小学奥数典型题整理汇总(例题)
小学全部奥数题及答案-经典奥数题目

小学全部奥数题及答案-经典奥数题目1.一张电影票原价为x元。
根据题意,降价后观众增加一半,收入增加五分之一,所以降价后每张电影票售价为(x-3)元,观众人数为原来的1.5倍,总收入为原来的1.2倍。
因此,有方程1.2x = 1.5(x-3),解得x=15,所以一张电影票原价为15元。
2.设乙的存款为x元,则甲的存款为9600-x元。
根据题意,有方程0.6(9600-x-120) = 0.4x,解得x=4200,所以乙的存款为4200元。
3.设原混合糖中有奶糖a颗,巧克力糖b颗。
根据题意,有方程b/(a+b+10) = 0.6,(b+30)/(a+b+40) = 0.75,解得a=30,b=70,所以原混合糖中有30颗奶糖和70颗巧克力糖。
4.设XXX原有玻璃球x个,则XXX原有玻璃球为(3/4)x。
根据题意,有方程(3/4)x + 2 = (4/6)x,解得x=24,所以XXX原有玻璃球24个。
5.设丙帮助甲t1个小时,帮助乙t2个小时,则甲、乙、丙三人的效率分别为1/10、1/12、1/t1+1/t2.根据题意,有方程(1/10+t1)(t1+t2) = (1/12+t2)(t1+t2),解得t1=6,t2=3,所以丙帮助甲6个小时,帮助乙3个小时。
6.设全部工作需要x天完成,则甲、乙、丙三人的效率分别为1/72、1/(72+1/72)、1/(72+1/72+1/72+1/72+1/72+1/72)。
根据题意,有方程1/3(x-13) = 1/2(x-5),解得x=61,所以余下的工作由丙单独完成需要11天。
7.XXX购进股票的总价为3000*10.65=元,卖出股票的总价为3000*13.86=元。
老王需要交纳的印花税和佣金共为*1%+*2%+*1%+*2%=2397.6元,所以XXX赚了--2397.6=7252.4元。
8.第一次购书共买了100/2.8=35.71本书,第一次售书共卖出35本,赚了35*2.8=98元。
小学四年级数学奥数题100题附答案(完整版)

小学四年级数学奥数题100题附答案(完整版)题目1有一个数列:1,3,5,7,9,11,13,15,17,19。
求这个数列的和。
答案:这是一个等差数列,首项为1,末项为19,公差为2,项数为10。
根据等差数列求和公式:总和= (首项+ 末项)×项数÷2即:(1 + 19)×10 ÷2 = 100题目2小明从一楼走到三楼需要2 分钟,那么他从一楼走到六楼需要几分钟?答案:从一楼到三楼,实际上走了 2 层楼梯,用了2 分钟,所以走一层楼梯需要1 分钟。
从一楼到六楼需要走5 层楼梯,所以需要5 分钟。
题目3在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5 倍,差是多少?答案:因为被减数= 减数+ 差,被减数+ 减数+ 差= 240,所以被减数= 240÷2 = 120。
又因为减数是差的5 倍,设差为x,则减数为5x,所以x + 5x = 120,解得x = 20,即差是20。
题目4两个数相除,商是8,余数是20,如果被除数和除数同时扩大10 倍,商是多少?余数是多少?答案:被除数和除数同时扩大相同的倍数,商不变,余数扩大相同的倍数。
所以商还是8,余数是20×10 = 200。
题目5鸡兔同笼,共有头100 个,脚316 只,鸡兔各有多少只?答案:假设全是鸡,那么脚有100×2 = 200 只,比实际少316 - 200 = 116 只。
每把一只鸡换成一只兔,脚就多4 - 2 = 2 只。
所以兔有116÷2 = 58 只,鸡有100 - 58 = 42 只。
题目6一块长方形草地,长18 米,宽12 米,中间有一条宽2 米的小路,求草地(阴影部分)的面积。
答案:方法一:整个长方形的面积为18×12 = 216 平方米。
小路的面积为18×2 + 12×2 - 2×2 = 56 平方米。
(完整版)小学数学奥数题100题(附答案)

小学数学奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999 =19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。
小学数学经典奥数应用题100道及答案(完整版)

小学数学经典奥数应用题100道及答案(完整版)1. 甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:(60×3 + 40)÷2 = 110(千米)2. 一个圆形花坛的周长是60 米,沿圆周每隔4 米放一盆红花,每两盆红花之间放3 盆黄花。
花坛周围一共放了多少盆花?答案:60÷4 = 15(盆)红花,15×3 = 45(盆)黄花,共15 + 45 = 60(盆)3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:速度:(530 - 380)÷(40 - 30) = 15(米/秒),车长:40×15 - 530 = 70(米)4. 用绳子测井深,把绳子三折来量,井外余16 分米,把绳子四折来量,井外余4 分米。
求井深和绳长。
答案:井深:(16×3 - 4×4)÷(4 - 3) = 32(分米),绳长:(32 + 16)×3 = 144(分米)5. 有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。
问:原来至少有多少枚棋子?答案:从最后的情况倒推,最后至少有5 枚棋子。
则之前有(5×4 + 1)×4 + 1 = 85(枚)6. 甲、乙、丙三人共有人民币168 元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?答案:168÷3 = 56(元),倒推得出原来甲有77 元,乙有49 元,甲比乙多28 元。
五年级奥数典型题

五年级奥数典型题一、和差问题。
1. 甲、乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?- 解析:- 我们可以先求出两班人数的和与差,和是98人,差是6人。
- 根据和差问题的基本公式:大数=(和 + 差)÷2,小数=(和 - 差)÷2。
- 甲班人数是大数,甲班人数=(98 + 6)÷2 = 52(人)。
- 乙班人数是小数,乙班人数=(98 - 6)÷2 = 46(人)。
二、和倍问题。
2. 果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。
求梨树、桃树和苹果树各有多少棵?- 解析:- 设苹果树的棵数为1份,那么梨树的棵数就是3份,桃树的棵数就是4份,三种树的总份数就是1+3 + 4=8份。
- 因为三种树共有1200棵,所以1份(苹果树的棵数)为1200÷8 = 150棵。
- 梨树的棵数为150×3 = 450棵。
- 桃树的棵数为150×4 = 600棵。
三、差倍问题。
3. 有两根铁丝,第一根长18米,第二根长10米,两根铁丝用去同样长的一段后,第一根剩下的长度是第二根剩下长度的3倍,两根铁丝各用去多少米?- 解析:- 两根铁丝的长度差是18 - 10 = 8米,这个差是不变的。
- 用去同样长的一段后,第一根剩下的长度是第二根剩下长度的3倍,那么这个长度差就是第二根剩下长度的3 - 1=2倍。
- 所以第二根剩下的长度为8÷2 = 4米。
- 第二根原来长10米,所以用去了10 - 4 = 6米,因为两根铁丝用去的长度相同,所以两根铁丝各用去6米。
四、年龄问题。
4. 爸爸今年43岁,儿子今年11岁。
几年后爸爸的年龄是儿子的3倍?- 解析:- 父子的年龄差是43 - 11 = 32岁,这个年龄差是不变的。
- 当爸爸的年龄是儿子的3倍时,年龄差就是儿子年龄的3 - 1 = 2倍。
四年级奥数题难题大全

四年级奥数题难题大全一、和差问题1. 甲、乙两箱共有水果60千克,如果从甲箱中取出5千克放到乙箱中,则两箱水果一样重。
求两箱原来各有水果多少千克?- 解析:两箱水果调整后一样重时,每箱重60÷2 = 30千克。
那么原来甲箱有30+5 = 35千克,乙箱有30 - 5=25千克。
2. 四年级有3个班,一班和二班的平均人数是44人,二班和三班的平均人数是43人,三班和一班的平均人数是42人。
这三个班各有多少人?- 解析:一班和二班总人数为44×2 = 88人,二班和三班总人数为43×2 = 86人,三班和一班总人数为42×2 = 84人。
把这三个和相加,就是三个班总人数的2倍,即(88 + 86+84)÷2=129人。
那么三班人数为129 - 88 = 41人,一班人数为129 - 86 = 43人,二班人数为129 - 84 = 45人。
二、倍数问题3. 有两堆棋子,第一堆有87个,第二堆有69个。
从第一堆中拿多少个棋子到第二堆,就能使第二堆棋子数是第一堆的3倍?- 解析:两堆棋子总数为87 + 69 = 156个。
当第二堆棋子数是第一堆的3倍时,把棋子总数分成4份,第一堆占1份,第二堆占3份。
此时第一堆有156÷(3 + 1)=39个。
所以从第一堆拿到第二堆的棋子数为87 - 39 = 48个。
4. 被除数、除数、商三个数的和是212,已知商是2。
被除数和除数各是多少?- 解析:因为商是2,设除数为x,被除数就是2x。
根据题意可得2x+x +2=212,3x=210,x = 70。
被除数为2×70 = 140。
三、年龄问题5. 父亲今年47岁,儿子今年21岁。
多少年前父亲的年龄是儿子年龄的3倍?- 解析:父子年龄差为47 - 21 = 26岁。
当父亲年龄是儿子年龄的3倍时,儿子年龄为26÷(3 - 1)=13岁。
所以是21 - 13 = 8年前。
小学奥数题库全部题型100道及答案(完整版)

小学奥数题库全部题型100道及答案(完整版)题目1:有一串数1,4,7,10,…,301,求这串数的平均数。
答案:这是一个等差数列,公差为3,首项为1,末项为301。
项数= (301 - 1)÷3 + 1 = 101 。
总和= (1 + 301)×101÷2 = 15251 ,平均数= 15251÷101 = 151 。
题目2:在一个减法算式里,被减数、减数与差的和等于120,而减数是差的 3 倍,那么差等于多少?答案:因为被减数= 减数+ 差,所以被减数+ 减数+ 差= 2×被减数= 120,被减数= 60。
又因为减数是差的3 倍,所以差= 60÷(3 + 1)= 15 。
题目3:两个数的和是682,其中一个加数的个位是0,如果把这个0 去掉,就得到另一个加数。
这两个加数各是多少?答案:一个加数是另一个加数的10 倍。
较小的加数= 682÷(10 + 1)= 62 ,较大的加数= 62×10 = 620 。
题目4:一桶油连桶重16 千克,用去一半后,连桶重9 千克,桶重多少千克?答案:油重= (16 - 9)× 2 = 14 千克,桶重= 16 - 14 = 2 千克。
题目5:某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。
那么有多少人两个小组都不参加?答案:参加了至少一个小组的人数= 15 + 18 - 10 = 23 人,两个小组都不参加的人数= 40 - 23 = 17 人。
题目6:有一根木材长8 米,要把它锯成8 段,每锯一段要用3 分钟,共锯了多少分钟?答案:锯成8 段需要锯7 次,共锯了7×3 = 21 分钟。
题目7:已知9 个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是多少?答案:9 个数的总和= 9×72 = 648 ,余下8 个数的总和= 8×78 = 624 ,去掉的数= 648 - 624 = 24 。
50道经典小学奥数题(含解题思路)

1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。