任意四边形的中点四边形教学设计

合集下载

中点四边形教学设计(王晓敏)

中点四边形教学设计(王晓敏)

《中点四边形》教学设计永年区第一实验学校 王晓敏教学目标:(一)知识与技能 1、学生能利用三角形中位线定理判断中点四边形的形状;在此过程中培养学生观察、归纳、猜想、概括的能力.2、感受中点四边形的形状取决于原四边形的两条对角线的位置与长短;培养学生一些基本的数学思想方法如“化归思想”、“类比推理”“逆向思维”等思想方法。

3、通过图形变换使学生掌握简单添加辅助线的方法。

(二)过程和方法1、通过对图形既相互变化,又相互联系的内在规律。

培养学生观察、发现、分析、探索知识的能力及创造性思维和归纳总结能力;2、通过命题探索过程认识到事物的发展都从感性到理性,有特殊到一般再到特殊的过程,只要弄清它的内在变化规律,就能使所学知识拓展引伸. (三)情感、态度与价值观要求1、通过学生亲自参与、发现和证明,培养学生的参与意识及合作精神,激发学生探索数学的兴趣,体验数学学习的过程与探索成功后的喜悦。

2.让学生感受到数学既来源于生活实际,又是解决生活中许多问题的工具. 从而促使学生热爱数学.教学重点:中点四边形形状判定和证明教学难点:探究各类四边形的中点四边形的形状与原四边形的对角线关系 教学方法:合作探究学习法教学用具:各种特殊四边形图片,几何画板及PPT 课件 教学过程:一.知识回顾: 1.三角形中位线如图,在△ABC 中,D 、E 分别是AB 、AC 的中点. DE 就是△ABC 的一条中位线.那么DE 与BC 有什么样的数量与位置关系呢?设计意图:为本节内容作理论基础与准备,并体现“低起点”的策略。

二、猜想验证,探索新知2.已知:点D 、E 、F 分别是⊿ABC 边BC 、AC 、AB 的中点,则 ABC DEF ∆∆和的形状及面积有何关系?DBCBA DCE“猜一猜”:实物演示:教师带领学生利用不同形状的四边形卡纸现场折叠构造中点四边形。

师提问:我们刚才通过折得到的新四边形形状一样吗?是什么四边形?学生猜想并回答。

中点四边形教学设计王云松

中点四边形教学设计王云松

中点四边形
教学过程
七.课后作业如图,点E、F、G、H分别是线段AB、
BC、CD、AD的中点,则四边形
EFGH
是什么图形?并说明理由.
继续探究
落实特殊
中点四边
形的原四
边形的构
造。

突出体会
运动和转
化的观点
3.板书设计:
探究与应用--中点四边形
一.中点四边形的概念猜想:中点四边形是平行四边形
已知:二.中点四边形的性质求证:1.中点四边形是平行四边形;证明:2.特殊四边形的中点四边形:
矩形的中点四边形是菱形;
菱形的中点四边形是矩形;
正方形的中点四边形是正方形。

四.小结三.中点四边形与原四边形的关系:
只与对角线的位置和长短有关五.作业


CD



H。

数学活动课“好课”表征的探索——八年级《中点四边形》教学设计

数学活动课“好课”表征的探索——八年级《中点四边形》教学设计

数学活动课“好课”表征的探索——八年级《中点四边形》
教学设计
王华;陈黎华
【期刊名称】《现代教学》
【年(卷),期】2015(000)013
【摘要】【前端分析】概念课、复习课、讲评课是数学基础型课程教学的基本形式,探究学习是中学数学拓展型课程教学的重要内容。

探究学习方式常以“数学活动”形式呈现,所以活动课也就成为一种新的课型。

活动课如何体现探究学习的真谛,如何真正地启发学生思维,是值得我们思考的问题。

【总页数】4页(P77-80)
【作者】王华;陈黎华
【作者单位】[1]上海市晋元高级中学;[2]上海市培佳双语学校
【正文语种】中文
【中图分类】G623.5
【相关文献】
1.例谈数学活动课的教学策略——二次函数活动课的教学设计分析 [J], 杨斯婕;
2.关于教学设计的研究——以人教版初中历史八年级上册第八课教学设计为例 [J], 布琨
3.教学设计:应有“防错”意识——以《中点四边形》一课为例 [J], 马燕
4.数学活动课教什么好——兼评“有趣的估测”一课 [J], 申建春
5.初中数学活动课的教学设计与实践探索 [J], 胡颖婷
因版权原因,仅展示原文概要,查看原文内容请购买。

“中点四边形”教学设计

“中点四边形”教学设计

“中点四边形”教学设计作者:徐峰来源:《科技资讯》 2011年第7期徐峰(苏州市草桥中学苏州 215000)摘要:中点四边形的探究能有效地将特殊四边形的性质、判定及三角形的中位线性质等知识点有机结合,不但是对原有知识的补充和整理,也进一步提升了学生的探究学习能力。

通过中点四边形形状的探究,将四边形的问题转化为三角形的问题,让学生体会“转化”的数学思想;通过对中点四边形形状的决定因素的探究,让学生体会“一般到特殊”问题研究方法。

在研究学习中加深对旧知识的理解,培养对新知识的学习兴趣,提高数学学习的主动性和积极性。

关键词:中点四边形对角线数量与位置关系转化一般到特殊中图分类号:G623 文献标识码:A 文章编号:1672-3791(2011)03(a)-0196-021 教学内容苏科版数学八年级上册第三章“中心对称图形”小结与思考。

2 教材及学情分析本课是在学生学习了平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定及三角形中位线的性质后设置的一节探究专题课。

由于这些特殊四边形的性质和判定比较多,既有“共性”又有“个性”,所以同学们在具体运用时存在一定混淆,对利用中点添加辅助线构造中位线已有初步经验,但还未能运用自如。

本课的教学内容不仅复习了这些内容,而且也是对这部分内容的再应用与整合提高,可进一步理清这些知识点间的内在联系。

在提高学生思维水平的同时培养学生勇于探索、敢于创新的精神。

3 教学目标3.1 知识目标理解中点四边形的概念和决定中点四边形形状的因素,体会中点四边形的周长、面积与原四边形的关系。

3.2 能力目标通过对中点四边形的探究,渗透从“一般—特殊—一般”的问题研究方法,感受探究过程中所体现的转化、类比的数学思想,提高学生探究能力。

3.3 情感目标通过情境设置、动手操作、观察猜想,学会自主探索、多角度地考虑问题,培养积极探索、勇于创新的精神。

4 教学重点、难点(1)教学重点:根据原四边形对角线的关系探究中点四边形的形状。

《中点四边形》教学设计

《中点四边形》教学设计

设计意图:采用直观的形式,引导学生发现总结未知图形特点,直接给出定义。

并给出充分的时间,让学生理解。

2、小组探究:中点四边形的形状操作几何画板,让学生观察,同时思考证明方法。

学生分析,并给出结论:中点四边形是平行四边形。

引导学生经历定理“操作----观察---猜测----证明”的得出过程。

板书:顺次连接四边形各边中点所得到的四边形是平行四边形。

引导学生分析命题的条件和结论部分,并学习将文字语言转化成为符号语言与图形语言。

教师板书过程:已知:在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.选出小组代表对本组的发现、以及论证进行展示。

学生总结出所得的结论:顺次连接任意四边形的四边中点得到一个平行四边形。

方法一:连接一条对角线,根据判定定理:一组对边平行且相等的四边形是平行四边形。

方法二:连接两条对角线;根据判定定理:两组学生认真观察、畅所欲言表达自己的发现。

学生经历定理的得出过程,并感受数学三种语言之间的相互转化。

选择不同层次的学生口述证明过程,并让不同学生展现不同的证明方法,发展学生的逻辑思维能力。

教师总结归纳。

对边分别相等(平行)的四边形是平行四边形。

设计意图:通过几何画板的动态演示效果,强化学生对图形化换中各种关系的理解。

通过活动经历定理的得出过程,体验数学的严谨性。

经历数学三种语言的自由转化过程,能准确无误分析命题的条件和结论部分,能用正确的数学符号语言转化成已知和求证,并准确画出图形。

锻炼学生的课堂语言表达能力,增强学生思维的逻辑性。

3、如果顺次连接特殊四边形(平行四边形、菱形、矩形、正方形)各边中点所构成的中点四边形是什么图形?结合几何画板观察,小组合作探究。

一般四边形的中点四边形都是________平行四边形的中点四边形是__________矩形的中点四边形是________________菱形的中点四边形是________________正方形的中点四边形是______________设计意图:在上一个环节中,学生已经具备了证明一般中点四边形的方法。

初中数学八年级下册《数学活动---探究中点四边形》优秀教学设计

初中数学八年级下册《数学活动---探究中点四边形》优秀教学设计
相等
菱形
互相垂直
矩形
互相垂直且相等
正方形
教师提出问题1,学生思考后作答(鼓励学生利用不同方法进行证明),教师板书简要过程。
学生尝试总结中点四边形的结论。
教师进一步提出问题2,分配小组任务,学生开展小组合作探究活动,教师分组指导。
有学生代表上讲台汇报展示成果,教师评价。
鼓励学生对上述汇报结果进行总结,教师板书。
教学过程设计
教学
程序
教学内容
教师、学生活动
设计意图
问题引入
小组合作
深入探究
问题1.顺次连接任意四边形各边中点所得的图形是什么形?你能证明吗?
定义:顺次连接任意四边形各边中点所得的四边形称为中点四边形.
结论:任意四边形的中点四边形是平行四边形.
问题2.平行四边形的中点四边形是什么形?矩形呢?菱形呢?正方形呢?
学生读题并直接作答。
请一名学生黑板板演第(1)问的推理过程,其他同学在学案上完成。
教师巡视指导,对证明有困难的同学给予适当的引导和肯定。
结合问题(1)中的思路,学生口述指出全等的三角形,教师在黑板上用两种不同颜色粉笔标出。
巩固基础,练习1对特殊平行四边形的中点四边形形状判断练习
练习2、3是对对角线的关系对中点四边形形状影响的练习
2.通过小组合作探究,增强分析问题、解决问题的能力
3.了解研究几何图形的基本方法
情感、
态度与价值观
1.感受几何图形的对称美和几何变换的巧妙
2.提高合作学习的意识,增强数学学习兴趣
电教手段
ppt、交互平板
重点
熟练运用特殊平行四边形的性质及判定定理
难点
探究影响中点四边形形状的因素
教材

中点四边形

中点四边形

中点四边形长沙市第七中学黄曙一、基本说明1教学内容所属模块:八年级(下)2年级:初二3所用教材出版单位:人民教育出版社4所属的章节:第十九章第四节第3课时(课题学习)5学时数:45 分钟二、教学设计1、教学目标:(1)进一步复习和巩固特殊四边形的性质与判定。

(2)理解和熟悉中点四边形与原四边形之间的联系(3)掌握由特殊到一般的数学证明方法(4)通过对中点四边形的探讨,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。

2、内容分析:教学重点:复习和巩固特殊四边形的性质与判定。

教学难点:特殊四边形之间的区别与联系3、学情分析:学生在学习了四边形一章的内容后,已掌握了一些特殊四边形的性质与判定的推理与证明的方法,但如何灵活运用所学知识,如何正确的联想到要用的知识点来解决问题,一直是本章学习的难点。

本节课以探讨中点四边形的形状和性质入手,通过图形大量的变化让学生学会观察与分析,抓住实质性的东西,从而使学生加深对特殊四边形的性质与判定的理解和掌握。

4、设计思路:根据本节课的教学内容和学生实际水平,本节课采用多媒体教学,主要借助《几何画板》及幻灯片展示相关图形的变化,让学生在“变化”中感知“不变”,从而获取相关知识,培养学生的观察分析能力。

教学流程为:知识回顾与思考→初步感知→类比推广→逆向思维→拓展深化→归纳总结。

三、教学过程四、教学反思1、由于学生基础较好,虽然内容多,但学生都跟得上,尤其是动态演示过程中学生兴趣很浓,在类比推广和逆向思维阶段参与积极.2. 拓展深化阶段学生先感到疑惑,但随着分析的深入学生豁然开朗,课堂气氛非常活跃.学生思考问题也细致,课后给出了另一些结论.如:①当原四边形为凹四边形时,利用《几何画板》演示仍然发现相应的中点四边形为平行四边形。

(如图1所示)②当四边形转化为图2所示的形状时,只要AB=CD,中点四边形就一定是菱形.③对于直角三角形如图3所示当点B,D,F为各边中点时,所得小矩形的面积也等于该直角三角形面积的一半.图(1) 图(3)附:中点四边形课件(两个课件采用链接交替使用,使用前安装《几何画板》)。

在讲中点四边形与原四边形对角线的位置关系和大小关系有

在讲中点四边形与原四边形对角线的位置关系和大小关系有

在讲中点四边形与原四边形对角线的位置关系和大小关系有关时,我是这样设计的:
首先在老师的引导下让学生推导出任意四边形的中点四边形是平行四边形,接着共同探究矩形的中点四边形是菱形。

这时大部分学生在猜想中点四边形与原四边形的形状有关,这时老师不要忙于否定学生的猜想,而是任意划一个只保证对角线相等的四边形,让学生用前面的分组讨论它的中点四边形的形状并给出证明。

学生就很容易发现他们错误的猜想,从达到了预计的教学效果。

同样的方法让学生明白菱形的中点四边形是矩形只与它的对角线互相垂直的位置有关。

进而让学生猜想讨论正方形的中点四边形的形状?
最后老师总结:无论原四边形的形状如何,只要它的对角线相等,它的中点四边形就是菱形;对角线互相垂直,中点四边形是矩形;对角线相等且互相垂直的,中点四边形是正方形。

从而圆满完成教学任务,达到了预期的教学效果。

肤浅的认识让同行们见笑了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意四边形的中点四边形的教学设计
清流县城关中学——魏水林
教学目标:
1.激发学生的学习兴趣,培养学生勇于探索、勇于创新的精神。

2.培养学生独立分析问题、解决问题的能力以及研究能力和创新意识。

3.理解中点四边形的概念,掌握中点四边形判定、证明及应用。

教学重点:中点四边形形状判定和证明
教学难点:对确定中点四边形形状的主要因素的分析和概括
教学方法:自主合作式教学
教学手段:电脑、多媒体课件
教学过程
阶段一:学生活动——引入、基本概念
活动要求:学生以小组形式对问题一一进行探讨,发言
老师指导:教师指导小结
设计意图:因学生对平行四边形一章学得较好,问题1起点较高,重在培养学生的逆向思维,提高学生的学习兴趣。

复习:(四边形的知识)
研究问题1:如图,在四边形ABCD中,E、F分别为AB、BC边上的中点,你能否分别在CD、DA边上找到点G、H,使四边形EFGH为平行四边形?说明理由。

(或如图ABCD为一个四边形纸片,E、F分别为AB、BC的边上的中点,以EF 为边能否折叠出一个平行四边形EFGH,使顶点G、H分别在CD、DA边上?若能,说明理由)
阶段二:学生活动——基础问题研究
活动要求:完成对问题一研究[发现、证明]的过程,
老师指导:指导部分学生研究问题
设计意图:通过电脑的动画效果,给学生创造一个发现问题、解决问题的情境。

目的在于激发学生的学习兴趣,培养学生“观察、发现、猜想、证明”问题的数学思想和能力。

活动流程:
中点四边形的定义:
如图,四边形ABCD的各边的中点,所构成的四边形EFGH叫做四边形ABCD的中点四边形。

研究:利用课件变换四边形ABCD 形状
1、发现:无论四边形ABCD 的形状怎么变化,中点四边形EFGH 的形状始终为平行四边形。

2、证明: (证法一)连接AC
∵E 、F 分别为AB 、BC 的中点 ∴EF ∥AC ,EF=1/2AC 同理HG ∥AC ,HG=1/2AC ∴EF ∥HG 且EF=HG
∴四边形EFGH 为平行四边形 (证法一)连接AC 、BD
∵E 、F 分别为AB 、BC 的中点 ∴EF ∥AC 同理HG ∥AC ∴EF ∥HG 同理FG ∥HE
∴四边形EFGH 为平行四边形
归纳:任意一个四边形的中点四边形,都为平行四边形 阶段三:学生活动——问题的研究和概括
活动要求:用“一般│特殊│一般” 的方法发现和研究问题,概括出确定中点四边形ABCD 形状的主要因素。

老师指导:引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。

设计意图:利用电脑的大容量使学生能够在较短的时间内对问题进行多方面地研究。

培养学生“从一般到特殊再到一般”的研究问题的方法和概括能力。

……
B
F
研究问题2:特殊四边形的中点四边形的形状活动流程:
1、发现问题(特殊四边形):在上一阶段研究的基础上,利用课件变换四边形ABCD 形状,使四边形ABCD分别为平行四边形、矩形、菱形、正方形和等腰梯形,研究中点四边形EFGH形状。

发现:中点四边形的形状有矩形、菱形和正方形
问题:决定中点四边形EFGH的形状的主要因素是四边形ABCD的边?角?对角线?……
2、研究问题(一般四边形):
反之若中点四边形EFGH分别为矩形、菱形和正方形,则四边形ABCD是否一定分别为菱形、矩形(等腰梯形)、正方形?
3、概括规律:决定中点四边形EFGH 的形状的主要因素是四边形ABCD 的对角线的长度和位置。

(1) 若对角线AC=BD ,则四边形EFGH 为菱形; (2) 若对角线AC ⊥BD ,则四边形EFGH 为矩形;
(3) 若对角线AC=BD ,AC ⊥BD ,则四边形EFGH 为正方形。

用“一般│特殊│一般” 的方法发现和研究问题,概括出确定中点四边形ABCD 形状的主要因素。

引导学生发现问题、提出问题并指导学习能力较弱的学生研究问题。

阶段四:学生活动——发散和创新
活动要求:利用电脑 1、拖动A 点使四边形ABCD 的图形变化进行研究。

2、变化E 、F 、G 、H 点的条件进行研究。

老师指导:老师引导
设计意图:培养学生的发散思维能力,提高学生研究数学的兴趣和创新意识。

1、图形发散“实验”:利用计算机对图形进行变换“实验”
F
实验二
经过以上实验,当ABCD 是上面的图形时四边形EFGH 仍为平行四边形。

特别是“实验三” ,四边形EFGH 可以看作四边形ADBC 的边AD 、BC 的中点和对角线AB 、CD 的中点的四边形,这样就引出了新的问题。

2、条件发散:
阶段五:学生活动——简单应用
活动要求:学生分析 老师指导:老师精点
设计意图:培养学生对新知识灵活的应用的能力。

应用1:如图,梯形ABCD 中,AB ∥CD ,M 是AD 中点,N 是BC 中点,E 是CD 中点,F 是AB 中点。

(1) 若EF=MN ,则BD ⊥ME ; (2) 若AC=BD ,则EF=MN ; (3) 若AC ⊥BD ,则EF=MN 。

(只分析方法,应用电脑变换图形,使一题多变,进行变式应用)
应用2:如图(1)(2)(3),最外面的矩形、菱形、正方形的面积为1,则最里面的中点四边形的面积。

(探索解题法,展示数学的图形美)
图(1)
阶段六:小结 活动要求:思考、归纳 老师指导:教师引导
设计意图:培养学生的归纳能力,使学生形成完整的知识结构和研究数学问题的一
般方法。

1、本节课应用了哪些数学方法?
2、决定中点四边形EFGH 的形状的主要因素是四边形ABCD 的对角线的长度和位置
3、学习中应具备积极探索、勇于创新的品质。

阶段七:教师活动——作业
设计意图:促使培养研究学习型的学生 对所研究的问题进行进一步研究和归纳
教学反思:
1、本节课的指导思想是充分发挥学生在学习中的主体作用。

从“问题提出→探讨→归纳→应用→发散和进一步研究”的过程中,同学们主动参与、积极探索,并对难的问题同学们合作研究,整个课堂学习积极性高,研究风气浓。

2、老师充分发挥在学习中的主导作用。

对学习能力弱的学生积极地加以指导,并帮助学生分析问题,概括归纳新知识。

3、本节课的突出特点是利用现代技术,为学生创建一个学习、研究的学习情境。

通过图形的变换,使学生很容易发现问题的规律、找出解决方法,使学生学得轻松,兴趣浓厚,精神状态极佳。

4、本节课容量较大,但由于采用了电脑辅助教学手段,使学生在老师的启发下,一步一步地探索、归纳、学习,使学生是很容易地掌握了知识,并在探索的过程中培养了学生的创新精神和创新意识。

图(3)
B C B
D A
C。

相关文档
最新文档