10kV小区供配电英文文献及中文翻译
电气供配电系统大学毕业论文英文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:供配电系统文献、资料英文题目:POWER SUPPLY AND DISTRIBUTIONSYSTEM文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14POWER SUPPLY AND DISTRIBUTION SYSTEMABSTRACTThe basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWARDS:power supply and distribution,power distribution reliability,reactive compensation,load distributionTEXTThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and theway has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding andadopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, butdon't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.。
英文文献及翻译:供配电系统(1800字)

供配电系统摘要:电力系统的基本功能是向用户输送电能。
lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。
对于所有用户都期望以最低的价格买到具有高度可靠性的电能。
然而,经济性与可靠性这两个因素是互相矛盾的。
要提高供电网络的可靠性就必须增加网络建设投资成本。
但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。
通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。
关键词:供配电,供电可靠性,无功补偿,负荷分配1 引言电力体制的改革引发了新一轮大规模的电力建设热潮从而极大地推动了电力技术革命新技术新设备的开发与应用日新月异特别是信息技术与电力技术的结合在很大程度上提高了电能质量和电力供应的可靠性由于技术的发展又降低了电力建设的成本进而推动了电网设备的更新换代本文就是以此为契机以国内外配电自动化中一些前沿问题为内容以配电自动化建设为背景对当前电力系统的热点技术进行一些较深入的探讨和研究主要完成了如下工作.(1)提出了配电自动化建设的两个典型模式即―体化模式和分立化模式侧重分析了分立模式下的配电自动化系统体系结构给出了软硬件配置主站选择管理模式最佳通讯方式等是本文研究的前提和实现平台.(2)针对配电自动化中故障测量定位与隔离以及供电恢复这一关键问题分析了线路故障中电压电流等电量的变化导出了相间短路工况下故障定位的数学描述方程并给出了方程的解以及故障情况下几个重要参数s U& s I& e I& 选择表通过对故障的自动诊断与分析得出了优化的隔离和恢复供电方案自动实现故障快速隔离与网络重构减少了用户停电范围和时间有效提高配网供电可靠性文中还给出了故障分段判断以及网络快速重构的软件流程和使用方法.(3)状态估计是实现配电自动化中关键技术之一本文在阐述状态估计方法基础上给出了不良测量数据的识别和结构性错误的识别方法针对状态估计中数据对基于残差的坏数据检测和异常以及状态量中坏数据对状态估计的影响及存在的问题提出了状态估计中拓扑错误的一种实用化检测和辩识方法针对窃电漏计电费问题独创性提出一种通过电量突变和异常分析防止窃电的新方法并在潍坊城区配电得到验证.(4)针对配电网负荷预测建模困难参数离散度大以及相关因素多等问题本文在分析常规负荷预测模型及方法基础上引入了气象因素日期类型社会环境影响等参数给出了基于神经网络的电力负荷预测方法实例验证了方法的正确性.(5)针对无源滤波在抑制谐波和无功补偿方面的不足以及补偿度的不连续性本文提出了一种PWM 主电路拓朴结构和基于无功功率理论的有源滤波方案建立了基于Saber Designer 仿真平台仿真分析证明了方案的可行性同时结合配电自动化技术对配电网动态无功优化补偿和降低线损的方法进行了设计分析通过实例计算验证了其客观的经济效益.(6)针对中国电力市场未来的发展趋势以及政府监管下的电力市场公平交易设计了一种适合我国电力市场现状按照电价分组电量协调分组竞价的短期电力交易模式给出了基于边际电价的机组组合算法制订交易计划的数学模型以及安全经济约束等在竞争比例逐步提高的情况下能够较好地解决原有中长期合同电价和短期竞争电价的矛盾减少电厂不公平的收益差异同时也可在电力市场全网的负荷曲线上对所有电厂进行限量优化减少总的系统购电费用.2 配电网分析配电网是电力系统中的一个重要环节,配电网接地方式和安全运行直接关系到电力系统的安全和稳定。
变电站中英文资料对照外文翻译文献综述

变电站概述中英文资料对照外文翻译文献综述英文翻译A comprehensive overview of substationsAlong with the economic development and the modern industry developments of quick rising, the design of the power supply system become more and more completely and system. Because the quickly increase electricity of factories, it also increases seriously to the dependable index of the economic condition, power supply in quantity. Therefore they need the higher and more perfect request to the power supply. Whether Design reasonable, not only affect directly the base investment and circulate the expenses with have the metal depletion in colour metal, but also will reflect the dependable in power supply and the safe in many facts. In a word, it is close with the economic performance and the safety of the people. The substation is an importance part of the electric power system, it is consisted of the electric appliances equipments and the Transmission and the Distribution. It obtains the electric power from the electric power system, through its function of transformation and assign, transport and safety. Then transport the power to every place with safe, dependable, and economical. As an important part of power’s transport and control, the transformer substation must change the mode of the traditional design and control, then can adapt to the modern electric power system, the development of modern industry and the of trend of the society life.Electric power industry is one of the foundations of national industry and national economic development to industry, it is a coal, oil, natural gas, hydropower, nuclear power, wind power and other energy conversion into electrical energy of the secondary energy industry, it for the other departments of the national economy fast and stable development of the provision of adequate power, and its level of development is a reflection of the country's economic development an important indicator of the level. As the power in the industry and the importance of the national economy, electricity transmission and distribution of electric energy used in these areas is an indispensable component.。
毕业论文外文翻译-高层建筑供配电系统设计

毕业论文外文翻译-高层建筑供配电系统设计Design of Power Supply and Distribution System for High-rise BuildingsAbstractPower supply and distribution system is the lifeline of high-rise buildings. The design of power supply and distribution system is based on the characteristics of high-rise buildings, which requires not only reliable supply of power, but also the safety of electricity utilization and efficient energy consumption. In this paper, the design of power supply and distribution system for high-rise buildings is discussed, focusing on the selection of power supply mode, the design of power distribution system, the design of grounding system, the selection of electrical equipment and the design of lightning protection system. The application of advanced technologies such as distributed power supply, energy management and control system, and intelligent electrical equipment can improve the energy efficiency and utilization of high-rise buildings, reduce energy consumption and carbon emissions, and promote the development of green buildings.Keywords: high-rise buildings; power supply and distribution system; energy efficiency; green buildingsIntroductionHigh-rise buildings are an important symbol of urban development and represent the trend of modern architecture. With the continuous improvement of people’s living standards, the demand for high-rise buildings is increasing. Power supply and distribution system is an essential part of high-rise buildings, which plays a crucial role in the operation and maintenance of buildings. The design of power supply and distribution system for high-rise buildings needs to consider many factors, such as technical performance, safety and reliability, energy efficiency, economic benefits and environmental protection, etc. In recent years, with the rapid development of new energy and advanced technology, the design of power supply and distribution system for high-rise buildings has undergone significant changes, which focus on improving energy efficiency and reducing emissions. This paper analyzes the design of power supply and distribution system for high-rise buildings, summarizes the selection principles and design methods of various systems, and explores the application of new technologies to improve energy efficiency and promote the development of green buildings.1. Selection of Power Supply ModeThe power supply mode is the basic foundation of power supply and distribution system of high-rise buildings. In the selection of power supply mode, it is necessary to consider the characteristics of the building and the surrounding environment, and ensure the reliability and safety of power supply. Currently, the main power supply modes for high-rise buildings are grid-connected power supply and distributed power supply.1.1 Grid-connected Power SupplyGrid-connected power supply is a traditional power supply mode, which is widely used in high-rise buildings. It has the advantages of reliable power supply, convenient operation and maintenance, and stable voltage and frequency. However, grid-connected power supply is vulnerable to natural disasters such as typhoons and earthquakes, and may cause power outages, which will affect the normal life and work of residents. Moreover, the development of distribution network is limited by the capacity of the grid, which may cause overloaded operation and reduce the energy efficiency of high-rise buildings.1.2 Distributed Power SupplyDistributed power supply is a new power supply mode, which can improve the energy efficiency of high-rise buildings and reduce the dependence on the grid. Distributed power supply includes combined heat and power (CHP), solar power, wind power and other renewable energy sources. CHP is a highly efficient power generation technology, which can generate electricity and heat at the same time, and utilize the waste heat for air conditioning and domestic hot water. Solar power and wind power are clean energy sources, which have the advantages of zero emissions and long service life. Distributed power supply can reduce the transmission and distribution losses of power supply, and improve the energy efficiency of high-rise buildings. However, the initial investment of distributed power supply is relatively high, and the technical level of electrical equipment and maintenance management is demanding.2. Design of Power Distribution SystemThe power distribution system is responsible for the power transmission and distribution of high-rise buildings, which should ensure the safety and reliability of the power supply. The design of power distribution system includes the selection of power distribution equipment, the layout of power distribution room, and the calculation of power load.2.1 Selection of Power Distribution EquipmentThe selection of power distribution equipment should meet the requirements of technical performance, safety and reliability, and energy efficiency. The main power distribution equipment includes switchgear, transformer, busbar, distribution panel, etc. The switchgear should have the function of over-current protection, short-circuit protection and earth leakage protection, and should have the advantages of small volume, low noise and high reliability. The transformer should be selected according to the capacity and voltage level, and should have the advantages of low loss, high efficiency and small size. The busbar should have the advantages of high strength, good conductivity and low resistance. The distribution panel should have the functions of metering, control, protection and communication, and should be easy to operate and maintain.2.2 Layout of Power Distribution RoomThe layout of power distribution room should be reasonable and convenient for operation and maintenance. The power distribution room should be located near the power supply entrance, and should have the advantages of good ventilation, dry, clean and spacious. The power distribution room should be equipped with the necessary security measures, such as fire prevention, explosion-proof, and lightning protection.2.3 Calculation of Power LoadThe calculation of power load is the key to the design of power distribution system. The power load includes lighting load, air conditioning load, power load and special load, etc. The calculation of power load should take into account the diversity of load, the possibility of peak load, and the capacity of power supply equipment. The primary consideration is to ensure the safety and reliability of power supply, and then to improve the energy efficiency of power utilization.3. Design of Grounding SystemThe grounding system is an important safety measure for high-rise buildings. The design of grounding system should meet the requirements of electrical safety and electrostatic discharge protection.3.1 Electrical SafetyThe grounding system should have the functions of lightning protection, over-voltage protection, over-current protection and earth leakage protection, etc. The grounding resistance should be less than the specified value, and the grounding wire should have good conductivity and corrosion resistance. The grounding system should be comprehensively tested and maintained regularly.3.2 Electrostatic Discharge ProtectionThe electrostatic discharge protection is to prevent the accumulation of static electricity and the damage of electrical equipment. The design of electrostatic discharge protection includes the selection of anti-static grounding material, the setting of anti-static floor, and the installation of anti-static equipment. The electrostatic discharge protection is especially important for data centers and sensitive electrical equipment.4. Selection of Electrical EquipmentThe selection of electrical equipment is an important part of the design of power supply and distribution system for high-rise buildings. The selection of electrical equipment should meet the requirements of technical performance, safety and reliability, environmental protection and energy efficiency.4.1 Technical PerformanceThe electrical equipment should meet the relevant national and international standards, and have the characteristics of high efficiency, low noise, long service life and easy maintenance. The electrical equipment should have the functions of protection, control, measurement and communication, and should be compatible with the automation system.4.2 Safety and ReliabilityThe electrical equipment should have the functions of over-current protection, short-circuit protection, ground connection protection and lightning protection, etc. The electrical equipment should be installed and maintained by qualified personnel, and should be tested and checked regularly to ensure the safety and reliability of power supply and distribution system.4.3 Environmental Protection and Energy EfficiencyThe electrical equipment should have the advantages of environmental protection and energy efficiency, and should meet the requirements of green building standards. The electrical equipment should have the functions of power monitoring, energy management and control, and should be able to optimize the energy utilization and reduce the energy consumption.5. Design of Lightning Protection SystemThe lightning protection system is an important safety measure for high-rise buildings, which can prevent the damage of lightning to electrical equipment and human life. The design of lightning protection system includes the selection of lightning protection device, the installation of lightning rod, the connection of grounding wire, and the calculation of lightning protection zone.5.1 Selection of Lightning Protection DeviceThe lightning protection device should have the functions of lightning protection, over-voltage protection, surge protection and electromagnetic pulse protection, etc. The lightning protection device should be reliable and durable, and should meet the relevant national and international standards.5.2 Installation of Lightning RodThe lightning rod should be installed on the roof of high-rise buildings, and should be connected with the grounding system. The lightning rod should be placed in a high position, and should be made of light and strong materials, such as aluminum alloy or stainless steel. The lightning rod should be inspected regularly to ensure its effectiveness.5.3 Connection of Grounding WireThe grounding wire should be connected with the lightning rod, the grounding system, and the electrical equipment. The grounding wire should have the advantages of low resistance, good conductivity and corrosion resistance. The grounding wire should be tested and checked regularly to ensure its effectiveness.5.4 Calculation of Lightning Protection ZoneThe calculation of lightning protection zone is the basis for the design of lightning protection system. The lightning protection zone includes the direct lightning strike zone and the induced lightning zone. The direct lightning strike zone is the area covered by the lightning rod, and the induced lightning zone is the area beyond the direct lightning strike zone. The calculation of lightning protection zone should consider the characteristics of lightning, such as the stroke current, the distance from the lightning source, and the soil resistivity.ConclusionThe design of power supply and distribution system for high-rise buildings is a complex and important work. The selection of power supply mode, the design of power distribution system, the design of grounding system, the selection of electrical equipment, and the design of lightning protection system are the main aspects of the design of power supply and distribution system. The application of advanced technologies such as distributed power supply, energy management and control system, and intelligent electrical equipment can improve the energy efficiency and utilization of high-rise buildings, reduce energy consumption and carbon emissions, and promote the development of green buildings. The design of power supply and distribution system for high-rise buildings should adhere to the principles of safety, reliability, energy efficiency, economic benefits and environmental protection, and strive to create a better living and working space for residents.。
电气专业毕业设计外文翻译--小区配电设计

毕业设计(论文)外文参考资料及译文译文题目:Kangle community Power Of Distribution in Yandu Of yancheng盐城市盐都区康乐小区配电设计学生姓名:学号: 0804110437 专业:电气工程及其自动化所在学院:机电工程学院指导教师:职称:讲师2012 年 3 月 3日Power Of community Distribution To DesignABSTRACT:The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWORDS:power supply and distribution, power distribution reliability,reactive compensation, load distributionThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement andsets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral groundingmode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply withthe electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.References[1] Wencheng Su. Factories power supply [M]. Machinery Industry Publishing House. 1999.9[2] Jiecai Liu. Factories power supply design guidance [M]. Machinery Industry Publishing House.1999.12[3] Power supply and distribution system design specifications[S].China plans Press. 1996[4] Low-voltage distribution design specifications [S].China plans Press.1996.6译文:小区配电设计摘要:电力系统的基本功能是向用户输送电能。
变电站建设外文文献翻译

变电站建设外文文献翻译(文档含中英文对照即英文原文和中文翻译)General Requirements to Construction of SubstationSubstations are a vital element in a power supply system of industrial enterprises.They serve to receive ,convert and distribute electric energy .Depending on power and purpose ,the substations are divided into central distribution substations for a voltage of 110-500kV;main step-down substations for110-220/6-10-35kV;deep entrance substations for 110-330/6-10Kv;distribution substations for 6-10Kv;shop transformer substations for 6-10/0.38-0.66kV.At the main step-down substations, the energy received from the power source is transformed from 110-220kV usually to 6-10kV(sometimes 35kV) which is distributed among substations of the enterpriseand is fed to high-voltage services.Central distribution substations receive energy from power systems and distribute it (without or with partial transformation) via aerial and cable lines of deep entrances at a voltage of 110-220kV over the enterprise territory .Central distribution substation differs from the main distribution substation in a higher power and in that bulk of its power is at a voltage of 110-220kV;it features simplified switching circuits at primary voltage; it is fed from the power to an individual object or region .Low-and medium-power shop substations transform energy from 6-10kV to a secondary voltage of 380/220 or 660/380.Step-up transformer substations are used at power plants for transformation of energy produced by the generators to a higher voltage which decreases losses at a long-distance transmission .Converter substations are intended to convert AC to DC (sometimes vice versa) and to convert energy of one frequency to another .Converter substations with semiconductor rectifiers are convert energy of one frequency to another .Converter substations with semiconductor rectifiers are most economic. Distribution substations for 6-10kV are fed primarily from main distribution substations (sometimes from central distribution substations).With a system of dividing substations for 110-220kV, the functions of a switch-gear are accomplished by switch-gears for 6-10kV at deep entrance substations.Depending on location of substations their switch-gear may be outdoor or indoor. The feed and output lines at 6-10kV substations are mainly of the cable type .at 35-220kV substations of the aerial type .When erecting and wiring thesubstations ,major attention is given to reliable and economic power supply of a given production.Substations are erected by industrial methods with the use of large blocks and assemblies prepared at the site shops of electric engineering organizations and factories of electrical engineering industry .Substations are usually designed for operation without continuous attendance of the duty personnel but with the use of elementary automatic and signaling devices.When constructing the structural part of a substation .it is advisable to use light-weight industrial structures and elements (panels ,floors ,etc.) made of bent sections .These elements are pre-made outside the erection zone and are only assembled at site .This considerably cuts the terms and cost of construction.Basic circuitry concepts of substations are chosen when designing a powersupply system of the enterprise .Substations feature primary voltage entrances .transformers and output cable lines or current conductors of secondary voltage .Substations are mounted from equipment and elements described below .The number of possible combinations of equipment and elements is very great .Whenelaborating a substation circuitry ,it is necessary to strive for maximum simplification and minimizing the number of switching devices .Such substations are more reliable and economic .Circuitry is simplified by using automatic reclosure or automatic change over to reserve facility which allows rapid and faultless redundancy of individual elements and using equipment.When designing transformer substations of industrial enterprises for all voltages ,the following basic considerations are taken into account:1. Preferable employment of a single-bus system with using two-bus systems only to ensure a reliable and economic power supply;2. Wide use of unitized constructions and busless substations;3.Substantiated employment of automatics and telemetry ;if the substation design does not envisage the use of automatics or telemetry ,the circuitry is so arranged as to allow for adding such equipment in future without excessive investments and re-work.e of simple and cheap devices-isolating switches ,short-circuiting switches ,load-breaking isolators ,fuses ,with due regard for their switching capacity may drastically cut the need for expensive and critical oil ,vacuum ,solenoid and air switches .Substation and switch-gear circuitries are so made that using the equipment of each production line is fed from individual transformers ,assemblies ,the lines to allow their disconnection simultaneously with mechanisms without disrupting operation of adjacent production flows.When elaborating circuitry of a substation, the most vital task is to properly choose and arrange switching devices(switches ,isolators ,current limiters ,arresters ,high-voltage fuses).The decision depends on the purpose ,power and significance of the substation.Many years ago, scientists had very vague ideas about electricity. Many of them thought of it as a sort of fluid that flowed through wires as water flows through pipes, but they could not understand what made it flow. Many of them felt that electricity was made up of tiny particles of some kind ,but trying to separate electricity intoindividual particles baffled them.Then, the great American scientist Millikan, in 1909,astounded the scientific world by actually weighing a single particle of electricity and calculating its electric charge. This was probably one of the most delicate weighing jobs ever done by man,for a single electric particle weighs only about half of a millionth of a pound. To make up a pound it would take more of those particles than there are drops of water in the Atlantic Ocean.They are no strangers to us, these electric particles, for we know them as electrons. When large numbers of electrons break away from their atoms and move through a wire,we describe this action by saying that electricity is flowing through the wire.Yes,the electrical fluid that early scientists talked about is nothing more than electrical flowing along a wire.But how can individual electrons be made to break away from atoms? And how can these free electrons be made to along a wire? The answer to the first question lies in the structure of the atoms themselves. Some atoms are so constructed that they lose electrons easily. An atom of copper, for example ,is continually losing an electron, regaining it(or another electron),and losing it again. A copper atom normally has 29 electrons, arranged in four different orbits about its nucleus. The inside orbit has 2 electrons. The next larger orbit has 8.The third orbit is packed with 18 electrons . And the outside orbit has only one electron.It is this outside electron that the copper atom is continually losing, for it is not very closely tied to the atom. It wanders off, is replaced by another free-roving electron, and then this second electron also wandersaway.Consequently,in a copper wire free electrons are floating around in all directions among the copper atoms.Thus, even through the copper wire looks quite motionless to your ordinary eye, there is a great deal of activity going on inside it. If the wire were carrying electricity to an electric light or to some other electrical device, the electrons would not be moving around at random. Instead, many of them would be rushing in the same direction-from one end of the wire to the other.This brings us to the second question .How can free electrons be made to move along a wire? Well ,men have found several ways to do that .One way is chemical. V olta,s voltaic pile,or battery, is a chemical device that makes electricity(or electrons)flow in wires. Another way is magnetic. Faraday and Henry discovered how magnets could be used to make electricity flow in a wire.MagnetsAlmost everyone has seen horseshoe magnets-so called because they are shaped like horseshoes. Probably you have experimented with a magnet, and noticed how it will pick up tacks and nails, or other small iron objects. Men have known about magnets for thousands of years.Several thousand years ago, according to legend, a shepherd named Magnes lived on the island of Crete, in the Mediterranean Sea .He had a shepherds crook tipped with iron. One day he found an oddly shaped black stone that stuck to this iron ter, when many other such stones were found, they were called magnets(after Magnets).These were natural magnets.In recent times men have learned how to make magnets out of iron. More important still, they have discovered how to use magnets to push electrons through wires-that is, how to make electricity flow. Before we discuss this, there arecertain characteristics of magnets that we should know about.If a piece of glass is laid on top of a horse- shoes magnet, and if iron filings are then sprink ledon the glass, the filings will arrange themselves into lines. If this same thing is trid with a bar magnet(a horseshoe magnet straightened out),the lines can be seen more easily. These experiments demonstrate what scientists call magnetic lines of force. Magnets, they explain, work through lines of force that ext- end between the two ends of the magnet. But electrons seem to have magnetic lines of force around them, too.This can be proved by sticking a wire through a piece ofcard board, sprinkling iron filings on the cardboard, and connecting a battery to the wire. The filings will tend to form rings around the wire,as a result of the magnetism of the moving electrons(or electricity).So we can see that there is arelationship between moving electrons and magnetism, Magnetism results from the movement of electrons.Of course, electrons are not really flowing in the bar magnet, but they are in motion, circling the nuclei of the iron atoms. However, in the magnet, circling thelined up in such a way that their electrons are circling in the same direction. Perhaps a good comparison might be a great number of boys whirling balls onstrings in a clockwise direction around their heads.翻译:变电站建设的一般要求变电站(所)在电源系统的工业企业是一个至关重要的因素。
(完整版)电力系统外文英语文献资料

Electric Power SystemElectrical power system refers to remove power and electric parts of the part,It includes substation, power station and distribution. The role of the power grid is connected power plants and users and with the minimum transmission and distribution network disturbance through transport power, with the highest efficiency and possibility will voltage and frequency of the power transmission to the user fixed .Grid can be divided into several levels based on the operating voltage transmission system, substructure, transmission system and distribution system, the highest level of voltage transmission system is ZhuWangJia or considered the high power grids. From the two aspects of function and operation, power can be roughly divided into two parts, the transmission system and substation. The farthest from the maximum output power and the power of the highest voltage grade usually through line to load. Secondary transmission usually refers to the transmission and distribution system is that part of the middle. If a plant is located in or near the load, it might have no power. It will be direct access to secondary transmission and distribution system. Secondary transmission system voltage grade transmission and distribution system between voltage level. Some systems only single second transmission voltage, but usually more than one. Distribution system is part of the power system and its retail service to users, commercial users and residents of some small industrial users. It is to maintain and in the correct voltage power to users responsible. In most of the system, Distribution system accounts for 35% of the total investment system President to 45%, and total loss of system of the half .More than 220kv voltage are usually referred to as Ultra high pressure, over 800kv called high pressure, ultra high voltage and high pressure have important advantages, For example, each route high capacity, reduce the power needed for the number of transmission. In as high voltage to transmission in order to save a conductor material seem desirable, however, must be aware that high voltage transmission can lead to transformer, switch equipment and other instruments of spending increases, so, for the voltage transmission to have certain restriction, allows it to specific circumstances in economic use. Although at present, power transmission most is through the exchange of HVDC transmission, and the growing interest in, mercury arc rectifier and brake flow pipe into the ac power generation and distribution that change for the high voltage dc transmission possible.Compared with the high-voltage dc high-voltage ac transmission has the following some advantages: (1) the communication with high energy; (2) substation of simple maintenance and communication cost is low; (3) ac voltage can easily and effectively raise or lower, it makes the power transmission and high pressure With safety voltage distributionHVDC transmission and high-voltage ac transmission has the following advantages: (1) it only need two phase conductors and ac transmission to three-phase conductors; (2) in the dc transmission impedance, no RongKang, phase shift and impact overvoltage; (3) due to the same load impedance, no dc voltage, and transfer of the transmission line voltage drop less communication lines, and for this reason dc transmission line voltage regulator has better properties; (4) in dc system without skin effect. Therefore, the entire section of route conductors are using; (5) for the same work, dc voltage potential stress than insulation. Therefore dc Wire need less insulation; (6) dc transmission line loss, corona to little interference lines of communication; (7) HVDC transmission without loss of dielectric, especially in cable transmission; (8) in dc system without stability and synchronization of trouble.A transmission and the second transmission lines terminated in substation or distribution substations, the substation and distribution substations, the equipment including power and instrument transformer and lightning arrester, with circuit breaker, isolating switch, capacitor set, bus and a substation control equipment, with relays for the control room of the equipment. Some of the equipment may include more transformer substations and some less, depending on their role in the operation. Some of the substation is manual and other is automatic. Power distribution system through the distribution substations. Some of them by many large capacity transformer feeders, large area to other minor power transformer capacity, only a near load control, sometimes only a doubly-fed wire feeders (single single variable substation)Now for economic concerns, three-phase three-wire type communication network is widely used, however, the power distribution, four lines using three-phase ac networks.Coal-fired power means of main power generating drive generators, if coal energy is used to produce is pushing the impeller, then generate steam force is called the fire. Use coal produces steam to promote the rotating impeller machine plant called coal-fired power plants. In the combustion process, the energy stored in the coal to heat released,then the energy can be transformed into the form within vapor. Steam into the impeller machine work transformed into electrical energy.Coal-fired power plants could fuel coal, oil and natural gas is. In coal-fired power plant, coal and coal into small pieces first through the break fast, and then put out. The coal conveyer from coal unloader point to crush, then break from coal, coal room to pile and thence to power. In most installations, according to the needs of coal is, Smash the coal storage place, no coal is through the adjustable coal to supply coal, the broken pieces of coal is according to the load changes to control needs. Through the broken into the chamber, the coal dust was in the second wind need enough air to ensure coal burning.In function, impeller machine is used to high temperature and high pressure steam energy into kinetic energy through the rotation, spin and convert electricity generator. Steam through and through a series of impeller machine parts, each of which consists of a set of stable blade, called the pipe mouth parts, even in the rotor blades of mobile Li called. In the mouth parts (channel by tube nozzle, the steam is accelerating formation) to high speed, and the fight in Li kinetic energy is transformed into the shaft. In fact, most of the steam generator is used for air is, there is spread into depression, steam turbine of low-pressure steam from the coagulation turbine, steam into the condenses into water, and finally the condensate water is to implement and circulation.In order to continuous cycle, these must be uninterrupted supply: (1) fuel; (2) the air (oxygen) to the fuel gas burning in the configuration is a must; (3) and condenser, condensed from the condensed water supply, sea and river to lake. Common cooling tower; (4) since water vapour in some places in circulation, will damage process of plenty Clean the supply.The steam power plant auxiliary system is running. For a thermal power plant, the main auxiliary system including water system, burning gas and exhaust systems, condensation system and fuel system. The main auxiliary system running in the water pump, condensation and booster pump, coal-fired power plants in the mill equipment. Other power plant auxiliary equipment including air compressors, water and cooling water system, lighting and heating systems, coal processing system. Auxiliary equipment operation is driven by motor, use some big output by mechanical drive pump and some of the impeller blades, machine drive out from the main use of water vaporimpeller machine. In coal-fired power plant auxiliary equipment, water supply pump and induced draft fan is the biggest need horsepower.Most of the auxiliary power generating unit volume increased significantly in recent years, the reason is required to reduce environment pollution equipment. Air quality control equipment, such as electrostatic precipitator, dust collection of flue gas desulfurization, often used in dust in the new coal-fired power plants, and in many already built in power plant, the natural drive or mechanical drive, fountain, cooling tower in a lake or cooling canal has been applied in coal-fired power plants and plants, where the heat release need to assist cooling system.In coal-fired power stations, some device is used to increase the thermal energy, they are (1) economizer and air preheater, they can reduce the heat loss; (2) water heater, he can increase the temperature of water into boiling water heaters; (3) they can increase and filter the thermal impeller.Coal-fired power plants usually requires a lot of coal and coal reservoirs, however the fuel system in power plant fuel handling equipment is very simple, and almost no fuel oil plants.The gas turbine power plants use gas turbine, where work is burning gas fluid. Although the gas turbine must burn more expensive oil or gas, but their low cost and time is short, and can quickly start, they are very applicable load power plant. The gas turbine burn gas can achieve 538 degrees Celsius in the condensing turbine, however, the temperature is lower, if gas turbine and condenser machine, can produce high thermal efficiency. In gas turbine turbine a combined cycle power plant. The gas through a gas turbine, steam generator heat recovery in there were used to generate vapor heat consumption. Water vapor and then through a heated turbine. Usually a steam turbine, and one to four gas turbine power plant, it must be rated output power.。
电力专业英语 英文文献翻译报告

Page 1.The Production of Electrical Energy(电能生产)1 English textFrom reference 1Should the generation be not adequate to balance the load demand, it is imperative that one of following alternatives be considered for keeping the system in operating condition:1. Staring fast peaking units,2. Load shedding for unimportant loads,3. generation rescheduling.It is apparent from the above that since the voltage specifications are not stringent, load frequency control is by far the most important in power system control.In order to understand the frequency control, consider a small step-increase in load. The initial distribution of the load increment is determined by the system simpedance; and the sistantaneous relative generator rotor positions. The energy required to supply the load increment is drawn from the kinetic energy of rotating machines. As a result, the system frequency drops. The distribution of load during this period among the various machines is determined by the inertias of the rotors of the generators partaking in process. This problem is stability analysis of the system.After the speed or frequency fall due to reduction in stored energy in the rotors has taken place, the drop is sensed by the governors and they divide the load increment between the machines as determined by the droops of the respective governor characterstics. Subsequently, secondary control restores the system frequency to its normal value by readjusting the governor characteristics. Keywords:load frequency controlFrom reference 2Modern power systems are so large that it is impossible to design a single central control system that would handle the overall control job. It is extremely useful take into account the weak links in the system and then apply control throughdecomposition. The demarcation of load frequency control and Mavar voltage control characteristics is one such decomposition. Geographical and functional decomposition are successfully applied to power systems and this leads to the concept of area control.A modern power system can be divided into several areas for load frequency control. Each control area fulfils the following:1.The area is a geographically contious portion of a large interconnected area, which adjusts its own generation to accommodate load changes within its precincts.2.Under normal conditions of operation, it changes bulk power with neighboring areas.3.Under abnormal conditions of operation, it may deviate from predetermined schedules and provide assistance to any neighboring control area in the system.4.It is expected, in addition, to partake with the other areas in the system in a suitable manner in the system frequency regulation.The rotors of all generators in a control area swing together for load change. Thus, a coherent group of generators within a geographical region may constitute a control area which is connected to other similar areas by weak tie lines.Keywords:areas load frequency controlFrom reference 3For plant loading schedules in thermal systems, load prediction up to two hours in advance is necessary while for unit commitment schedules prediction up to 24 hours is sufficient. Also, at all sations and control centers, short-time prediction is needed for storage and display of advance information. Based on this information, predictive security assessment of the system is made. This also helps to contain the rates of change of generator outputs within their permissible limits.For the implementation of economic scheduling of generation using digital computers, detailed estimates of the future load demands are essential in order to allow sufficient time for the calculation and implementation of the generator schedules. Whatever method is envisaged for the calculation of such economic schedules consistent with the security and spare requirements of the system, the schedules should be calculatedevery 15 or 30 minutes and each economic schedule should be a predictive one ,for at least about 30 minutes ahead of event. It is then obvious that the predictions are to be revised frequently in the light of any fresh information so as to minimize the estimation errors.Peak load demand forecasts are useful in determining the investment required for additional generating and transmission capacities required. Forecasts for planning require data extending over several previous years. Meaningful forecasts can be obtained with lead time of 3 to 5 years.Keywords:load predictionFrom reference 4In this method, the load is separated into two main components. The first component is a base load which is of fixed value and the second a variable component which is a function of the weather conditions.Estimates can be made 24 hours ahead, using the weather forecast. The temperature base for weighting the effect of the predicated temperature on the load is the normal, mean temperature of the month. The normal, mean temperature of the month has zero weight. Similarly the change in consumers demand due to cloudy weather may be assumed to vary in direct proportion to the degree of cloudiness. This in turn may be expressed by an illumination index with fair, clear sky corresponding to zero weight.The base load is determined from past records. Proper weighting of the elements of the weather will be attained only after several trials. The method of prediction stabilizes after this trial period. It may be noted that the base loads for week days and weekend will generally be different for any hour.Using these base loads, a load estimate based on the best available weather forecast can be made using proper weighting of meteorological factors like temperature, cloudiness, wind velocity, etc.Keywords:proper weighting of the elements of the weather2 中文翻译及分析出自文献1:万一发电量不足以平衡负荷需求,要使电力系统处于运行状态,必须考虑采取以下选择方法中的一种:1、启动快速峰荷机组2、对不重要的用户实行拉闸断电3、重新制定发电计划从上述情况来看,电压技术的要求并不严格,目前为止负荷频率控制是电力系统控制中最重要的手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通)
1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说).
2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量).
3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题..
............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了)
总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了.
所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去..
Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues)
1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ).
2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.
together power, and some fans and even the roof of the staircase lighting the fire together in a loop to a table measurement).
3. Grounding system grounding protection type of the original design of the TN-S system actually twisted into a "TN-SCS" system (needs to be done indoors TN-C, fun, right?), Strictly in accordance with the so-called "three-phase four-wire system "do repeat the ground to implement, resulting in repeated follow-up construction of a waste of resources and the existence of security risks and so on ..
............................( Violation of building electrical design and so on enumerate really sorry to those people leave bread where the face Forget)
In short it, the review by drawing the electrical design drawings in the group of people's eyes do not know what, often after the completion of the high and low voltage power supply system has been distorted beyond recognition, and to have 50 percent of reservations have been is thankful.
So. I think: residential building electrical design for power sector to go! Big deal leave here, let him for a few essential circuits of power, love how frustrating tossing him from a how to ..。