单相半波桥式整流电路

合集下载

单相半波整流电路和单相桥式整流电路

单相半波整流电路和单相桥式整流电路

单相半波整流电路和单相桥式整流电路是两种常见的单相交流到直流的整流电路。

1. 单相半波整流电路:
单相半波整流电路是一种简单的整流电路,适用于小功率应用。

它由一个二极管和负载组成,二极管用于将输入的交流电信号转换为单向的脉冲电流。

在每个半个周期中,只有一个半波被整流,另一个半波被阻断。

因此,输出的直流电流是存在间断的脉冲性质。

这种电路的缺点是输出的直流电压有较大的脉动,因为在每个半周期中只有一半时间是有效的。

2. 单相桥式整流电路:
单相桥式整流电路是一种更常用的整流电路,适用于较高功率的应用。

它由四个二极管和负载组成,可以将输入的交流电信号转换为稳定的直流电流。

在每个半个周期中,交流电源的两个极性都能够提供电流给负载。

通过适当的二极管导通和截止控制,可以实现交流信号的无间断整流。

因此,输出的直流电流相对更稳定,脉动较小。

这种电路的优点是输出的直流电压质量较好,适用于对电压稳定性要求较高的应用。

需要注意的是,整流电路中的二极管需要选择适当的额定电压和电流来匹配所需的电流和电压要求。

此外,为了进一步减小输出直流电压的脉动,还可以添加滤波电容器来平滑输出波形。

在实际应用中,还可能涉及到过流保护、温度保护等其他电路设计考虑因素。

以上是对单相半波整流电路和单相桥式整流电路的简要介绍,具体的电路参数设计和分析需要根据具体应用和要求进行进一步的研究和计算。

单相半波整流电路

单相半波整流电路

单相半波整流电路
半波直流整流电路(Half Wave Rectifier Circuit)是一类简单的整流电路,它从
交流电源中获取输入,可以有效的整流交流电,从而输出直流电。

它也常常被称作为“半
桥整流电路”。

半波整流电路由整流元件(经常使用双极二极管)和均流元件(经常使用电感)组成。

在半波整流电路中,AC电源的正半波通过整流元件(双等效整流管)流入,而负半波则被整流元件抑制,把输出无正负之分的半波直流电流形式。

电感和附加电容可以提高半波整
流输出的直流电压,抑制掉流过整流元件的峰值电流,减少半波整流电路中切换损耗和谐
波损耗,获得较高效率,更好的负载特性和更平滑的输出电压。

半波整流电路主要用于电力补偿和修正,单相驱动和点动保护,以及流量检测等应用
场合。

直流整流电路具有结构简单,体积小,重量轻,制造成本低,容易实现成熟的节
能和自动控制的优点,但它的最大缺点是其半波效率很低,由于流入的都是正半波,负半
波不能被整流而损失了。

单相半波桥式整流电路

单相半波桥式整流电路

-
u
2
电阻负载的特点:电压与电流成正比, b)
0
wt 1
p
2pLeabharlann wt两者波形相同。
u
g
c)
★ 两个重要的基本概念:
0
wt
u
d
触发延迟角:从晶闸管开始承受正向 d)
0a
q
wt
阳极电压起到施加触发脉冲止的电角
u
VT
度,用a表示,也称触发角或控制角。 e)
0
wt
导通角:晶闸管在一个电源周期中处
于通态的电角度,用θ 表示 。
2)带阻感负载的工作情况
电感性负载更为多见,如电机
及励磁绕组等。 阻感负载的特点:电感对电流 变化有抗拒作用,使得流过电 感的电流不发生突变。
u2
b)
0
wt1
p
ug
c) 0
ud
d) 0a id
e) 0
u VT
+ q
f) 0
2p
wt
wt +
wt
wt
wt
图2-2 带阻感负载的 单相半波电路及其波形
5
单相半波可控整流电路
p
2p
wt
变但瞬时值变化的脉动直流,其
u
g
波形只在u2正半周出现,故称 c) 0
wt
“半波”整流。
u
d
基本数量关系
d)
0a
q
wt
Ud

1
2p
p a
2U2 sin wtd (wt)
u
VT
e) 0
wt

0.45U
2
1

cos 2

单相半控桥式整流电路

单相半控桥式整流电路

一、实验基本内容1.实验名称:单相半控桥整流电路实验2.已知条件:a)工作电路原理图图1 工作原理图b)理想工作波形c)产生失控现象的原因及理论结果对于单相桥式半控整流电路,在正常运行的情况下,如果突然把触发脉冲切断或者将触发延迟角α增大到180°,电路将产生“失控”现象。

失控原因:正在导通的晶闸管的关断必须依赖后续晶闸管的开通,如果后续晶闸管不能导通,则已经导通的晶闸管就无法关断。

失控结果:失控后,一个晶闸管持续导通,两个二极管轮流导通,整流输出电压波形为正弦半波,即半周期为正弦波,另外半周期为零,输出电压平均值恒定。

d)各物理量基本数量关系(感性负载)Ⅰ.输出直流电压平均值U dU d=1π2παsinwtd(wt)=0.9U21+cosα2Ⅱ.负载电流平均值I d=U dR =0.45U2R1+cosα2Ⅲ.流过晶闸管的电流有效值I VTI VT=I VD=π−α2πI dⅣ.流过晶闸管的电流平均值I dVTI dVT=I dVD=π−α2πI dⅤ.变压器二次电流有效值I2I2=1πI d2d(ωt)π+αα=I d=2I VTⅥ.续流二极管电流有效值I VD RI VTR =απI dⅦ.续流二极管电流平均值I dVT RI dVTR =απI d3.实验目标:a)实现控制触发脉冲与晶闸管同步;b)观测单相半控桥在纯阻性负载时的移相控制特点,测量最大移相范围及输入-输出特性;c)观测单相半控桥在阻-感性负载时的输出状态,制造失控现象并讨论解决方案。

二、实验条件1.主要设备仪器a)电力电子及电气传动教学实验台i.型号MCL-Ⅲ型ii.生产厂商浙江大学求是公司b)Tektronix示波器i.型号TDS2012ii.主要参数带宽:100MHz最高采样频率:1GS/sc)数字万用表i.型号GDM-81452.小组人员分工u 2abVT1VT2VD2VD4Ru da)实验主要操作人辅助操作人电流表监控影像记录数据记录b)报告实验基本内容描述实验图片整理实验图片处理实验条件阐述实验过程叙述数据处理电路仿真讨论思考题讨论结果整理实验综合评估报告整合排版三、实验原理1.阻性负载如图所示为带阻性负载时单相桥式半控整流电路。

单相半波、单相全波和单相桥式整流器

单相半波、单相全波和单相桥式整流器

单相半波、单相全波和单相桥式整流器1.单相半波整流滤波器图1 单相半波整流滤波电路原理图图1所示是单相半波整流滤波电路原理图,图1(a)是电路原理图,图1(b)是整流波形图。

由于整流器具有单向通导的特性,所以输入电压U1 经整流器VD 整流后就变成了单向脉动波Uo,而输入的负半周被隔离掉。

一般整流器后面都有电容滤波器,如图1(a)中C,将脉动波变成直流波Uc,如图1(b) 所示。

有些情况下,由于某种原因将电容损坏,而电容上的标称值又看不清楚,就无法贸然更换。

在此情况下如何选择C 的电容量就成了首要问题。

这里可以用一个简单的方法计算出来,即一般要求在放电结束时的那一点上,电容上电压下降不超过5%,根据电容放电公式:(1)式中Uc——为在放电时间结束时那一点的瞬时电压;Uco——放电开始时的电压;t——放电时间,在半波整流时为10ms 的值;——放电时间常数,=C(F)R(Ω),单位是“s”将式(2-1)改写成:(2)按照上面的要求,为了便于计算,设放电到10ms 时,应当Uc=0.95Uco,代入这些数据后,上式就变为:即CR=19.5X10-3/R (s),式中R——是整流滤波电源输出最大容量时的等效负载电阻值,于是电容C=19.5X10-3/R就可取标称值的电容代替。

{{分页}}2.单相全波整流滤波器单相半波整流一般都用于小功率的情况,所以当功率稍微增大时就必须用全波整流。

图2(a)所示是单相全波整流电路原理图,图2(b)是它的整流波形图。

由图中可以看出,这是两个单相半波整流器的组合。

需指出的是,有时这种整流器前面加了变压器,目的是使次级电压可以根据设计的要求随意变化。

图2 单相全波整流电路原理图往往有的情况下将小功率变压器烧坏了,而一般机器内的变压器由于是非标准件,并不给出它的绕线参数,使用户无从下手。

遇有这种情况就可以自己动手另外绕制一个变压器来代替。

下面就给出一个简单决定匝数的方法。

首先看一下变压器初级和次级之间的关系。

半波整流电路与单相桥式整流电路工作原理

半波整流电路与单相桥式整流电路工作原理

半波整流电路★工作原理电路如右图所示,设在u2的正半周,A点为正,B点为负,二极管外加正向电压,因而处于导通状态。

电流从A点流出,经过二极管D和负载电阻流入B点,。

在u2的负半周,B点为正,A点为负,二极管外加反向电压,因而处于截止状态。

波形如下图所示。

★主要参数◆输出电压的平均值:就是负载电阻上电压的平均值U O(A V)。

◆负载电流的平均值◆整流输出电压的脉动系数S:为整流输出电压的基波峰值U OM与输出电压平均值U O(A V)之比,即S愈大,脉动愈大。

半波整流电路的输出脉动很大。

★二极管的选择二极管的正向平均电流等于负载电流平均值,即二极管承受的最大反向电压等于变压器副边的峰值电压,即允许电源电压波动±10%,最大整流平均电流I F最高反向工作电压U R均应至少留有10%的余地,单相半波整流的特点:电路简单、所用二极管少。

输出电压低、交流分量大(即脉动大),效率低。

只适用于整流电流小,对脉动要求不高的场合。

单相桥式整流电路★工作原理设变压器,U2为其有效值。

◆当u2为正半周时,D1和D3管导通,D2和D4管截止,电流由A点流出,方向如右图所示。

u O=u2,D2和D4管承受的反向电压为-u2。

◆当u2为负半周时,D2和D4管导通,D1和D3管截止,电流由B点流出,方向如右图所示。

u O=-u2,D1和D3管承受的反向电压为u2。

由于D1、D3和D2、D4两对二极管交替导通,致使负载电阻R L上在u2的整个周期内都有电流通过,而且方向不变,输出电压。

如右图所示为其电压和电流的波形,实现了全波整流。

★输出电压平均值U O(A V)和输出电流平均值I O(A V)◆输出电压平均值结论:在输入电压相同的情况下,全波整流输出电压平均值为半波整流电路的两倍。

◆负载电流的平均值结论:在输入电压相同的情况下,全波整流输出电流平均值为半波整流电路的两倍。

◆整流输出电压的脉动系数S:结论:与半波整流电路相比,输出电压的脉动减小很多。

单相全波可控整流电路单相桥式半控整流电路

单相全波可控整流电路单相桥式半控整流电路

单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。

图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。

变压器不存在直流磁化的问题。

单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。

单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。

单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。

因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。

如此即成为单相桥式半控整流电路(先不考虑VDR)。

单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。

其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。

b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。

c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。

d)u2过零变正时,VD4导通,VD2关断。

VT3和VD4续流,u d又为零。

3.续流二极管的作用1)避免可能发生的失控现象。

2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。

单相及三相半波可控与桥式全控整流电路原理

单相及三相半波可控与桥式全控整流电路原理

单相半波可控整流电路电阻性负载在生产实际中,有一些负载基本上是属于电阻性的,如电炉、电解、电镀、电焊及白炽灯等。

电阻性负载的特点是:负载两端的电压和流过负载的电流成一定的比例关系,且两者的波形相似;负载电压和电流均允许突变。

图8.8(a)即为单相半波可控整流电路带电阻性负载时的电路,它由晶闸管VT、负载电阻和变压器T主要来变换电压,其次它还有隔离一、二次侧的作用。

我们用、分别表示一次侧和二次侧电压的瞬时值;为一次侧电压有效值,为二次侧电压有效值,的大小是由负载所需的直流输出平均电压值来决定;、分别表示整流后的输出电压、电流的瞬时值;、分别为晶闸管两端电压和流过晶闸管电流的瞬时值;、分别为流过变压器一次侧绕组和二次侧绕组电流的瞬时值。

图8.8 单相半波可控整流带电阻性负载(a)电路图(b)波形图在单相可控整流电路中,从晶闸管开始承受正向电压,到其加上触发脉冲的这一段时间所对应的电角度()称为控制角(也叫移相角),用表示;晶闸管在一个周期内导通的电角度()称为导通角,用表示,且在此电路中有的关系。

直流输出电压的平均值为(8.11)可见它是角的函数,通过改变角的大小就可以起到调节的目的。

当时,波形为一完整的正弦半波波形,此时输出电压为最大,用表示,。

随着的增大,将减小,至时,。

所以该电路角的移相范围。

直流输出电流的平均值为(8.12)而负载上得到的直流输出电压有效值和电流有效值分别为(8.13)(8.14)又因为在单相可控整流半波电路中,晶闸管与负载电阻以及变压器二次侧绕组是串联的,故流过负载的电流平均值即是流过晶闸管的电流平均值;流过负载的电流有效值也是流过晶闸管电流的有效值,同时也是流过变压器二次侧绕组电流的有效值,即存在如下关系(8.15)(8.16)流过晶闸管的电流的波形系数为(8.17)当时,即为单相半波波形,,与晶闸管额定电流定义的情况一致。

根据图8.8(b)中的波形可知,晶闸管可能承受的正反向峰值电压均为(8.18)另外,对于整流电路而言,通常还要考虑其功率因数和对电源的容量S的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d)
0 ud + 0 id +
wt
a
wt
e) 0 u f)
VT
q
wt
0
wt
图2-2 带阻感负载的 单相半波电路及其波形
6
单相半波可控整流电路
电感对输出电压的影响:
由于电感延迟了 VT 关断时刻, ud出现了负面积,与带纯电阻负载 相比平均值Ud下降。
b)
b) u2 0
a)
+
u2 O uw dt 1 O id
简单,但输出脉动大,变压器二次侧电流中含 直流分量,造成变压器铁芯直流磁化。
实际上很少应用此种电路。 分析该电路的主要目的建立起整流电路的基本 概念。
8
+
+
wt
wt
Id
q
e) i d
e) 0
i VD
p-a
p+a
wt
wt
f)VT
f) 0
u
O u VT
wt
wt
g)
图2-2 带阻感负载的 单相半波电路及其波形 图 2-3 单相半波带阻感负载 有续流二极管的电路及波形
O
wt
7
单相半波可控整流电路
单相半波可控整流电路的特点小结: VT的a移相范围为180。
T u
+
VT
a)
1
负 u半 周
2
u
id
VT
u
d
R
u b) u c)
2
0
g
wt
1
p
2p
wt
0 u d)
d
wt
基本数量关系
1 Ud 2p 2U 2 sin wtd (wt ) 1 cos a 0.45U 2 0 a 180
2
0 u VT
a
q
wt
a
p
e) 0
wt

图2-1 单相半波可控整流电路及波形
4
单相半波可控整流电路
2)带阻感负载的工作情况
电感性负载更为多见,如电机 及励磁绕组等。
b) u2
阻感负载的特点 :电感对电流 变化有抗拒作用,使得 流过电
c)
0 ug
wt 1
p
2p
wt
0 ud + + d)
wt
感的电流不发生突变。
0 id
a
wt
e) 0 u f)
VT
q
wt
0
wt
图2-2 带阻感负载的 单相半波电路及其波形
负 半 周 VDR
w t1
p
wt
2p
wt
增加续流二极管VDR:
c)
c)
ug
wt
Id
wt
当u2过零变负时,VDR导通,ud 为零,VT承受反压关断。 L 储存的能量保证了电流 i d 在 LR-VDR回路中流通,此过程通常 称为续流。 L足够大时,id近似恒为Id。
0
d)
d)
ud
0
a
O i VT O
R
d
wt
0 u VT
a
q
wt
e) 0
wt
图2-1 单相半波可控整流电路及波形
3
单相半波可控整流电路
工作原理:
u 2 过零进入负半周时,电流亦 降至零, SCR 关断,此时, u VT 与u2相等。 改变触发时刻,ud与id波形随之 改变,直流输出电压ud为极性不 变但瞬时值变化的脉动直流,其 波形只在 u 2 正半周出现,故称 “半波”整流。
原理框图
1
单相半波桥式整流电路
单相半控桥式整流电路 通过调节电位器来改变灯泡的亮度
2
单相半波可控整流电路
单相半波可控整流电路(Single Phase Half Wave + Controlled Rectifier)
T VT u id
VT
1)电路结构(带电阻负载)
a)
u
1
变压器T起变换电压和电气隔离作用。
正 u半 周
2
u
d
R
u
2
电阻负载的特点:电压与电流成正比, b)
两者波形相同。
u c)
0
g
wt
1p2p来自wt★ 两个重要的基本概念:
触发延迟角:从晶闸管开始承受正向 阳极电压起到施加触发脉冲止的电角 度,用a表示,也称触发角或控制角。 导通角:晶闸管在一个电源周期中处 于通态的电角度,用θ 表示 。
0 u d)
5
单相半波可控整流电路
工作情况分析:
wt1时,id从零开始增加; u 2 过零变负时, L 的自感电势阻碍
+
u2 b) 0 ug c)
负 半 周
+
电流减小,VT延续导通;
VT关断并立即承受反向电压; 负载阻抗角 φ 、触发角 a 、晶闸管 导通角θ 的关系。
wt 1
p
2p
wt
等到电感能量释放完毕, i d 降至零,
相关文档
最新文档