ABAQUS实例分析论文
悬臂梁—有限元ABAQUS线性静力学分析实例

线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。
在ABAQUS中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。
线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。
这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。
在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。
对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。
悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。
ν材料性质:弹性模量3=E=,泊松比3.02e均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种。
(1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --ABAQUS/CAE。
(2)在操作系统的DOS窗口中输入命令:abaqus cae。
启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。
1.3 创建部件在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。
基于abaqus的ujoint有限元分析有限元分析论文大学论文

有限元分析课程论文课程名称:有限元分析论文题目:ujoint有限元分析学生班级;学生姓名:任课教师:学位类别:评分标准及分值选题与参阅资料(分值)论文内容(分值)论文表述(分值)创新性(分值)评分论文评语:总评分评阅教师: 评阅时间年月日注:此表为每个学生的论文封面,请任课教师填写分项分值基于abaqus的ujoint有限元分析摘要:万向传动装置在汽车中起到了传递扭矩的关键作用,在abaqus中导入ujoint实体模型,之后对其进行坐标系建立,wire 建立,以及各部件之间的连接关系的建立,最后对该模型施加边界条件,令其运动。
关键词:abaqus、有限元、ujoint一问题的描述对导入的ujoint在所有步骤完成后,施加力:在stepinitial:均设为0;step SPIN:doundary1:限制除UR2的所有,且把UR2值设为:pi。
在boundary2 中,限制UR1和UR3自由度。
二在abaqus中导入ujoint实体模型启动abaqus CAE,在文件下拉菜单中选择:import ,选择最终文件位置or 输入ws_connector_ujoint.py.inp打开文件ujoint。
(如下图所示)2.1 创建坐标系单机操作界面中的tool,从下拉菜单中选择datum,再出来的窗口中选择coordinate,3points。
首先选择origin,在选择x正方向,Y正方向、z正方向。
创建完成。
2.2创建VERT和CROSS之间的2坐标系。
根据 2.1所述操作步骤创建坐标系V-C 和V-G (VERT和GROUND)。
Notice:1、创建过程中为了清晰分辨,可将IN的suppress,创建完成后再将其resume。
其他同样2、在V-C和I-C中,x轴与cross转动所绕轴平行。
根据2.1所属步骤创建I-C 和I-G. 结果如图;2.3 定义connector geometry1. 2.3.1 创建disjoint型wire在选项中选择interaction,在所出现窗口中点击Create Wire Feature tool.,在所出现的窗口中选择Disjointwires,单机添加要成wire的点。
abaqus-铝合金A357切削加工有限元模拟

.2.
论文主要内容 1.铝合金A357切削加工有限元模型
刀具的儿何参数; 影 响 因 素 装夹条件; 切削参; 假 设 条 件
刀具是刚体且锋利,只考虑刀具的温度传导; 忽略加工过程中,由于温度变化引起的金相组 织及其它的化学变化; 被加工对象的材料是各向同性的; 不考虑刀具、工件的振动; 由于刀具和工件的切削厚度方向上,切削工程 中层厚不变,所以按平面应变来模拟;
1.1.3 A357与刀具材料参数
A357铝合金,密度ρ=2680Kg/m3,弹性模量E=79GP,泊松比 μ=0.33其他参数如下表:
.4.
论文主要内容 1.铝合金A357切削加工有限元模型
1.1.3 A357与刀具材料参数
A357铝合金,密度ρ=2680Kg/m3,弹性模量E=79GP,泊松比μ=0.33其他 参数如下表:
Gf pl L yd ydu
0
o
fpl
pl
uf
pl
pl
表达式中的 u pl 为等效塑性位移,它描述了当损伤开始之后裂纹 pl 变化的屈服应力,在损伤开始之前 u pl=0.在损伤开始之后 u =L pl ,L 为与积分点相关的单元特征长度,单元特征长度的定义基于单元的集 合形状,平面单元长度为积分点区域面积的平方根,而立方体单元长 度为积分点区域体积的立方根。
.4.
论文主要内容 1.铝合金A357切削加工有限元模型
1.1.2 材料失效准则
实现切屑从工件分离,本文采用的是剪切失效模型。剪切 失效模型是基于等效塑性应变在积分点的值,当损伤参数达到 1时,单元即失效,失效参数定义如下:
0 f
pl
pl
pl
式中: 为失效参数, 为等效塑性应变初始值, 为等效塑 性应变增量, 为失效应变。失效应变 设定以来于以下几个方 面:依据塑性应变率,无量纲压应力与偏应力之比p/q(p为压应 力,q为Mises应力),温度,预定义域变量。这里采用 Johnson357切削加工有限元模型
abaqus1典型实例分析

1.应用背景概述随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。
但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。
目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。
而本案例就是取材于汽车碰撞模拟分析中的一个小案例------------------------------------------------------- 保险杠撞击刚性墙。
2.问题描述该案例选取的几何模型是通过导入已有的*」GS文件来生成的(已经通过Solidworks 软件建好模型的),共包括刚性墙(PART-wall )、保险杠(PART-bumpe)、平板(PART-plane)以及横梁(PART-rail )四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。
1.横梁(rail)2.平板(plane)3保险杠(bumper)4.刚性墙(wall)图碰撞模型的SolidWorks图为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。
其中,刚性墙的材料密度为X 10-9,弹性模量为X 105,泊松比为;保险杠、平板以及横梁的材料密度为X 10-9,弹性模量为X 105,泊松比为,塑形应力-应变数据如表所示。
abaqus回弹分析实例:在分析步之间传递数据

Abaqus Example Problems Guide1.5.1 Springback of two-dimensional draw bendingProducts: Abaqus/Standard Abaqus/Explicit是用explicit进行成形,然后使用standard分析回弹Problem description这个例子描述了在93年成形模拟数值会议中报道的基准测试。
这个基准包括使用三种材料描述六种问题以及两种不同的夹持力。
六个问题中的一个描述如下。
原文见Taylor等人在93年的论文。
坯料初始尺寸350*35,厚度0.78.问题本质上是个平面应变问题(垂直于模型平面的尺寸是35mm)。
夹持力是2.45kN,夹具的质量是5kg。
摩擦系数0.144坯料为低碳钢,材料为弹塑性材料,弹性为各向同性,对于塑性使用Hill 异性屈服准则。
材料的性质如下:Young's modulus = 206.0 GPaPoisson's ratio = 0.3Density = 7800.Yield stress = 167.0 MPaAnisotropic yield criterion: =1.0, =1.0402, =1.24897, =1.07895, =1.0, =1.0此例是对称问题,只取一半建模。
坯料使用一行175个一阶壳单元建模。
对称的边界条件施加到对称面上。
边界条件施加到了坯料所有的节点上以模拟平面应变的条面;建模平面外的尺寸是5mm;因此,坯料的加持力经过了粗略缩放。
成形的过程由explicit中的两个分析步完成。
坯料的加持力在第一个分析步施加。
加载使用平滑分析步,以将惯性效应最小化。
第二个分析步,通过设定冲头刚体参考点的速度冲头下行70mm。
速度使用triangular smooth step amplitude 功能施加,初始速度和最终速度都是0,峰值速度在这个过程之间。
【完整版】Abaqus课程设计论文

学校代码:10128学号:************课程论文题目:球体接触问题的有限元分析****:***学院:理学院班级:工程力学12-1班指导教师:韦广梅、周承恩2015年9月26日内蒙古工业大学课程设计(论文)任务书课程名称:有限单元法课程设计学院:理学院班级:力学12-1班 _ 学生姓名:李劲波学号:201220907039 指导教师:韦广梅、周承恩摘要许多工程问题都涉及两个或多个部件之间的接触,在这些问题中,当两个物体彼此接触时,垂直于接触面上的力作用在两个物体上。
如果在接触面之间存在摩擦,可能产生剪力以阻止物体的切向运动。
本文主要是运用ABAQUS软件对椭球体与刚性半无限大体接触问题进行探讨,因为椭球体是前后左右都对称的三维实体,所以对它取四分之一分析,这样不仅计算方便而且结果直观。
先将材料定义为弹性材料通过前处理建模、计算、后处理来分析椭球体与大体之间的接触,运用多种方法讨论接触问题。
结果得到的数据远超弹性屈服极限,后将材料重新赋值为弹塑性,仿照弹性的分析方法对弹塑性进行分析,得到的结果完全正确。
关键词:接触;ABAQUS;弹塑性;屈服极限AbstractMany engineering problems involve contact between two or more components, in these problems, when two objects come into contact with each other, on the surface of the perpendicular to the contact force between two objects. If there is friction between contact surface, shear may be produced to prevent the tangential motion of the object. This article mainly using ABAQUS software to ellipsoid and rigid semi-infinite discusses the general contact problem, because the ellipsoid is before and after the left and right sides is symmetrical three-dimensional entity, so take a quarter analysis to it, that not only the calculation results of convenient and intuitive. Before the adoption of the first material is defined as elastic material modeling, calculation, after processing to analyze between ellipsoid and general contact, using a variety of methods to discuss contact problem. Than elastic yield limit, the resulting data will reopen assignment for elastic-plastic materials, imitates the elastic analysis method of elastic-plastic analysis, get the right result.Key words: Contact; ABAQUS; Elastic-plastic; Yield limit目录第一章绪论1.1 有限单元法课程设计目的与任务 (1)1.2 接触问题概述 (1)1.3 有限元法概述 (1)第二章有限元工具ABAQUS介绍及应用方法 (3)2.1 ABAQUS简介 (3)2.2 ABAQUS功能简介 (3)第三章椭球—平面接触问题有限元分析 (7)3.1 平面-球接触问题描述 (7)3.2 用ABAQUS建立有限元模型 (7)3.2.1 建立实体 (7)3.2.2 赋值材料与装配部件 (8)3.2.3 创建分析步 (8)3.2.4 定义接触和边界条件 (9)3.2.5 划分网格 (9)3.2.6 计算及后处理 (10)3.2.7 理想弹塑性分析 (11)第四章结论与收获 (14)参考文献 (15)第一章绪论1.1有限单元法课程设计目的与任务目的:《有限单元法课程设计》是“有限单元法”课程的拓展部分。
ABAQUS有限元分析毕业论文

1.1.1振动与冲击对电子设备的危害
在电子设备所处的机械环境中,各种机械力和干扰形式都有可能对设 备的可 靠性造成危害,其中危害最大的是振动和冲击。它们造成的危害主
要有两种:
(1)设备在某一激振频率下导致振幅很大的共振现象,最终因振动加速
度超 过设备所能承受的极限加速度而破坏;或者由于冲击所产生的冲击力
Studying the general analysis method and solving process of the phone'flip con tact and impact duing dropp ing with fin ite eleme nt an alysis simulati on tech no logy based on the con tact dyn amics will be the set up for non li near simulati on an alysis」t is be provied that simulati on method with complex structure,duri ng dropp ing impact load and comb ined with con tact dyn amics and fin ite eleme nt an alysis method.
Drop and impact are ofen see n in engin eeri ng practice and recog ni zed as a con tact collision problem,and the problem shows highly characteristics of nonlinearity. Normally it'effective method to solve dropping issue complex structure with finite element method and actual dropping test data,and it will improve the precision of finite element simulation.So the analysis and research for drop phenomena with finite element method is important in both theoretical and engineering fields.
(完整word版)Abaqus弹塑性分析简单实例

Abaqus弹塑性分析简单实例
ABAQUS默认的塑性材料特性应用金属材料的经典塑性理论,采用MISES屈服面来定义各向屈服。
金属材料的弹塑性行为可以简述如下:在小应变时,材料性质基本为线弹性,弹性模量E为常数;应力超过屈服应力后,刚度会显著下降,此时材料的应变包括塑性应变和弹性应变两部分;在卸载后,弹性应变消失,而塑性应变是不可恢复的;如果再次加载,材料的屈服应力会提高,即所谓的加工硬化。
在abaqus中,等效塑性应变PEEQ大于0表明材料发生了屈服。
在工程结构中,等效塑性应变一般不应超过材料的破坏应变。
对于金属成形等大变形问题,应根据生产工艺要求来确定许可的等效塑性应变量。
需要注意的是在比例加载时,大多数材料的PEMAG和PEEQ相等。
这两个量的区别在于,PEMAG描述的是变形过程中某一时刻的塑性应变,与加载历史无关,而PEEQ是整个变形过程中塑性应变的累积结果。
下面我们以单向压缩过程的模拟来演示ABAQUS弹塑性仿真设置。
模型如图所示,压头用解析刚体来模拟,试样用SHELL来模拟。
采用轴对称模型。
试样的截面属性设置如下图所示,注意塑性应变必须从0开始。
在压头与试样之间定义无摩擦的接触。
固定对称轴
上的径向位移U1和底边的轴向位移U2。
压头是轴对称刚体,U2边界条件需要施加在压头的参考点上。
设定两个分析步,第一个分析步让压头与试样建立平稳的接触,设置压头下移-5.001mm。
第二个分析步,设定压头下移20mm。
具体如下图所示:
提交分析,结果如下图所示:有限元在线因为专注所以卓越。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章Abaqus简介 (1)一、Abaqus总体介绍 (1)二、Abaqus基本使用方法 (2)1.2.1 Abaqus分析步骤 (2)1.2.2 Abaqus/CAE界面 (3)1.2.3 Abaqus/CAE的功能模块 (3)第二章基于Abaqus的通孔端盖分析实例 (4)一、工作任务的明确 (5)二、具体步骤 (5)2.2.1 启动Abaqus/CAE (4)2.2.2 导入零件 (5)2.2.3 创建材料和截面属性 (6)2.2.4 定义装配件 (7)2.2.5 定义接触和绑定约束(tie) (10)2.2.6 定义分析步 (14)2.2.7 划分网格 (15)2.2.8 施加载荷 (19)2.2.9 定义边界条件 (20)2.2.10 提交分析作业 (21)2.2.11 后处理 (22)第三章课程学习心得与作业体会 (22)第一章: Abaqus简介一、Abaqus总体介绍Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。
Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。
Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。
Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。
Abaqus主要具有以下分析功能:1.静态应力/位移分析2.动态分析3.非线性动态应力/位移分析4.粘弹性/粘塑性响应分析5.热传导分析6.退火成形过程分析7.质量扩散分析8.准静态分析9.耦合分析10.海洋工程结构分析11.瞬态温度/位移耦合分析12.疲劳分析13.水下冲击分析14.设计灵敏度分析二、Abaqus基本使用方法1.2.1 Abaqus分析步骤有限元分析包括以下三个步骤:1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生成一个Abaqus输入文件。
提交给Abaqus/Standard或Abaqus/Explicit。
2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段,使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的数值模型,通常以后台方式运行,分析结果保存在二进制文件中,以便于后处理。
3.后处理(Abaqus/CAE或Abaqus/Viewer): Abaqus/CAE的后处理部分又称为Abaqus/Viewer,可用来读入分析结果数据,以多种方法显示分析结果,包括彩色云纹图、动画、变形图和XY曲线图等。
1.2.2 Abaqus/CAE界面图1-1 Abaqus/CAE的主窗口1.2.3 Abaqus/CAE的功能模块一般使用Abaqus/CAE进行应力分析有以下几个经典的步骤:1、问题的描述→2、启动Abaqus/CAE→3、创建部件→4、创建材料和截面属性→5、定义装配件→6、设置分析步→7、定义边界条件和载荷→8、划分网格→9、提交分析作业→10、后处理→11、退出Abaqus/CAEAbaqus/CAE包括一系列的功能模块(module),每个模块均包含其特定的工具,在Module(模块)列表中可以选择各个功能模块(如图1-2),图1-2 选择功能模块这些模块的次序同时也是Abaqus/CAE所推荐的模型创建顺序(如图1-3),当然也可以首先划分网格(如图1-4),这样做的好处是,往往在划分网格的过程中,会发现部件的几何模型需要进一步修改,而经过这些修改后,已经定义好的边界条件、载荷和接触等可能变为无效的,需要再重新定义。
图1-3 Abaqus/CAE所推荐的模型创建顺序图1-4 根据需要来选择适当的建模顺序第二章基于Abaqus的通孔端盖分析实例一、工作任务的明确在安装文件夹中有一个simple文件夹,里面有三个.x_t文件,如图2-1所示。
它们是三个零件,该文章目的是演示将这三个文件通过Abaqus装配好并达到划分网格的目的,最终生成一个.ace文件。
图2-1二、具体步骤2.2.1 启动Abaqus/CAE在Windows操作系统中:[开始]→[程序]→[Abaqus 6.8-1]→[ABAQUS CAE]。
启动ABAQUS CAE后,在出现的Start Session(开始任务)对话框中选择Create Model Database(创建新模型数据库)。
如图2-2所示。
图2-22.2.2 导入零件如图2-3左图,依次单击主菜单中的File→Import→Part,弹出图2-3右图对话框,选择simple文件夹后可看到三个.x_t文件,它们是通孔端盖的三个组成部件,分别是螺钉、安装板和固定圈。
图2-3 导入零件导入后可看到零件如图2-4所示。
此时零件尚未定义材料,所以表面是白色,待定义了材料后零件表面显示蓝色。
零件zdc 零件LD 零件azb图2-42.2.3 创建材料和截面属性在窗口左上角的Module(模块)列表中选择Property(特性)功能模块,按照以下步骤来定义材料。
1)创建材料点击左侧工具区域中的(Create Material),也可以直接双击左侧模型树中的Material来完成此项操作。
在Name(材料名称)后面输入Steel,点击此对话框中的Mechanical(力学特性)→Elasticity(弹性)→Elastic。
在数据表中设置Young’s Modulus(弹性模量)为210000,Poisson’s Ratio(泊松比)为0.3,其余参数不需改变(如图2-5所示),点击OK。
按上述同样的方法创建ZM-6合金材料。
图2-5 创建材料2)创建截面属性点击左侧工具区中的(Create Section),在弹出的对话框中的Name中输入Section-Steel,点击continue,在接着弹出的对话框中将material下拉菜单中的Steel选中,单击OK,此时已定义好Section-Steel。
按照同样的方法定义Section-ZM,如图2-6所示。
图2-6创建截面属性3)给部件赋予截面属性以安装板为例,点击左侧工具区的(Assign Section),点击视图区中的安装板模型,Abaqus/CAE以红色高亮度显示被选中的实体边界,如图2-7所示。
在视图区的空白点击鼠标中键,弹出Edit Section Assignment对话框,将Section设置为Section-Steel,点击OK。
另外两个零件的赋予截面属性方法与此类似。
赋予截面属性后,各个部件表面变成绿色。
图2-72.2.4 定义装配件1)添加实体进入Assembly功能模块,点击,选中全部部件,然后点击OK,如图2-8所示。
图2-8 添加装配实体2)使固定圈下表面与安装板上表面相接触长按按钮,弹出接触面约束类型选项,将鼠标移动至(Face to Face)然后放开,如图2-9所示。
图2-9首先点击固定圈下表面,再点击安装板的上表面,在所点击的位置会显示出面的方向。
在窗口底部的提示区中点击Flip来更正方向,然后点击OK。
如图2-10左图所示。
提示区中显示的两个面的默认距离为0.0,按回车键确认。
得到的模型如图2-10右图所示。
图2-103)使安装板和固定圈的螺钉孔对齐重复图2-9所示的步骤,将鼠标移动至(Coaxial)放开,先点击固定圈上的某个螺纹孔的内表面,再点击安装板的某个螺纹孔的内表面,点击OK。
图2-11如图2-11所示,此时只定义了一对螺纹孔,还需要定义一对螺纹孔才能把固定圈装配到正确的位置,再次点击,先后选择需对齐的两个螺纹孔的内表面,点击OK,此时安装板与固定圈就已经装配到正确的位置,如图2-12表示。
图2-124)安装螺钉安装螺钉分为三个部分,先要使螺钉螺纹柱与螺纹孔对齐,然后是安装板的底面与螺钉头部的底面相接触,最后对这个螺钉进行阵列。
首先单击,先后选择螺钉的螺纹柱和安装板的螺纹孔,点击Flip选好方向后点击OK确认,螺钉的位置如图2-13所示。
图2-13单击,分别选择螺钉头部的底面和安装板的底面,使螺钉装配到正确的位置,这里要注意箭头的方向,如果方向相反则装配会出现错误,点击Flip改正方向后点击OK确认。
正确的螺钉位置如图2-14所示。
图2-14点击工具区中的(环形阵列),在视图区点击螺钉,在提示区中点击Done,弹出阵列对话框(如图2-15左图),将阵列数量改成8,角度改为360度,点击Axis然后选择Y轴,待看到阵列出的螺钉处于正确位置后点击OK退出,阵列后如图2-15右图所示。
图2-15 阵列螺钉2.2.5 定义接触和绑定约束(tie)下面将在安装板和固定环之间定义接触,在螺钉和底座的螺纹处建立绑定约束。
1)定义接触和绑定约束所要用到的各个面在定义这些面之前,由于已经完成assembly过程;造成平面选择困难,此过程成可以使用view-assembly display options;如图2-16所示,分别勾选不同的零部件进行显示,从而正确快速地确定出对应的面。
图2-16进入Interaction功能模块,双击模型树中的Surface,新建一个接触面,先给这个面命名,确认后开始在模型上选择要定义的面,选好后点击提示区的Done。
注意:在选择阵列过的螺钉上的接触面时要先把安装板设为Suppress状态。
依次定义如图2-17所示的接触面(螺钉只选一个作解释,其余的都一样):图2-17 定义接触面2)在螺纹处定义绑定约束在模型树中双击Constraint,出现如图2-18左图所示对话框,按图中设置好名称和类型后点击Continue,点击窗口底部提示区右侧的Surface按钮,在弹出的Region Selection对话框中,选中Surf-zdc-ld1来作为绑定约束的主面,点击Continue,再次点击提示区中的Surface按钮,选中Surf-ld1-zdc来作为绑定约束的从面。
在弹出的Edit Constraint对话框中(如图2-18中图),将Position Tolerance设为Specify distance:0.02,点击OK退出。
按同样的方法设置如图2-18右图中的各个绑定约束。
图2-183)定义带库伦摩擦的接触属性和不带摩擦的接触属性点击(Create Interaction Property),在Name后面输入IntProp-friction-015,点击Continue。
点击Mechanical→Tangential Behavior,把摩擦类型改为Friction formulation:Penalty,在Friction Coeff下面输入0.15,然后点击OK。