fluent学习笔记
fluent 笔记

四、CFD技术贴之6-如何提高gridgen,fluent的工作效率 2007-03-02 21:10
Coupled方法使用默认设置时往往是比较稳定的。Segregated方法常常对容许极根很敏感。当使用segregated方法求解时,不要提高turbulent viscosity ration limit(除非你根据过去的经验或者你的物理模型有很好的理由超过这个极限,但我从没有听说这样是比较理想的)。不要给压力和温度极限限定的合理的范围(例如Plimits=Pstatic+/-(2*dynamic pressure))来计算适当的温度。
三、刚看了一些关于压力基和密度基的介绍,在这里简单总结一些,希望对大家有用。
1,pressure based 求解方法在求解不可压流体时,如果我们联立求解从动量方程和连续性方程离散得到的代数方程组,可以直接得到各速度分量及相应的压力值,但是要占用大量的计算内存,这一方法已可以在Fluent6.3中实现,所需内存为分离算法的1.5-2倍,同时Fluent6.3中的压力基耦合求解器也很适合求解带有激波的高速空气动力问题(可压流体),这是一个新变化。本人也在尝试用这个模型模拟一些噪声问题。
基本的步骤就是在gridgen里面设好不同的windbreak,然后输出case file。然后再fluent里面设好边界条件,然后interpolate,再reorder domain,然后保存。我们使用journal来节省时间,在gridgen里面写好glf文件,执行,一下子输出11个case,然后在fluent里面也用journal,自动设置边界条件,scale,fuse,append case,interpolate,reorder domain,自动保存。全部自动完成,只需每次读入不同的jouranl file就行了。关于journal的生成,要特别小心,因为fluent的journal命令在选择菜单下的frame'的时候,是用数字(从0开始,而不是1)来确定位置,而不是根据名字,所以要想用一个journalfile解决问题,就得保证每个case里面的zone次序是一样的,这样fluent就不会选错。生成journal的方法,可以自己写命令,简单一点的就是start journal,然后自己操作一遍,把操作写入journal,然后就可以用了。但要注意检查,因为复杂的命令保证会有错,要看懂命令,然后修改好
fluent学习笔记

fluent技术基础与应用实例fluent数值模拟步骤简介主要步骤:1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。
2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件)3、检查网格(Grid→Check)。
如果网格最小体积为负值,就要重新进行网格划分。
4、选择计算模型。
5、确定流体物理性质(Define→Material)。
6、定义操作环境(Define→operating condition)7、制定边界条件(Define→Boundary Conditions)8、求解方法的设置及其控制。
9、流场初始化(Solve→Initialize)10、迭代求解(Solve→Iterate)11、检查结果。
12、保存结果,后处理等。
具体操作步骤:1、fluent2d或3d求解器的选择。
2、网格的相关操作(1)、读入网格文件(2)、检查网格文件文件读入后,一定要对网格进行检查。
上述的操作可以得到网格信息,从中看出几何区域的大小。
另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划分网格。
(3)、设置计算区域在gambit中画出的图形是没有单位的,它是一个纯数量的模型。
故在进行实际计算的时候,要根据实际将模型放大或缩小。
方法是改变fluent总求解器的单位。
(4)、显示网格。
Display→Grid3、选择计算模型(1)、基本求解器的定义Define→Models→SolverFluent中提供了三种求解方法:·非耦合求解segregated·耦合隐式求解coupled implicit·耦合显示求解coupled explicit非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。
耦合求解方法用在高速可压缩流体fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建议采用耦合隐式求解方法。
fluent学习笔记(3):如何调整网格视图

fluent学习笔记( 3):如何调整网格视图
fluent导入网格后,默认是3维视角,这个视角对于我们完整掌握模型信息是有好处的,但是当我们想观察一个面的时候就不方便了。我们经常需要调整视图,只观察一个平面。 这里我们有两个办法调整试图,首先是右下角的三色坐标系图标,点击即可调整到对应的视图。
这个方法就很好用,但是我前段时间fluent不知道为什么,突然间没有这个图标了。这时候就需要我们用左侧(也可能在下部)的工具来பைடு நூலகம்整试图。
fluent中文攻略笔记(已读,不错)

单精度和双精度求解器在所有的操作系统上都可以进行单精度和双精度计算。
对于大多数情况来说,单精度计算已经足够,但在下面这些情况下需要使用双精度计算:(1)计算域非常狭长(比如细长的管道),用单精度表示节点坐标可能不够精确,这时需要采用双精度求解器。
(2)如果计算域是许多由细长管道连接起来的容器,各个容器内的压强各不相同。
如果某个容器的压强特别高的话,那么在采用同一个参考压强时,用单精度表示其他容器内压强可能产生较大的误差,这时可以考虑使用双精度求解器。
(3)在涉及到两个区域之间存在很大的热交换,或者网格的长细比很大时,用单精度可能无法正确传递边界信息,并导致计算无法收敛,或精度达不到要求,这时也可以考虑采用双精度求解器。
网格文件是包含各个网格点坐标值和网格连接信息2,以及各分块网格的类型和节点数量等信息的文件进程文件(journal file)是一个FLUENT 的命令集合,其内容用Scheme 语言写成。
可以通过两个途径创建进程文件:一个是在用户进入图形用户界面后,系统自动记录用户的操作和命令输入,自动生成进程文件;另一个是用户使用文本编辑器直接用Scheme 语言创建进程文件,其工作过程与用FORTRAN 语言编程类似。
File -> Write -> Start Journal系统就开始记录进程文件。
此时原来的Start Journa(l 开始进程)菜单项变为Stop Journal(终止进程),点击Stop Journal(终止进程)菜单项则记录过程停止。
边界函数分布文件(profile file)用于定义计算边界上的流场条件,还可以将边界网格写入单独的文件,相应的菜单操作是:File -> Write -> Boundary Grid在打开的文件选择窗口中保存文件即可。
在用户对网格不满意时,可以先将边界网格保存起来,然后再用Tgrid 软件读入这个网格文件,并重新生成满意的立体网格。
fluent学习笔记

fluent技术基础与应用实例4.2.2 fluent数值模拟步骤简介主要步骤:1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。
2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件)3、检查网格(Grid→Check)。
如果网格最小体积为负值,就要重新进行网格划分。
4、选择计算模型。
5、确定流体物理性质(Define→Material)。
6、定义操作环境(Define→operating condition)7、制定边界条件(Define→Boundary Conditions)8、求解方法的设置及其控制。
9、流场初始化(Solve→Initialize)10、迭代求解(Solve→Iterate)11、检查结果。
12、保存结果,后处理等。
具体操作步骤:1、fluent2d或3d求解器的选择。
2、网格的相关操作(1)、读入网格文件(2)、检查网格文件文件读入后,一定要对网格进行检查。
上述的操作可以得到网格信息,从中看出几何区域的大小。
另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划分网格。
(3)、设置计算区域在gambit中画出的图形是没有单位的,它是一个纯数量的模型。
故在进行实际计算的时候,要根据实际将模型放大或缩小。
方法是改变fluent总求解器的单位。
(4)、显示网格。
Display→Grid3、选择计算模型(1)、基本求解器的定义Define→Models→SolverFluent中提供了三种求解方法:·非耦合求解 segregated·耦合隐式求解 coupled implicit·耦合显示求解 coupled explicit非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。
耦合求解方法用在高速可压缩流体fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建议采用耦合隐式求解方法。
Fluent软件学习笔记

Fluent软件学习笔记Fluent软件学习笔记⼀、利⽤Gambit建⽴计算区域和指定边界条件类型1)⽂件的创建及其求解器的选择软件基本知识:Geometry 绘制图形Mesh ⽹格划分Zones 指定边界条件类型和区域类型Operation绘图⼯具⾯板Tools 指定坐标系统等视图控制⾯板:全图显⽰(Fit to window)选择象限显⽰视图选择显⽰项⽬撤销或重复上⼀步⿏标键:左键单击——旋转模型中键单击——平移模型右键单击——放缩模型Shift+⿏标左键——选择点、边、⾯等①建⽴新⽂件:Flie New②选择求解器:Solver2)创建控制点:Operation-Geometry-Vertex创建边:Operation-Geometry-Edge创建⾯:Operation-Geometry-Face3)划分⽹格对边进⾏划分:对⾯进⾏划分:Operation-Mesh-Face-Mesh Faces注:打开的⽂本框中:Quad-四边形⽹格Elements- Tri-三⾓形⽹格Quad/Tri-混合型⽹格Map映射成结构化⽹络Submap分块/区映射块结构化⽹络Type- Pave平铺成⾮结构化⽹络Tri Primitive 将⼀个三⾓形区域分解为三个四边形区域在划分结构化⽹格Interval size:指定⽹格间距Interval count:指定⽹格个数4)边界条件类型的指定:Operation-ZonesAdd添加Name:为边界命名Action- Modify修改Type:指定类型Delete删除Entity :选择边/⾯5)Mesh⽹格⽂件的输出:File-Export-Mesh注:对于⼆维情况,必须选中Export2-D(X-Y)Mesh总结:建⽴⼏何模型划分⽹格定义边界条件输出⽹格⽂件(即建⽴计算区域)⼆、利⽤Fluent求解器求解1)Fluent求解器的选择2d:⼆维、单精度求解器2ddp:⼆维、双精度求解器3d:三维、单精度求解器3ddp:三维、双精度求解器2)⽂件导⼊和⽹格操作①导⼊⽹格⽂件:File-Read-Case②检查⽹格⽂件:Grid-Check(若minimum volume即最⼩⽹格的体积的值⼤于0,则⽹格可以⽤于计算)③设置计算区域尺⼨:Grid-ScaleFluent中默认的单位为m,⽽Gambit作图时候采⽤的单位为mm④显⽰⽹格:Display-Grid3)选择计算模型①求解器的定义:Define-Models-Solver(压⼒基、密度基)②其他操作模型的选定Multiphase多相流模型Energy考虑传热与否Species反应及其传热相关Viscous层流或湍流模型选择Define-Models-Viscous:打开粘性模型Inviscid⽆粘模型Laminar层流模型Spalart-Allmaras单⽅程湍流模型(S-A模型)K-epsilon双⽅程模型(k-ε模型)K-omega双⽅程模型以及雷诺应⼒模型③操作环境的设置:Define-Operating ConditionsPascal(环境压强)、Gravity(重⼒影响)4)定义流体的物理性质:Define-MaterialsFluent Database中调出5)设置边界条件:Define-Boundary Conditions①设置Fluid流体区域的物质:Zone-Fluid--Set②设置Inlet的边界条件:Zone-Inlet-Set③设置Outlet的边界条件④设置Wall的边界条件6)求解⽅法的设置及控制①求解参数的设置:Solve-Controls-Solutions...Equations:需要求解的控制⽅程Pressure-Velocity Coupling:压⼒-速度耦合求解⽅式Discretization:所求解的控制⽅程Under-Relaxation Factor:松弛因⼦②初始化:Solve-Initialize-Initialize...设置Compute Form为Inlet,依次点击Init和Close图标完成对流场的初始化③打开残差监控图:Solve-Monitors-Residuai...④保存当前的Case⽂件:File-Write-Case...⑤开始迭代计算:Solve-Iterate...⑥保存计算后的Case和Date⽂件:File-Write-Case&Date...7)计算结果显⽰显⽰速度等值线图:Display Contours...Contous of-------选中Velocity...Surfaces-------指定平⾯Levels--------等值线数⽬(默认)Options-----------选中Filled绘制的是云图注:轴对称问题,可通过镜像选择显⽰整个圆管的物理量分布镜像选择显⽰的设置:Display-Views... 在Mirror Planes中选择axial为镜像平⾯,然后点击Apply图标接受设置绘制速度⽮量图:Display-Vectors...Vectors of-------选中VelocityStyle----------箭头类型Scale---------⽮量被放⼤倍数Skip----------⽮量密集程度显⽰某边上速度的速度剖⾯XY点线图:Plot-XY Plot...注:Plot Direction:表⽰曲线将沿什么⽅向绘制显⽰迹线F ile—path lines在release from surface列表中选择释放粒⼦的平⾯设置step size和step的数⽬,step size设置长度间隔steps设置了⼀个微粒能够前进的最⼤步数单击display三、⼆维⽰例⼆维定常可压缩流场分析——NACA 0006翼型⽓动⼒计算⼆维定常不可压缩流场分析——卡门涡街动画的设置:Solve-Animate-Define三维定常可压缩流动⽰例第⼆章:流体⼒学基本⽅程及边界条件三⼤控制⽅程:质量守恒、动量守恒及能量守恒⽅程初始条件边界条件:速度⼊⼝三维定常速度场的计算1、内部⽹格的显⽰打开examine mesh对话框温度场的计算Fluent处理中选中能量⽅程求解器:define/models/energy设置wall边界条件时候,convection热对流边界条件多相流模型VOF模型的选择define/models/multiphase基本相及第⼆相的设置define/phase动画的设置。
自学笔记FLUENT

⾃学笔记FLUENTcartesian 笛卡⼉的;笛卡⼉坐标cylindrical 柱⾯的圆柱坐标spherical 球⾯;球坐标translate 平移rotate 旋转reflect 反射scale 缩放origin 原点,起点incline 斜⾯,倾斜base 基础,底座tolerance 公差,偏差manual ⼿动auto ⾃动stitch 缝;缝补;缝合,把某物连在⼀起sweep 扫过,沿给定路径扫掠,得到⼀个体revolve 旋转;环绕;转动⽣成回转体wireframe 线框unite 联合,合并,(结合取两个⾯或两个体的并集)subtract 差集;减去(从⼀个⾯或体上减去⼀个⾯或者体得到新的)intersect 相交, 交叉(取两个⾯或体的交集)split ⽤⼀个⾯或体把另⼀个⾯或体分成两个merge 把两个⾯或体合并为⼀个⾯或体⽹格的⽣成1、⽣成线⽹格:允许⽤户详细的控制在线上节点的分布规律;2、⽣成⾯⽹格:对于平⾯及轴对称流动问题,只需要⽣成⾯⽹格。
对于三维问题,也可以先划分⾯⽹格,作为进⼀步划分体⽹格的⽹格种⼦。
(1)映射⽅法:仅适合于逻辑形状为四边形或三⾓形的⾯;(2)⼦映射⽅法:它对⼏何体的分割,只是在⽹格划分算法⾥进⾏,并不真正对⽤户提供的⼏何外形做实际操作。
(3)⾃由⽹格:3、边界层⽹格:⼀是:考虑到近壁粘性效应采⽤较密的贴体⽹格;⼆是⽹格的疏密程度与流场参数的变化梯度⼤体⼀致。
Modify 修改, 更改options 选项;选择 mesh ⽹格;⽹孔remove old mesh 隐藏、清除旧的⽹格ignore size functions 忽略;忽视;尺⼨功能、函数interval 间隔;区间;差别 count 数量;数;计数;边界层⽹格的创建(Create Boundary Layer )Definition 定义,释义;定界边界层⽹格的创建需要输⼊四组参数,分别是第⼀个⽹格点距边界的距离(First Row ),⽹格的⽐例因⼦(Growth Factor ),边界层⽹格点数(Rows ,垂直边界⽅向)以及边界层厚度(Depth )。
fluent学习笔记_(四)

湍流与黏性有什么关系?湍流和粘性都是客观存在的流动性质。
湍流的形成需要一定的条件,粘性是一切流动都具有的。
流体流动方程本身就是具非线性的。
N-S方程中的粘性项就是非线性项,当然无粘的欧拉方程也是非线性的。
粘性是分子无规则运动引起的,湍流相对于层流的特性是由涡体混掺运动引起的。
湍流粘性是基于湍流体的parcel湍流混掺是类比于层流体中的分子无规则运动,只是分子无规则运动遥远弱些吧了。
不过,这只是类比于,要注意他们可是具有不同的属性。
粘性是耗散的根源,实际流体总是有耗散的。
而粘性是制约湍流的。
LANDAU说,粘性的存在制约了湍流的自由度。
湍流粘性系数和层流的是不一样的,层流的粘性系数基本可认为是常数,可湍流中层流底层中粘性系数很小,远小于层流时的粘性系数;而在过渡区,与之相当,在一个数量级;在充分发展的湍流区,又远大于层流时的粘性系数.这是鮑辛内斯克1987年提出的。
1 FLUENT的初始化面板中有一项是设置从哪个地方开始计算(compute from),选择从不同的边界开始计算有很大的区别吗?该怎样根据具体问题选择从哪里计算呢?比如有两个速度入口A和B,还有压力出口等等,是选速度入口还是压力出口?如果选速度入口,有两个,该选哪个呀?有没有什么原则标准之类的东西?一般是选取ALL ZONE,即所有区域的平均处理,通常也可选择有代表性的进口(如多个进口时)进行初始化。
对于一般流动问题,初始值的设定并不重要,因为计算容易收敛。
但当几何条件复杂,而且流动速度高变化快(如音速流动),初始条件要仔细选择。
如果不收敛,还应试验不同的初始条件,甚至逐次改变边界条件最后达到所要求的条件。
2 要判断自己模拟的结果是否是正确的,似乎解的收敛性要比那些初始条件和边界条件更重要,可以这样理解吗?也就是说,对于一个具体的问题,初始条件和边界条件的设定并不是唯一的,为了使解收敛,需要不断调整初始条件和边界条件直到解收敛为止,是吗?如果解收敛了,是不是就可以基本确定模拟的结果是正确的呢?对于一个具体的问题,边界条件的设定当然是唯一的,只不过初始化时可以选择不同的初始条件(指定常流),为了使解的收敛比较好,我一般是逐渐的调节边界条件到额定值("额定值"是指你题目中要求的入口或出口条件,例如计算一个管内流动,要求入口压力和温度为10MPa和3000K,那么我开始叠代时选择入口压力和温度为1MPa和500K(假设,这看你自己问题了),等流场计算的初具规模、收敛的较好了,再逐渐调高压力和温度,经过好几次调节后最终到达额定值10MPa和3000K,这样比一开始就设为10MPa和3000K收敛的要好些)这样每次叠代可以比较容易收敛,每次调节后不用再初始化即自动调用上次的解为这次的初始解,然后继续叠代。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fluent技术基础与应用实例4.2.2 fluent数值模拟步骤简介主要步骤:1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。
2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件)3、检查网格(Grid→Check)。
如果网格最小体积为负值,就要重新进行网格划分。
4、选择计算模型。
5、确定流体物理性质(Define→Material)。
6、定义操作环境(Define→operating condition)7、制定边界条件(Define→Boundary Conditions)8、求解方法的设置及其控制。
9、流场初始化(Solve→Initialize)10、迭代求解(Solve→Iterate)11、检查结果。
12、保存结果,后处理等。
具体操作步骤:1、fluent2d或3d求解器的选择。
2、网格的相关操作(1)、读入网格文件(2)、检查网格文件文件读入后,一定要对网格进行检查。
上述的操作可以得到网格信息,从中看出几何区域的大小。
另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划分网格。
(3)、设置计算区域在gambit中画出的图形是没有单位的,它是一个纯数量的模型。
故在进行实际计算的时候,要根据实际将模型放大或缩小。
方法是改变fluent总求解器的单位。
(4)、显示网格。
Display→Grid3、选择计算模型(1)、基本求解器的定义Define→Models→SolverFluent中提供了三种求解方法:·非耦合求解 segregated·耦合隐式求解 coupled implicit·耦合显示求解 coupled explicit非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。
耦合求解方法用在高速可压缩流体fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建议采用耦合隐式求解方法。
耦合能量和动量方程,可以较快的得到收敛值。
耦合隐式求解的短板:运行所需要的内存比较大。
若果必须要耦合求解而机器内存不够用,可以考虑采用耦合显示求解方法。
盖求解方法也耦合了动量,能量和组分方程,但是内存却比隐式求解方法要小。
需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。
耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。
污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。
%%%有点重复,但是可以看看加深理解Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。
分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和组分方程解的步骤不同。
分离解按照顺序解,耦合解是同时解。
两种解法都是最后解附加的标量方程。
隐式解和显示解的区别在于线性耦合方程的方式不同。
Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。
这一解法耦合了流动和能量方程,收敛很快。
%%%(2)、其他求解器的选择在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。
主要的模型有:Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关)(3)操作环境的设置Define→operation→condition该项设置所考虑的主要内容为外部环境对内部反应的影响4、定义流体的物理性质5、设置边界条件Define→boundary condition(1)、设置流体区域(fluid)的边界条件在zong列表中选择fluid,即流体所在的区域,然后单击set,可以看到关于fluid区域连接条件设置的对话框,其中material name温恩框中显示的是fluid区域中的物质,从fluent数据库中复制出来物质的明智都会在这里显示出来,只要选择即可。
(2)其他边界条件的设置例如壁面、进出口之类额边界条件。
6、求解方法的设置及其控制。
下面介绍连续性方程以动量方程的具体求解形式。
(1)、求解参数的设置Solve→controls→solution打开求解器控制的对话框,其中equation项下面是当前问题的控制方程;pressure—velocity coupling对应的是压力速度耦合求解方式;discretization对应的是pressure和momentum(动量)的离散方式。
另外under—relaxation factors 选项可以设置控制方程求解时的松弛因子。
(2)初始化Solve→initialize→initialize打开相应的对话框可以初始化流场。
一般来说,初始解对于求解的影响比较大,所以给出的初始解要尽量接近真实值。
确定初始解后,依次单击init、apply和close按键。
(3)打开残差图Solve→monitors→residual若是选择options下面的plot,就可以在计算式动态的现实计算残差的走势;convergence下面对应的数值是计算结果的残差要满足的最低要求,它的数值越小说明计算的精度要求越高。
(4)、保存当前的case和data文件(5)、开始迭代保存好是设置后可以进行迭代求解,此时迭代的一些控制参数可以利用迭代设置对话框进行设置。
对于稳态问题,迭代设置对话框见教材。
其中number of iterations 为总的迭代次数;reporting interval 为fluent输出监视信息的间断次数;UDF profile Update interval说明fluent每隔多少次调用一次用户自定义函数。
对于非稳态问题,迭代是指的对话框见教材。
其中time step size对应时间步长,number of time steps 代表需要求解的时间步数,它们与总的求解时间的关系是:时间步长*时间步数=总的求解时间。
Max iterations per time step 代表每个时间步长最多迭代的次数(6)保存计算后的case和data文件7、fluent自带的后处理模块Fluent自带的图形工具可以很方便的处理CFD求解结果中包含的信息,并观察相应的结果。
显示网格、等值线和轮廓、速度矢量和极限。
流程图——亿图软件Fluent工程技术与实例分析Fluent拥有众多的物理模型,可以满足用户精确地模拟无粘性流体、层流、紊流、传热和传质、多孔介质、化学反应、颗粒运输、多相流、自由表面流、相变流等复杂流动现象的需要。
软件的基本结构1、前处理前处理包括gambit、tgrid和filters、其中gambit是由fluent公司自主开发的专用CFD前置处理器,用于模拟对象的几何模型以及网格生成。
Tgrid是一个附加的前置处理器,他可以从gambit或者其他CAD/CAE 软件包中读入所生成的模拟对象的几何结构,从现在的边界网络开始生成由三角形、四面体或者混合网格组成的体网格。
Filters实际上就是其他CAD/CAE软件包与fluent之间的接口,可以将其他软件包所生成的面网格或者体网格读入到fluent当中。
2、求解器Fluent6.3.26是一个基于非结构化网格的通用求解器,支持并行运算,分单精度和双精度两种。
3、后处理Fluent本身附带有强大的后处理功能呢,有云图、等值线图、矢量图、剖面图、XY散点图、粒子轨迹图、动画等多种方式显示储存和输出计算结果,可以平移、缩放、旋转图像,也可以将计算结果导入到其他后处理软件中。
边界条件问题CFD 模拟时,常用的基本边界条件包括:流动进口边界、流动出口边界、给定压力边界、壁面边界、对称边界和周期性循环边界。
1、进出口边界条件Fluent提供了10种类型的流动进、出口条件他们分别是:·速度进口:给出进口速度及需要计算的所有标量值,适用于不可压缩流动。
·压力进口:给出进口的总压和其他需要计算的标量进口值。
·质量流量进口:主要用于可压缩流动,给出进出口的质量流量。
对于不可压缩流动,没有必要给出该边界条件,因为密度是常数,我们可以用速度进口条件。
·压力出口:给定流动出口的静压。
对于有回流的出口,该边界条件比outflow边界条件更容易收敛。
·压力远场:该边界条件只对可压缩流动适合。
·outflow:白边界条件用以模拟在求解问题之前,无法知道出口速度或压力;出口流动符合完全发展条件,出口处,除了压力之外,其他参量梯度为零。
该边界条件适合可压缩流动。
·inlet vent:进口风扇条件需要给定一个损失系数。
流动方向和环境总压和总温。
·intake fan:进口风扇条件需要给定压降、流动方向和环境总压总温。
·outlet vent:排出风扇给定损失系数和环境压力和静温。
·exhaust fan:排除风扇给定压降、环境静压。
2.6.3初始条件在瞬态问题(非稳态问题)中,除了要给定边界条件外,还需要给出流动区域内各计算点的所有流动变量的初值,及初始条件。
但总体而言,除了要在计算开始前初始化相关的数据外,并不需要其他的特殊处理,所以初始条件相对比较简单。
稳态问题不需要初始条件。
在给定初始条件时要注意一下两点:●要针对所有计算变量,给定整个计算域内各单元的初始条件。
●初始条件一定是物理上合理的,否则一个不合理的初始条件必须必然导致不合理的计算结果。
要做到结合定理的初始条件,只能靠经验或实测结果。
●●●●(注:可编辑下载,若有不当之处,请指正,谢谢!)●●●●●●授课:XXX。