+1)=47,被除数=47×8+16=392.例2、被3除余2,被5除余3,被7除余4的最小自然数是多少?解:被3除余2的数有2,5,8,11,…其中8又能被5除余3,并且满足条件最小的,而[3,5]=15,所以8+15=23,23+15=38,38+15=53,53满足了被7除余4这个条件,并且最小。

例3、五(3)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人,问上体育课的同学最少多少名?解:[3,4,5,6]=60, 60-1=59(人).例4、小刚在一次计算除法时,把被除数171错写成117,结果商少了3而余数恰好相同,这题中的除数是几?解:设除数为m,正确的商位q,余数为r,那么错写被除数后,除数仍为m,商为q-3,余数仍为r。

因为:171=m×q+r117= m×(q-3)+r于是171-117=(m×q+r)-(m×q-3 m+r)得m=18.【精英班】例5、有一个三位数,其中个位上的数是百位上的数的3倍,且这个三位数除以5余4,除以11余3.这个三位数是多少?解:这个三位数除以5余4,所以它的个位数字是4或9,因为个位数字是百位数字的3倍,所以个位数字只能是9,百位数字是3.因为这个数除以11余3,所以它的十位数字=3+(9-3)=9,这个三位数是399.【竞赛班】例6、11+22+33+44+55+66+77+88+99除以3的余数是多少?解:由数的整除性质和同余性质可推知:(1)3的倍数的任何次方(0除外)除以3的余数为0,可知33+66+99除以3余0.(2)不是3的倍数的偶次方除以3的余数为0,可知22+44+88除以3余1.(3)11除以3余1,55与25对于3同余,它们除以3余2. 77与17对于3同余,它们除以3余1.所以(1+2+1)÷3=1……1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20章 同 余20.1.1★(1)证明:任意平方数除以4,余数为0或1;(2)证明:任意平方数除以8,余数为0、1或4.解析 (1)因为奇数()222214411(mod 4)k k k =+=++≡,偶数()222240(mod4)k k ==≡,所以,正整数21(mod 4),;0(mod 4),.n n n ⎧≡⎨⎩奇偶为数为数 (2)奇数可以表示为21k +,从而奇数()22441411k k k k =++=++.因为两个连续整数k 、1k +中必有一个是偶数,所以()41k k +是8的倍数,从而奇数()2811mod8i =+≡.又,偶数()22224k k ==(k 为整数).若k =偶数2t =,则()224160mod 8k t ==.若k =奇数21t =+,则 ()()22244211644(mod8)k t t t =+=++≡. 所以,平方数()()()0mod8,1mod8,4mod8.⎧⎪≡⎨⎪⎩评注 事实上,我们也可以这样来证:因为对任意整数a ,有0a ≡,±1,2(mod4),所以,0a ≡,1(mod4);又a ≡0,±1,±2,±3,4(mod8),所以,2a ≡0,1,()4mod8.20.1.2★求证:一个十进制数被9除所得的余数,等于它的各位数字被9除所得的余数.解析 设这个十进制数1210n n A a a a a a -=.因10≡1(mod9),故对任何整数k ≥1,有()1011mod9k k ≡=.因此1210n n A a a a a a -=1110101010n n n n a a a a --=⨯+⨯++⨯+()110mod9n n a a a a -≡++++.即A 被9除所得的余数等于它的各位数字之和被9除所得的余数.评注 (1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.20.1.3★★求证:(1)()199985517+;(2)()2837n +;(3)()100017191-.解析 (1)因()551mod8≡-,所以()1999551mod8≡-,()19995517117160mod8+≡-+=≡, 于是19998(5517)+.(2)因为2391(mod8)=≡,231(mod8)n ≡,所以()237170mod8n +≡+≡,即()2837n +.(3)因为()192mod17≡,()44192161mod17≡=≡-,所以()()()25025010004191911mod17=≡-≡,于是()100017191-.20.1.4★★对任意的正整数n ,证明:2903803464261n n n n A =--+能被1897整除.解析 18977271=⨯,7与271互质.因为()29035mod7≡,()8035mod7≡,()4642mod7≡,()2612mod7≡,所以()290380346426155220mod7n n n n n n n n A =--+≡--+=,故7|A又因为()2903193mod271≡,()803261mod271≡,()464193mod271≡,所以2903803464261n n n nA =--+()1932611932610mod271n n n n ≡--+=,故271|A 因(7,271)=1,所以1897整除A .20.1.5★证明:2222555555552222+能被7整除.解析 因为()55554mod7≡,()34641mod7≡≡,所以 ()22222222222205555444162mod 7≡≡⋅≡≡.因为 ()22223mod7≡,()232mod7≡,()231mod7≡,所以55555555555502222333≡≡⋅()9252263333223≡⋅⋅⋅≡⋅⋅()5mod7≡.于是()()()222255555555222225mod 70mod 7+≡+≡,即 222255557|55552222+.20.1.6★★求最大的正整数n ,使得102431-能被2n 整除.解析 因为()()()()()1024512256112831313313131+-=+++-,①而对于整数k ≥1,有 ()()2231112mod4kk +≡-+=,所以,①式右边的11个括号中,(3+1)是4的倍数,其他的10个都是2的倍数,但不是4的倍数.故n 的最大值为12.20.1.7★求使21n -为7的倍数的所有正整数n .解析 因为()3281mod 7≡≡,所以对n 按模3进行分类讨论.(1)若3n k =,则()()3212181110mod7k n k k -=-=-≡-=; (2)若31n k =+,则()321221281kn k -=⋅-=⋅- ()2111mod 7k ≡⋅-=;(3)若32n k =+,则()2321221481kn k -=⋅-=⋅- ()4113mod 7k ≡⋅-=.所以,当且仅当3|n 时,21n-为7的倍数.20.1.8★设n 是正整数,求证:7不整除()41n +.解析 因为()144mod 7≡,()242mod 7≡,()341mod 7≡.所以当3n k =时,()()34141112mod7k n +=+=+=; 当31n k =+时,()()341441415mod7kn +=⋅+=+=; 当32n k =+时,()()34141611613mod7kn +=⋅+=+=. 所以,对一切正整数n ,7不整除41n +.20.1.9★今天是星期日,过1003天是星期几?解析 ()33271mod 7=≡-,所以()()()333310033331334mod7=⋅≡-⋅=-≡. 因此,过1003天是星期四.20.1.10★★求3326(25746)+被50除所得的余数.解析 ()2577mod50≡,()33332577mod50≡.又()27491mod50=≡-,所以()471mod 50≡.()()83347777mod50=⋅≡. 即()332577mod50≡.从而()33257467463mod50+≡+≡.()332626(25746)3mod50+≡.由于()532437mod50==-.()103491mod50≡≡-,所以()2031mod50≡.于是()()262053333732129mod50=⋅⋅≡-⋅=-≡.故3326(25746)+除以50所得的余数为29.20.1.11★(1)求33除19982的余数;(2)求8除2171n +-的余数.解析 (1)先找与()1mod33±同余的数.因为()52321mod33=≡-,所以()1021mod33≡.()()199199810532222825mod33=⋅⋅≡-≡.故所求的余数为25.(2)因为()71mod8≡-,所以()()2121711mod8n n ++≡-=-,()217126mod8n +-≡-≡.即余数为6.20.1.12★求5555512399100+++++除以4所得的余数. 解析 因为()()520mod4n ≡,()()52121mod 4n n +≡+,所以5555512399100+++++ ()213599500mod4≡++++=≡.20.1.13★形如221k n F =+,n =0,1,2,…的数称为费马数.证明:当n ≥2时,n F 的末位数字是7.解析 当n ≥2时,2n 是4的倍数,故令24n t =.于是212k n F +=()421161617mod10t t t =+=+=+≡.即n F 的末位数字是7.评注 费马数的头几个是03F =,15F =,217F =,3257F =,465537F =,它们都是素数.费马便猜测:对所有的正整数n ,n F 都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数5F 是合数.有兴趣的读者可以自己去证明.20.1.14★★已知1919191919 191 919 1 919n =个,求n 被9除后所得商的个位数字是多少?解析 因为1919191919 191 919 1 919n =个()19191919≡⨯+++()191920224mod9≡⨯≡⨯≡.所以9|4n -.又4n -的个位数字是5,故n 被9除后所得商的个位数字是5.20.1.15★★求9992的末两位数.解析 因为()10210mod 25+≡,()1021mod 25≡-,()()()10010010211mod25≡-=,()1000210mod 25-≡.所以100021-的末两位数字只可能是00、25、50、75,即10002的末两位数字只可能是01、26、5l 、76. 又10002是4的倍数,故10002的末两位数字只可能是76.又9991000222=÷,所以9992的末两位数字只可能是38、88,而4|88,4|38,故9992的末两位数字是 88.20.1.16★★求所有的正整数n ,使得2337n n ++是一个立方数.解析 假设存在正整数m 、n ,使得23337n n m ++=,则()31mod3m ≡,于是()31mod3m ≡.设31m k =+,则223(331)2k k k n n ++=++,易知22n n ++不能被3整除,故不存在正整数n ,使得2337n n ++是一个立方数.20.1.17★★有一列数排成一行,其中第一个数是3,第二个数是7,从第三个数开始,每个数恰好是前两个数的和,那么,第1997个数被3除,余数是多少?解析 该数列是:3,7,10,17,27,44,71,115,186,301,487,788,…除以3的余数分别是:0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,…余数刚好是按“0,1,1,2,0,2,2,1”八个一循环.又1997≡5(mod 8),因此所求余数为0.20.1.18★★★求777的末位数字和7777k 个的末两位数字,其中k 是大于1的正整数.解析 我们知道,求一个数的末位数字就是求这个数除以10的余数,求一个数的末两位数字就是求这个数除以100的余数.为此,先设法求出71(mod10)t ≡中的t ,然后求出77at b =+(a ,b 是整数)中的b .这样,问题归结为求67被10除所得的余数.因为()()2371mod1073mod10≡-≡,,()()4471mod1071mod10m ≡≡,,m 是正整数.而()()()66673mod 47311mod 4≡≡≡-≡,.所以,()773mod 4≡.可设7743m =+.于是()774337773mod10m +≡≡≡.所以,777的末位数字是3.考虑777的末两位数字.这时,由()2749mod100≡,()3743mod100≡,()471mod100≡,得 ()471mod100n ≡.而77211777t k +-=个,其中t 是整数且t ≥0.于是()()217721211777313mod 4t t t k +++-≡≡≡-≡个. 可设7717743k n -=+个,那么 ()774331777743mod100n k +-=≡≡个.所以,所求的末两位数字是43.20.1.19★★求n =1×3×5×…×1997×1999的末三位数字.解析 这个积显然是5×25=125的倍数,设n =5×25×1×3×7×…×23×27×…×1999=125m .由于1000=8×125,所以,我们只需求出m 除以8所得的余数,进而便可求得n 除以1000的余数. m =(1× 3×7)×(9×11×13×15)×(17×19×21×23)×(27×29×31)×(33×35×37×39)×…×(1985×1987×1989×1991)×(1993×1995×1997×1999)在上述乘积中,除第一和第四个括号外,每个括号中都是四个数的乘积,这个积是()()()()81838587k k k k ++++1≡×3×5×71≡()mod8.而 ()1375mod8⨯⨯≡,()2729311mod8⨯⨯≡.于是 ()515mod8m ≡⨯≡.所以,()()125125851255625mod1000m k =⨯+≡⨯=,即n 的末三位数字是625.20.1.20★★★★如果k 是大于1的整数,a 是210x kx -+=的根.对于大于10的任意正整数n ,22n na a -+的个位数字总是7,求是的个位数字. 解析 首先,我们证明k 的个位数字不可能是偶数.其次,根据22n na a -+与7对模10同余,从中确定k 的个位数字.因为a 是210x kx -+=的根,所以这方程的另一个根是1a.于是 1a k a+=. 如果k 的个位数字是偶数,那么 2222122a a a k a -⎛⎫+=+-=- ⎪⎝⎭ 的个位数字仍是偶数.()22222222a a k -+=-- 的个位数字也是偶数.对于10n >,22n na a -+的个位数字也是偶数,与题设矛盾.k 的末位数字不能是偶数.(1)如果k 的个位数字是1或9,那么()221mod10a a -+≡-,由此得()221mod101n n a a n -+≡-,≥. (2)如果k 的个位数字是3或7,那么()227mod10a a -+≡,由此得()227mod10n na a -+≡,1n ≥.(3)如果k 的个位数字是5,那么()223mod10a a -+≡,()22227mod10a a -+≡. 所以()227mod10n n a a -+≡,2n ≥.综上所述,k 的个位数字是3或5或7.20.1.21★★2005年12月15日,美国中密苏里州大学的数学家Curtis Cooper 和Steven Boone 教授发现了第43个麦森质数3040245721-,求这个质数的末两位数.解析 因为()10210241mod 25=≡-,所以()()3040545304024530402457107722212≡⋅≡-⋅()128322mod 25≡-≡-≡,所以,304024572的末两位数只能是22、47、72、97.又304024572≡0(mod4),所以,304024572的末两位数只能是72.从而,3040245721-的末两位数是71. 20.1.22★★★求最小的正整数a ,使得存在正整数n ,满足2001|5532n n a +⋅.解析 因为2001=3×23×29,所以,要使2001|5532n n a +⋅,只要使3|5532n n a +⋅,23|5532n n a +⋅,29|5532n n a +⋅.易知()()553211mod3nn n a a +⋅≡+-, ()()55329919mod 23n n n n n a a a +⋅≡+⋅≡+⋅,()()553233mod 29nn n n a a +⋅≡-+⋅. (1)若n 是奇数,则()1mod3a ≡,()1mod 23a ≡-,()1mod 29a ≡,而(3,29)=1,故()1mod87a ≡ .令12871231a k k =+=-,则18720(mod23)k +≡,所以()1520mod 23k -+≡,即()145180mod 23k -+≡,所以()118mod23k ≡-,则1k 能取的最小正整数是5.所以n 是奇数时,a 的最小正整数解是 8751436⨯+=.(2)若n 是偶数,则()1mod3a ≡-, ()1mod 23a ≡-,()1mod 29a ≡-,由于(3,23)=1,(3,29)=1,(23,29)=1,所以1a ≡-(mod3×23×29).故当n 是偶数时,a 的最小正整数解是323291⨯⨯-等于2000.综上所述,满足条件的最小正整数a 为436.20.1.23★★证明:对任意正整数n ,87n +不可能是三个整数的平方和. 解析 假设存在整数a 、b 、c ,使得22287n a b c +=++.由于对任意整数x ,2x ≡0,1,4(mod8),于是222a b c ++≡0,1,2,3,4,5,6(mod8).而()877mod8n +≡,矛盾!20.1.24★证明不定方程22257x y -=无整数解.解析 因为22257x y =+,显然,y 是奇数.(1)若x 为偶数,则()220mod8x ≡.又()21mod8y ≡.所以()2574mod8y +≡,矛盾,故x 不能为偶数.(2)若x 为奇数,则()222mod4x ≡.但()2570mod 4y +≡,矛盾,故x 不能为奇数.由(1),(2)可知:原方程无整数解.20.1.25★证明:不定方程2286a b c +-=没有整数解.解析 如果n ≡0,1,2,3(mod4),那么2n ≡0,1,4(mod 8).所以22a b +≡0,1,2,4,5(mod8).但与()226mod8a b +≡矛盾. 从而原不定方程无整数解.20.1.26★证明:不定方程4425x y z ++=没有整数解.解析 以5为模,如果0x ≡,±1,±2(mod5),那么2x ≡0,1,4(mod5),4x ≡0,1,1(mod5).即对任一整数x ,4x ≡0,1(mod5).同样,对任一整数y ,4y ≡0,1(mod5).所以442x y ++≡2,3,4(mod5).从而原不定方程无整数解.20.1.27★★★求最小的正整数n ,使得存在整数1x ,2x ,…,n x ,满足444121599n x x x +++=.解析 对任意整数a ,可知()20mod4a ≡或()21mod8a ≡,由此可得 40a ≡或()1mod16.利用这个结论,可知,若n <15,设()44412mod16n x x x m +++=,则 m ≤n <15,而 1599≡()15mod16,矛盾,所以n ≥15.另外,当n =15时,要求()444121mod16n x x x ≡≡≡≡,即1x ,2x ,…,n x 都为奇数,这为我们找到合适的数指明了方向.事实上。

相关文档
最新文档