五年级上册数学竞赛试题-奥数经典例题三(含解析)

合集下载

五年级上册数学奥数课件世界少年奥林匹克竞赛题解析(初赛)全国通用

五年级上册数学奥数课件世界少年奥林匹克竞赛题解析(初赛)全国通用
(1+0.12+0.23+0.34)×(0.12+0.23) 的地方吗?
=(1+a)×b -(1+b)×a =1×b+a×b-(1+b)×a =1×b+a×b-(1×a+b×a)
假如把0.12+0.23
看作a
假如把0.12+0.23
+0.34看作b
=1×b+a×b-1×a-b×a
=1×b-1×a =b-a =(0.12+0.23+0.34)-(0.12+0.23)
一共几个面包? 9个
每人分得几个? 9÷3=3(个)
艾丽斯分得几个? 3(个)
9元
一个面包多少钱? 9÷3=3(元)
汤姆出了几个面包的钱? 4个
汤姆吃了几个面包?
3个
多出了1个 面包的钱
汤姆应收回3元。
18
11、有一堆钢管,最底层是30根,倒数第二层是29 根,以后每层往上一次少一根,这堆钢管共25层。 这堆钢管共有_______根。
x=10
15x+5=305
解:15x=305-5
15x=300 x=300÷15 x=20
75-5x+30=25
解:75+30-25=5x 80=5x 5x=80 x=16
23
列方程解应用题的步骤: 什么是单位“1”?
1、找出未知数并设x。
“是”,“的”,“比” 后面的数
1.设问题为x 2.设单位“1”为x
72856872 能 被 11 整 除。
3.两个数的和减去这两个数的差,其结果是__偶__
(填奇或偶)数。
例如:5和3 5+3=8 5-3=2

五年级奥数题及答案5篇

五年级奥数题及答案5篇

五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。

顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。

而甲行走45分钟,乙行走45分钟也能走完一圈。

所以甲行走25分钟的路程相当于乙行走45分钟的路程。

甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。

即乙走一圈的时间是126分钟。

2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。

如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。

又因为每次移动12张牌,所以至少移动108÷12=9(次)。

2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。

提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

五年级上册数学竞赛试题-奥数经典例题

五年级上册数学竞赛试题-奥数经典例题

五年级上册数学竞赛试题-奥数经典例题例1:甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙。

求:甲、乙二人的速度各是多少?解答:甲、乙两人的速度差:40÷20=2(米/秒)(乙速:2×9÷6=3(米/秒)甲速:3+2=5(米/秒)。

答:甲、乙二人的速度分别为5米/秒和3米/秒。

解析:如果甲让乙先跑40米,然后甲出发追乙,这40米就是二人间的路程差,甲用20秒追上乙是追及时间,根据速度差=路程差÷追及时间,可求甲、乙二人的速度差,即40÷20=2(米/秒)。

如果甲让乙先跑6秒,则甲需要9秒追上乙,这一过程中追及时间是9秒,由上一过程的结论可求路程差: 2X9=18(米),这18米就是乙先跑6秒所跑过的路程,所以可求出乙的速度是18÷6=3(米/秒),那么甲速可求。

例2:把一块棱长12分米的正方体钢坯,熔铸成截面是9平方分米的长方体钢材,铸成的钢材长度是多少?解答:12×12×12÷9=1728÷9=192(分米)答;铸成的钢材长度是192分米。

解析:钢材从正方体变成长方体,体积保持不变。

正方体的体积是1728立方分米,那么长方体的体积也是1728立方分米。

又知道长方体的截面积,则可求出长度。

例3:3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。

每头牛、每只羊每天各吃草多少千克?解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)(77-8×4)÷3=45÷3=15(千克)答:每头牛每天吃草15千克,每只羊每天吃草8千克解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。

我们观察比较发现,后面条件中的6头牛是前面条件中3头牛的两倍。

【小学数学】五年级上册数学竞赛试题及答案

【小学数学】五年级上册数学竞赛试题及答案

【小学数学】五年级上册数学竞赛试题及
答案
第一题:
在四个奇数306、315、327、329中,最小的是________。

答案:306
第二题:
小明从某天3点12分到3点24分共做了13道题,平均每道题多用了____秒。

答案:6秒
第三题:
小红身上有65元,她去商店买了一支笔花费7.3元,剩下的钱是____元。

答案:57.7元
第四题:
某班升旗手每天升旗需用3面国旗,那么36面国旗可以供他升旗______天。

答案:12天
第五题:
1000取40是多少?
答案:25
第六题:
有一串珠子,第一天买了3颗,第二天比第一天少买了5颗,第三天比第二天少买了5颗,这样一直买到第七天,是不是7颗珠子?
答案:是
第七题:
甲乙两车同时从相距120km的地方相对而出,甲车每小时行60km,乙车每小时行80km,则4小时后二车相距多少千米?
答案:80千米
第八题:
一辆行开10.8千米的火车每个小时行什么距离?
答案:10.8千米
第九题:
一件货物的重量为120kg,它是两个相同重量的货物之和,每个货物的重量是多少?
答案:60kg
第十题:
十万加四千五不减三千等于多少?
答案:。

五年级上册数学竞赛奥数题

五年级上册数学竞赛奥数题

五年级上册数学竞赛奥数题1. 问题描述在一批玩具糖果中,有红色、黄色、绿色三种颜色的圆球,其中红色球的数量是黄色球的3倍,而绿色球的数量是红色球数量的一半。

如果总共有72个球,那么红色球的数量是多少个?解析:设红色球的数量为x个,则黄色球的数量为3x个,绿色球的数量为x/2个。

根据题意可知,红、黄、绿三种颜色的球数量之和为72,即:x + 3x + x/2 = 72将分数转为整数:2x + 6x + x = 1449x = 144x = 16答案:红色球的数量为16个。

2. 问题描述甲乙两个人玩奥数游戏,甲每次都能正确回答1道题目并得到5分,乙每次都能正确回答2道题目并得到8分。

他们各自作答20道题目,共得到了118分。

请问甲和乙各自回答正确的题目数量各是多少道?解析:设甲回答正确的题目数量为x,乙回答正确的题目数量为y。

根据题意可知,甲每次回答1道题目得5分,乙每次回答2道题目得8分,他们各自作答20道题目共得到了118分,即:5x + 8y = 118又因为甲和乙各自作答20道题目,即:x + y = 20解方程组:5x + 8y = 118 --(1)x + y = 20 --(2)由(2)式得到 x = 20 - y,代入(1)式中:5(20 - y) + 8y = 118100 - 5y + 8y = 1183y = 18y = 6将y的值代入(2)式中,可得:x + 6 = 20x = 14答案:甲回答正确的题目数量为14道,乙回答正确的题目数量为6道。

3. 问题描述小明和小红合作参加了一次数学竞赛,他们需要在100秒内计算出尽可能多的数字。

小明每秒能计算3个数字,小红每秒能计算2个数字。

他们一起计算了100秒后,小明和小红计算的数字总数之和是多少?解析:小明每秒计算3个数字,小红每秒计算2个数字,他们一起计算了100秒后,设小明计算了x个数字,小红计算了y个数字。

根据题意可知:3x + 2y = 总数字个数又因为他们一起计算了100秒,即:x + y = 100解方程组:3x + 2y = 总数字个数 --(1)x + y = 100 --(2)由(2)式得到 x = 100 - y,代入(1)式中:3(100 - y) + 2y = 总数字个数300 - 3y + 2y = 总数字个数300 - y = 总数字个数答案:小明和小红计算的数字总数之和为300。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

五年级奥数竞赛题及答案

五年级奥数竞赛题及答案

五年级奥数竞赛题及答案D同的颜色,现有五种不同的颜色,按上述要求可以写出()种不同颜色搭配的“imo”。

a . 15 b. 20 c.45d. 60、17.五(2)班有56个学生,在一次测验中,答对第一题的34人,答对第二题的29人,两题都答对的15人。

那么,两题都不对的有()人。

a.7 b.8c.12 d.20a. 6b. 7c. 8d. 9只知道:(1)小徐比战士年龄大;(2)小刘和农民不同岁;(3)农民比小张年龄小;那么,()工人。

a. 小刘b. 小张c. 小徐d. 说不准四、简算与计算(要写出简算过程,共15分,每小题5分)六、解决问题(共30分,每小题6分)23、合唱队中女生比男生多25人,如果再调走5名男生,那么女生人数正好是男生的4倍,合唱队中女生有多少人?24、甲、乙、丙三人参加数学竞赛,甲、乙的总分是153分,乙、丙的总分是173分,甲、丙的总分是160分,甲、乙、丙三人各得多少分?25. 修一条公路,计划每天修60米,实际每天比计划多修15米,结果提前4天修完,一共修了多少米?26. 甲、乙两个书店存书册数相等,甲书店售出3000册,乙书店购入2000册,这时乙书店存书的册数是甲的2倍,甲、乙两书店原来共存书多少册?27. 甲乙丙丁四个人共买了10个面包平均分着吃,甲拿出了6个面包的钱,乙和丙都只拿出了2个面包的钱,丁没带钱。

吃完后一算,丁应该拿出1.25元,甲应收回多少元?参考答案一、填空。

1. 5.6 、562. 183. 64 4、36 5. 96. 457. 4(a+b)8. 189. 63.127.3.13. 10. 36二、判断。

三、选择。

16.d17.b18.c19.b四、简算与计算。

20. 3621. 12.5 22.3330六、解决问题。

23、4024.甲、70 乙、83丙、9025、120026. 16000(册)27. 1.75元【篇二:2015五年级数学_竞赛试题_课标版】ss=txt>班级:姓名:得分:一、填空(共30分,每小题3分)1. 两个数的和是61.6,其中一个数的小数点向右移动一位,就与另一个数相同。

小学五年级数学奥林匹克竞赛题(含答案)

小学五年级数学奥林匹克竞赛题(含答案)

小学五年级数学奥林匹克竞赛题(含答案)一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。

答案:221.766。

解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。

2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。

答案:103.25。

解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。

3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。

答案:46.8。

解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。

答案:1748。

解析: 原式=17.48×37-17.48×19+17.48×82=17.48×(37-19+82)=17.48×100=1748。

5. 计算 1.25⨯0.32⨯2.5=_____。

答案:1。

解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。

6. 计算 75⨯4.7+15.9⨯25=_____。

答案:750。

原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。

7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。

答案:2867。

原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05)=28.67⨯(67+32+1)=28.67⨯100=2867。

(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。

答案:原式=172.4⨯6.2+(1724+1000)⨯0.38=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1:
甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙。

求:甲、乙二人的速度各是多少?
解答:甲、乙两人的速度差:40÷20=2(米/秒)(
乙速:2×9÷6=3(米/秒)
甲速:3+2=5(米/秒)。

答:甲、乙二人的速度分别为5米/秒和3米/秒。

解析:如果甲让乙先跑40米,然后甲出发追乙,这40米就是二人间的路程差,甲用20秒追上乙是追及时间,根据速度差=路程差÷追及时间,可求甲、乙二人的速度差,即40÷20=2(米/秒)。

如果甲让乙先跑6秒,则甲需要9秒追上乙,这一过程中追及时间是9秒,由上一过程的结论可求路程差: 2X9=18(米),这18米就是乙先跑6秒所跑过的路程,所以可求出乙的速度是18÷6=3(米/秒),那么甲速可求。

例2:
把一块棱长12分米的正方体钢坯,熔铸成截面是9平方分米的长方体钢材,铸成的钢材长度是多少?
解答:12×12×12÷9=1728÷9=192(分米)
答;铸成的钢材长度是192分米。

解析:钢材从正方体变成长方体,体积保持不变。

正方体的体积是1728立方分米,那么长方体的体积也是1728立方分米。

又知道长方体的截面积,则可求出长度。

例3:
3头牛和4只羊一天共吃草77千克,6头牛和5只羊一天共吃草130千克。

每头牛、每只羊每天各吃草多少千克?
解答:(77×2-130)÷(4×2-5)=24÷3=8(千克)
(77-8×4)÷3=45÷3=15(千克)
答:每头牛每天吃草15千克,每只羊每天吃草8千克
解析:本题中,牛的头数和羊的只数都不相同,这样比较时不能直接消去一个量。

我们观察比较发现,后面条件中的6头牛是前面条件中3头牛的两倍。

把前面的牛的头数和羊的只数各扩大2倍得6头牛和8只羊,吃的草也扩大2倍是154千克。

这样再与后面比较就可以消去牛吃的草。

例4:
某小贩出售一筐苹果,第一天卖掉了全部的一半多2千克,第二天卖掉了余下的一半少2千克,这时筐内还剩下20千克苹果。

问:这筐苹果原有多少千克?
解答:〔(20-2)×2+2〕×2=38×2=76(千克)
答:这筐苹果原有76千克.
解析:解决这类一半多几,一半少几的还原法应用题,我们往往借助线段图来帮助我们解题。

根据题意此题可以画图如下:
例5:
五年级394个同学排成两路纵队郊游,每两个同学相隔0.5米,队伍以每分钟61米的速度通过一座长207米的大桥,一共需要多少时间?
解答:394÷2-1=196(个)
207+0.5×196=305(米)
305÷61=5(分)
答:一共需要5分钟。

解析:394人排成两路纵队,每路纵队394÷2-1=196人,间隔数是197-1=196个,队伍长=196个间隔全长=间隔长×间隔数
=0.5×196=98米,从排头两人上桥到排尾两人离开桥,应行路程=桥长+队伍全长,再根据时间=路程÷速度即可求出。

例6:
王春、陈刚、殷华当中有一个人做了好事,李老师在了解情况的时候,他们三个人分别说了下面几句话:
陈刚:“我没做这件事,殷华也没做这件事。


王春:我没做这件事,陈刚也没做这件事”
殷华:“我没做这件事,也不知道谁做了这件事。


当老师一再追问时,得知他们都讲了一句真话,那么做好事的人是谁?
解答:陈刚做了这件好事。

解析:如果王春做了这件好事,则陈刚的两句话都是真话,不合题意;如果殷华做了这件好事,则王春的两句话都是真话,不合题意;如果陈刚做了这件好事,符合题意。

例7:
东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。

现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
解答:(16+15-25)÷2=3(幅)
答:其他年级的画共有3幅。

解析:将东河小学分成3个部分,六年级、五年级、其他年级,那么有五年级和其他年级共作画16幅,六年级和其他年级共作画15幅。

而五、六年级共作画25幅,所以其他年级的画共有(16+15-25)÷2=3幅。

例8:
有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。

第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。

只有两次达到优秀的有多少人?
解答:10+13+15-25-1×2=11(人)
答:只有两次达到优秀的有11人。

解析:“每人至少有一次达到优秀”说明没有三次都没达到优秀的。

要求只有两次达到优秀的人数,就是求重叠两层的部分(图中阴影部分)。

例9:
有19个同学参加了三个课外活动小组,它们分别是数学组、美术组、电脑组,每人可参加一个组、两个组或三个组活动。

问:这些同学中至少有几个同学参加了相同的组?解答:19÷(3+2+1)=3(个)……1(个)
答:这些同学中至少有4个同学参加了相同的组。

解析:这道题就是要把19个同学放到若干个小组里去。

已知物体(元素)是19,接下来是要确定抽屉。

因为每个人可以参加三个课外小组的一个、两个或三个,这样就不是3个抽屉,而是(3+2+1)个抽屉了,然后可根据抽屉原理2去解答,至少有4个同学参加了相同的小组。

例10:
甲以每小时4千米的速度步行去某地,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙几小时可以追上甲?
解答:路程差: 4×4=16(千米);
速度差:12-4=8(千米)
追及时间:16÷8=2(时)。

答:乙2小时可以追上甲。

解析:甲先走4小时,每小时行4千米,追及路程为4X4=16(千米),根据甲,乙的速度,可以求出速度差,进而可以求出追及时间。

相关文档
最新文档