电阻应变式传感器的基本原理、结构和应用
电阻应变式传感器的构成

电阻应变式传感器的构成一、电阻应变式传感器的概述电阻应变式传感器是一种常见的力学量测量传感器,它利用材料的应变与电阻值之间的关系,将物理量转换为电信号输出。
由于其结构简单、灵敏度高、可靠性好等优点,在工业生产和科学研究中得到广泛应用。
二、电阻应变式传感器的原理电阻应变式传感器利用了材料在受力作用下会发生形变这一物理现象。
当一个金属或合金材料受到外力作用时,其形状和尺寸会发生改变,这种改变被称为应变。
而材料的电阻值与其长度、截面积及导体材料有关,当材料发生形变时,导体长度和截面积也会随之改变,进而影响其电阻值。
因此,通过测量材料在受力作用下发生的应变程度以及相应的电阻值改变大小,就可以确定外力的大小。
三、电阻应变式传感器的构成1. 应力臂:是指将外力作用于该部位,并将该部位产生的应力转移到敏感元件上。
通常采用弹性杆或弹性薄片作为应力臂。
2. 敏感元件:是指将应变转化为电信号的部分,通常采用金属或合金材料制成,其电阻值随外力的大小而发生变化。
3. 支撑结构:支撑敏感元件和应力臂,使其能够承受外力作用并保持稳定。
4. 引线:将敏感元件的电信号传输到测量仪器中。
五、电阻应变式传感器的分类根据敏感元件的不同,电阻应变式传感器可以分为:1. 金属片式电阻应变式传感器:由薄金属片组成,当外力作用于其上时,产生形变从而改变其电阻值。
2. 金属箔式电阻应变式传感器:与金属片式类似,但由多个叠加在一起的薄金属箔组成,并采用绝缘材料隔开。
3. 桥式电阻应变式传感器:由四个敏感元件组成一个桥路电路,在测量中可消除温度对测量结果的影响。
4. 液体电阻应变式传感器:利用液体在受压作用下的体积变化,改变电阻值从而测量压力。
六、电阻应变式传感器的应用电阻应变式传感器广泛应用于工业生产和科学研究中,例如:1. 材料力学性能测试:如金属、塑料、橡胶等材料的拉伸、压缩、弯曲等性能测试。
2. 结构安全监测:如桥梁、大型建筑物等结构的安全监测。
电阻应变式传感器

当温度变化∆t时,电阻丝电阻的变化值为:
∆Rα=Rt-R0=R0α0∆t
2) 试件材料和电阻丝材料的线膨胀系数的影响 当试件与电阻丝材料的线膨胀系数相同时,不论环境温度如 何变化,电阻丝的变形仍阻丝材料的线膨胀系数不同时,由于环境温度的 变化,电阻丝会产生附加变形,从而产生附加电阻变化。 设电阻丝和试件在温度为0℃时的长度均为l0, 它们的线膨胀 系数分别为βs和βg,若两者不粘贴,则它们的长度分别为
当电桥平衡时, Uo=0, 则有 或 R1R4 = R2R3
R1 R3 = R2 R4
电桥平衡条件:相邻两臂 电桥平衡条件 电阻的比值应相等, 或相 对两臂电阻的乘积相等。
电桥接入的是电阻应变片时,即为应变桥。当一个 桥臂、两个桥臂乃至四个桥臂接入应变片时,相应 的电桥为单臂桥、半桥和全臂桥。 2.不平衡直流电桥的工作原理及电压灵敏度
R1 Z1 = R1 + jwR1C1
R2 Z2 = R2 + jwR2C2
Z 3 = R3
输出电压
⋅ ⋅
Z 4 = R4
U ( Z1Z 4 − Z 2 Z 3 ) U0 = ( Z1 + Z 2 )( Z 3 + Z 4 )
要满足电桥平衡条件, 即U0=0, 则有 Z1 Z4 = Z2 Z3
或
∆R ∆ρ = (1 + 2 µ )ε + R ρ
∆ρ ∆R R = (1 + 2 µ ) + ρ
ε
ε
通常把单位应变能引起的电阻值变化称为金属电 阻丝的灵敏度系数。其物理意义是单位应变所引起的 电阻相对变化量, 其表达式为 ∆ρ ρ K 0 = 1 + 2µ + ε ∆R = k 0ε 因此 R 灵敏度系数受两个因素影响: ①受力后材料几何尺寸的变化, 即(1+2µ); ②受力后材料的电阻率发生的变化, 即∆ρ/
第2章 电阻应变式传感器

( 2 2 )
传感器原理与应用——第二章
电阻相对变化量为:
dR dL d dA R L A
若电阻丝是圆形的, 则A=πr ² 微分 ,对r
( 3 2 )
l
2r
2(r-dr)
F
l+ dl
得dA=2πr dr,则:
dA 2rdr dr 2 2 A r r
图2-1 金属丝的应变效应
• 应变式电阻传感器是目前测量力、力矩、 压力、加速度、重量 等参数应用最广泛的传感器。
传感器原理与应用——第二章
2.1 电阻应变片的基本原理 应变式传感器的核心元件是电阻应变片,它可将试件 上的应力变化转换成电阻变化。 2.1.1 应变效应 当导体或半导体在受到外界力的作用而不能产生位移
时,则会产生机械变形(它的几何形状和尺寸将
指 示 应 变 卸载
Δε
εi
加载 机械应变εR 图2-6 应变片的机械滞后
传感器原理与应用——第二章
产生原因:应变片在承受机械应变后的残余变形,使
敏感栅电阻发生少量不可逆变化;在制造或粘贴应变
片时,敏感栅受到的不适当的变形或粘结剂固化不充
分等。
机械滞后值还与应变片所承受的应变量有关,加载 时的机械应变愈大,卸载时的滞后也愈大。所以,通常 在实验之前应将试件预先加、卸载若干次,以减少因机 械滞后所产生的实验误差。
很宽的范围内均为线性关系。
传感器原理与应用——第二章
即:
R
R
K 或
K
R
R
( 14 2 )
K为金属应变片的灵敏系数。
测量结果表明,应变片的灵敏系数K恒小于线材的
灵敏系数KS。原因主要是胶层传递变形失真及横向效
《电阻应变式传感器》课件

03
电阻应变式传感器的测量电路
直流电桥测量电路
优点
简单、可靠、稳定性好。
缺点
对温度变化敏感,需要采取温度 补偿措施。
交流电桥测量电路
优点
对直流电源的稳定性要求较低,可以减小电源波动对测量结 果的影响。
在工业生产过程中,电阻应变式压力传感器被广泛应 用于压力控制、流量控制等场合,如气瓶压力监测、 管道压力监测等。
汽车行业
汽车发动机、气瓶、刹车系统等都需要用到压力传感 器,来监测和控制各种气体和液体的压力。
位移传感器的应用实例
自动化生产线
在自动化生产线上,位移传感器被用来检测和控制系 统中的物体位置,如机器人手臂的定位、传送带的物 体位置检测等。
电阻应变式传感器
目 录
• 电阻应变式传感器简介 • 电阻应变式传感器的类型与特性 • 电阻应变式传感器的测量电路 • 电阻应变式传感器的误差来源与补偿方法 • 电阻应变式传感器的应用实例
01
电阻应变式传感器简介
定义与工作原理
定义
电阻应变式传感器是一种将应变转换为电阻变化的传感器,通过测量电阻的变 化来测量受力状态。
总结词
半导体应变式传感器具有高灵敏度、 低温度系数和良好的线性等优点。
详细描述
半导体应变式传感器利用半导体的压 阻效应,即当半导体受到外力作用时 ,其电阻值会发生变化。这种传感器 常用于测量加速度、压力和振动等物 理量。
陶瓷电阻应变式传感器
总结词
陶瓷电阻应变式传感器具有耐高温、耐 腐蚀、高绝缘性和良好的稳定性等特点 。
第2章 电阻应变式传感器

F
3.2.2 位移传感器
R4 R3 U0 R1 E R2 R1 R2 F
图2.11 应变片式线位移传感器
U
3.2.4 压力传感器
0
= k U ε = kU
3l 4 Eb h
2
F
3.2.3 加速度传感器
作业: 作业:
1. 什么叫电阻式传感器?什么是电阻应变效应? 什么叫电阻式传感器?什么是电阻应变效应? 2. 电阻应变式传感器的工作原理? 电阻应变式传感器的工作原理? 3. 作出桥式测量电路图,并推导直流电桥平衡条件, 作出桥式测量电路图,并推导直流电桥平衡条件, 以及不对称电桥的输出电压变化. 以及不对称电桥的输出电压变化.
3.2 应用
3.2.1 应变式测力与荷重传感器
kU F U 0 = 2 (1 + ) AE
图2.8 受力圆柱上应变片的粘贴
图2.9 受力薄臂环上应变片的粘贴
U
0
= k U ε = kU
1 .092 R bδ E
2
F
图2.10 受力等强度梁应变片的粘贴
U
0
= k U ε = kU
6l E b0 h
1
Z3 = Z 2Z 4
z1 z3 = z 2 z 4
φ1 + φ3 = φ2 + φ4
或
(R1 + jX1)(R3 + jX3 ) = (R2 + jX2 )(R4 + jX4 )
2.2 电桥的调平衡
在应变片工作之前必须进行电桥的平衡调节. 在应变片工作之前必须进行电桥的平衡调节.对于直流 电桥可采用串联或并联电位器法, 电桥可采用串联或并联电位器法,对于交流电桥一般采用阻 容调平衡法. 容调平衡法.
电阻应变式传感器的工作原理及应用

成本较高
电阻应变式传感器的制造成本 较高,价格相对较贵。
对激励电源要求高
电阻应变式传感器需要稳定的 激励电源,对电源的要求较高
。
05 发展趋势与展望
技术创新与改进
微型化
随着微电子和纳米技术的发展, 电阻应变式传感器正朝着微型化 方向发展,以提高测量精度和灵
敏度。
智能化
集成化、智能化的传感器已成为趋 势,通过与微处理器和算法结合, 实现自校准、自补偿和自适应等功 能。
电阻应变片的结构与工作原理
01 基底
02 敏感栅
03 引线
04 盖片
05 工作原理
支撑电阻丝并传递应力的 介质。
由金属丝或金属箔制成的 敏感元件,用于感受形变 并产生电阻变化。
连接敏感栅与测量电路的 导线。
保护敏感栅和引线的覆盖 层。
当被测物体受到外力作用 时,粘贴在其上的电阻应 变片会随之产生形变,导 致敏感栅的电阻值发生变 化。通过测量电路可以测 量出电阻值的变化,从而 推算出受力的大小。
传感器简介
电阻应变式传感器由敏感元件、转换元件和测量电路组成, 其中敏感元件负责感知被测量的变化,转换元件将敏感元件 输出的应变信号转换为电信号,测量电路则对电信号进行测 量和输出。
电阻应变式传感器的敏感元件通常采用金属箔、金属丝等材 料,当受到外力作用时,这些材料会发生形变,导致其电阻 值发生变化,从而输出相应的电信号。
多功能化
为了满足复杂环境下的测量需求, 电阻应变式传感器正朝着多功能化 方向发展,如压力、温度、湿度等 多参数测量。
应用领域的拓展
医疗健康
01
用于监测生理参数,如血压、心电等,为医疗诊断和治疗提供
支持。
智能制造
应变式电阻传感器的工作原理

应变式电阻传感器的工作原理引言应变式电阻传感器是一种常用的传感器,广泛应用于测量物体的应变变化。
它的工作原理基于金属电阻的变化,通过测量电阻值的变化来获取物体的应变量。
本文将详细介绍应变式电阻传感器的工作原理及其应用。
一、应变式电阻传感器的结构应变式电阻传感器通常由弹性金属片和电阻片组成。
弹性金属片连接在被测物体上,当被测物体受到外力作用时,会发生形变,进而使弹性金属片产生应变。
应变会导致弹性金属片的长度和宽度发生微小的变化,从而改变金属电阻片的电阻值。
二、应变式电阻传感器的工作原理应变式电阻传感器的工作原理基于金属电阻与应变之间的关系。
当外力作用在被测物体上时,弹性金属片会发生微小的形变,从而引起金属电阻片的几何形状发生改变。
根据金属电阻的材料特性,电阻值随着几何形状的改变而发生变化。
应变式电阻传感器通常采用金属材料,如铜、钢等。
这些金属材料具有较小的电阻温度系数,能够提供稳定的电阻值。
当外力作用于被测物体时,弹性金属片产生应变,导致电阻值的变化。
这种电阻变化可以通过电路进行测量和记录。
三、应变式电阻传感器的应用1. 强度测量:应变式电阻传感器常用于测量材料的强度。
通过将传感器粘贴在被测物体上,当物体受到外力时,传感器测量所产生的应变,从而间接测量物体的强度。
2. 应力测量:应变式电阻传感器可用于测量材料的应力。
应力是单位面积上的力,通过测量物体的应变量,可以计算出物体的应力值。
3. 位移测量:应变式电阻传感器在位移测量中也有广泛应用。
通过将传感器安装在机械结构上,当结构发生位移时,传感器可以测量出位移的大小。
4. 压力测量:应变式电阻传感器可用于测量液体或气体的压力。
将传感器安装在压力容器中,当容器受到压力时,传感器测量所产生的应变,从而计算出压力值。
结论应变式电阻传感器通过测量金属电阻的变化,实现对物体应变量的测量。
其工作原理简单而有效,应用广泛。
无论是强度测量、应力测量、位移测量还是压力测量,应变式电阻传感器都发挥了重要作用。
02.电阻应变计式传感器

第2章电阻应变计式传感器电阻应变计的应用1.2第2章电阻应变计式传感器电阻应变计的主要特性2.22.3测量电路2.4电阻应变计式传感器2.52.6电阻应变计的温度效应及其补偿2.1电阻应变计的基本原理与结构2.1电阻应变计的基本原理结构和应用一、导电材料的应变电阻效应电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值发生变化,这种现象称为“应变效应”。
如图2 -1所示,一根长,截面积为A 的金属电阻丝,在其未受力时,原始电阻值为:(2-1)l A l R ρ=2.1电阻应变计的基本原理结构和应用ρρd A dA l dl R dR +-=(2-2)当电阻丝受到拉力F 作用时,将伸长d l ,横截面积相应减小d A ,电阻率因材料晶格发生变形等因素影响而改变了d ρ,从而引起电阻值相对变化量为:图2.1 导体受拉伸后的参数变化2.1电阻应变计的基本原理结构和应用式中dl /l= ε——材料的轴向线应变,常用单位με(1με=1×10-6mm/mm);d A /A ——圆形电阻丝的截面积相对变化量,设r 为电阻丝的半径,微分后可得d A =2πr d r ,则:其中r ——导体的半径,受拉时r 缩小;μ——导体材料的泊松比。
με22-==rdr A dA2.1电阻应变计的基本原理结构和应用可得:通常把单位应变能引起的电阻值变化称为电阻丝的灵敏系数。
其物理意义是单位应变所引起的电阻相对变化量,其表达式为:ρρεμd R dR ++=)21((2-3)ερρμεd R dRK ++==21(2-4)第2章电阻应变式传感器(Resistive Strain Gauge Sensors)2.1电阻应变计的基本原理结构和应用灵敏系数K受两个因素影响:材料几何尺寸的变化,即1+2μ;材料的电阻率发生的变化,即(dρ/ρ)/ε。
大量实验证明,在电阻丝拉伸极限内,电阻的相对变化与应变成正比,即K为常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、原理
由欧姆定律知,对于长为、截面积为、电阻率为的导体,其电阻
若、和均发生变化,则其电阻也变化,对上式全微分,有
设半径为的圆导体,=,代入上式,电阻的相对变化为因为
则
式中——导体的纵向应变。
其数值一般很小,常以微应变度量,
1=10-6;
——材料泊桑比,一般金属=0.3-0.5;
——压阻系数,与材质有关;
E——材料的弹性模量。
上式中,表示几何尺寸变化而引起电阻的相对变化量;
表示由于材料电阻率的变化而引起电阻的相对变化量。
不同属性的导体,这两项所占的比例相差很大。
若定义导体产生单位纵向应变时,电阻值相对变化量为导体的灵敏度系数,则
显然,S S愈大,单位纵向应变引起的电阻值相对变化愈大,说明应变片愈灵敏。
可用不同的导体材料制成应变片,目前主要有金属电阻应变片和半导体应变片两类。
二、金属电阻应变片
1.结构形式
原理:
对于金属电阻应变片,材料电阻率随应变产生的变化很小,可忽略,得:
电阻丝应变片又称金属丝电阻应变片,其优点是制作方便,应变横向效应大.
选用应变片时,要考虑应变片的性能参数,主要有:应变片的电阻值、灵敏度、允许电
流和应变极限等。
市售金属电阻应变片的电阻值已趋于标准化,主要规格有60Ω、120Ω、350Ω
600Ω和1000Ω等,其中120Ω用得最多。
应变片产品包装上标明的"标称灵敏系数",出厂时测定的该批产品的平均灵敏度系数值。
2.其他结构形式
三、半导体应变片
结构形式
对于半导体应变片,几何尺寸变化引起的电阻变化远小于由材料电阻率变化引起的电阻变化,前者可忽略不计,可得
从而可得半导体应变片灵敏度系数为
半导体应变片的最突出优点是灵敏度大,S可达60~150,
能直接与记录仪器连接而不需放大器,使测量系统简化。
此外,其横向效应小,机械滞后小和体积小。
缺点是电阻值和灵敏度的温度稳定性差。
当应变较大时,非线性严重。
由于受晶向、杂质等因素影响,灵敏度分散度大。
学习时注意观察应变片粘贴的位置及方向。
四、应用
1.BLR-1拉压力传感器
被测外力通过螺纹作用在弹性圆筒上,圆筒变形,应变片电阻变化,
接线座将信号引出。
其电阻的变化与被测外力成正比。
2.应用电阻应变片通过不同的弹力体来测力。
(1)柱式
弹性体分实心和空心两种,实心圆柱可承受较大负荷,空心圆筒横向刚度大,稳定性好.
(2)环式
在外力作用下,各点的应力差别较大.线性误差和滞后误差较小. (3)双端固定梁式
这种结构当梁受力过载时容易产生非线性误差.梁和壳体一般是做成一体,
避免两固定端在工作过程中可能滑动而产生误差.
(4)悬臂梁式
这种传感器具有结构简单、加工容易、应变片容易粘贴、灵敏度度较高等特点.
2.电阻应变式位移传感器图示
将应变片贴在西、悬臂梁(弹性元件)上,当被测物移动,测杆移动,拉簧伸长,
使悬臂梁变形,从而引起应变片电阻发生变化.这种方法可用于测力、位移、
压力、加速度等物理参数。
电阻式传感器种类繁多,应用广泛,其基本原理就是将被测物理量的变化转换成电阻值的变化,再经相应的测量电路显示或记录被测量值的变化。
9.2.1 电阻应变式传感器
应变式传感器是基于测量物体受力变形所产生应变的一种传感器,最常用的传感元件为电阻应变片。
应用范围:可测量位移、加速度、力、力矩、压力等各种参数。
应变式传感器特点
①精度高,测量范围广;
②使用寿命长,性能稳定可靠;
③结构简单,体积小,重量轻;
④频率响应较好,既可用于静态测量又可用于动态测量;
⑤价格低廉,品种多样,便于选择和大量使用。
1、应变式传感器的工作原理
(1) 金属的电阻应变效应
金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象,称为金属的电阻应变效应。
公式推导:
若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时的电阻为R,则:
(9.1)
如果金属丝沿轴向方向受拉力而变形,其长度L变化dL,截面积S变化dS,电阻率ρ变化,因而引起电阻R变化dR。
将式(9.1)微分,整理可得:
(9.2) 对于圆形截面有:
(9.3)
为金属丝轴向相对伸长,即轴向应变;而则为电阻丝径向相对伸长,即径向应变,两者之比即为金属丝材料的泊松系数μ,负号表示符号相反,有:
(9.9)
将式(9.9)代入(9.3)得:
(9.5)
将式(9.5)代入(9.2),并整理得:
(9.6)
(9.7) 或
K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。
K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。
公式简化过程:
由式可以明显看出,金属材料的灵敏系数受两个因素影响:一个是受力后材料的几何尺寸变化所引起的,即项;另一个是受力后材料的电阻率变化所引起的,即项。
对于金属材料项比项小得多。
大量实验表明,在电阻丝拉伸比例极限范围内,电阻的相对变化与其所受的轴向应变是成正比的,即K0为常数,于是可以写成:
(9.8)
通常金属电阻丝的K0=1.7~4.6。
通常金属电阻丝的K0=1.7~4.6。
(2) 应变片的基本结构及测量原理
应变片的基本结构
l称为栅长(标
距),b称为栅宽(基宽),
b×l称为应变片的使用
面积。
应变片的规格一
般以使用面积和电阻值
表示,如3×20mm2,1
20Ω。
结构简介>>
电阻丝应变片是用直径
为0.025mm具有高电阻率
的电阻丝制成的。
为了获得
高的阻值,将电阻丝排列成
栅状,称为敏感栅,并粘贴
在绝缘的基底上。
电阻丝的
两端焊接引线。
敏感栅上面
粘贴有保护作用的覆盖层。
应变式传感器是将应变片粘贴于弹性体表面或者直接将应变片粘贴于被测试件上。
弹性体或试件的变形通过基底和粘结剂传递给敏感栅,其电阻值发生相应的变化,通过转换电路转换为电压或电流的变化,即可测量应变。
若通过弹性体或试件把位移、力、力矩、加速度、压力等物理量转换成应变,则可测量上述各量,而做成各种应变式传感器。