实数复习课公开课教案
初中实数复习课教案

初中实数复习课教案1. 理解实数的意义,掌握实数的分类,了解实数与数轴的关系。
2. 掌握有理数、无理数的概念,理解有理数与无理数的区别。
3. 理解相反数、绝对值的概念,掌握相反数和绝对值的性质。
4. 掌握实数的四则运算,包括加、减、乘、除、乘方及开方运算。
5. 能运用实数的概念和性质解决实际问题。
二、教学重难点1. 实数的分类和实数与数轴的关系。
2. 相反数和绝对值的性质。
3. 实数的四则运算。
三、教学方法采用讲解、示范、练习、讨论、小组合作等教学方法,引导学生通过自主学习、合作交流,掌握实数的知识和技能。
四、教学过程1. 导入新课通过数轴引入实数的概念,引导学生回顾数轴上的点与实数的关系,为新课的学习打下基础。
2. 知识讲解(1)实数的分类讲解实数的分类,包括有理数和无理数。
通过实例让学生了解有理数和无理数的特点,引导学生掌握有理数与无理数的区别。
(2)实数与数轴讲解实数与数轴的关系,引导学生理解每一个实数都在数轴上有一个对应的点,反之亦然。
(3)相反数和绝对值讲解相反数和绝对值的概念,引导学生掌握相反数和绝对值的性质。
3. 课堂练习布置一些有关实数的分类、实数与数轴、相反数和绝对值等方面的练习题,让学生在课堂上完成,及时巩固所学知识。
4. 小组合作组织学生进行小组合作,探讨实数的四则运算,引导学生掌握实数的运算规律。
5. 课堂小结对本节课的内容进行课堂小结,帮助学生梳理实数的知识和技能。
五、课后作业布置一些有关实数的练习题,让学生课后巩固所学知识,提高解题能力。
六、教学反思在课后对教学效果进行反思,针对学生的掌握情况,调整教学策略,为下一步的教学做好准备。
通过以上教学设计,希望能帮助学生全面掌握实数的知识和技能,提高他们的数学素养。
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
数学七年级下册实数复习课教案

基于标准的课程纲要和教案教案:实数复习课教材来源:七年级数学(下册)教科书人民教育出版社内容来源:七年级《数学(下册)》第六章主题:实数复习课时:2课时授课对象:七年级学生目标确定的依据1 课程标准相关要求(1)理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根。
(2)会用计算器进行数的加、减、乘、除、乘方及开方运算。
(3)了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义。
(4)了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围,会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。
2 教材分析学习算数平方根,平方根,立方根为学习实数打下基础,由于实际运算中引入了无理数,使数的范围从有理数扩展到了无理数,完成了初中阶段数的扩展。
运算方面,在乘方的基础上引入了开方运算,使代数运算得以完善。
因此本章是今后学习根式运算,函数,方程等知识的重要基础。
3 学情分析要重视从有理数到实数的发展过程的教学,要充分运用实际例子克服这一数的扩展过程的抽象性,是学生退回到平方根,无理数,实数等概念是由于人们生产和生活而产生的,在我们的周围普遍存在着,在教学活动中应通过实际例子帮助学生了解这些抽象概念的实际意义,并学会在实际中应用它们。
目标1.知识与技能:(1)理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根。
(2)了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义。
(3)运用数形结合的思想,了解实数与数轴上的点一一对应的关系。
2.过程与方法:在探索实数的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生的数感。
3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。
评价任务1理解算数平方根的概念,会求非负数的算数平方根并会用符号表示。
(完整版)《实数》复习课教案

《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。
实数复习教案

实数复习教案教案标题:实数复习教案教学目标:1. 复习实数的基本概念和性质;2. 强化学生对实数运算规则的理解和应用能力;3. 提高学生解决实际问题时运用实数的能力。
教学内容:1. 实数的基本概念回顾:a. 整数、有理数和无理数的定义;b. 实数的分类和表示方法;c. 实数在数轴上的位置表示。
2. 实数的性质复习:a. 实数的比较和大小关系;b. 实数的加法、减法、乘法和除法规则;c. 实数的绝对值和相反数的性质;d. 实数的乘方和开方运算。
3. 实数运算的应用:a. 实际问题的建模和解决方法;b. 利用实数进行计算和推理;c. 实数在几何问题中的应用。
教学步骤:Step 1: 概念回顾和讲解(约10分钟)a. 复习整数、有理数和无理数的定义;b. 引导学生回顾实数的分类和表示方法;c. 通过示例,帮助学生理解实数在数轴上的位置表示。
Step 2: 性质复习和讲解(约15分钟)a. 复习实数的比较和大小关系,引导学生掌握比较运算的规则;b. 强化实数的加法、减法、乘法和除法规则,通过练习题提高学生的运算能力;c. 复习实数的绝对值和相反数的性质,帮助学生理解和应用;d. 复习实数的乘方和开方运算,解释运算规则和性质。
Step 3: 实数运算的应用(约20分钟)a. 引导学生分析实际问题,建立数学模型;b. 通过例题和练习题,让学生应用实数进行计算和推理;c. 引导学生将实数运用于几何问题,加深对实数在几何中的理解。
Step 4: 练习与巩固(约15分钟)a. 给学生一些练习题,巩固所学的实数知识和运算规则;b. 鼓励学生解答问题时进行思考和讨论;c. 对学生的答案进行讲解和指导。
Step 5: 总结与反思(约5分钟)a. 总结本节课的重点内容和要点;b. 鼓励学生提出问题和疑惑;c. 引导学生思考如何将实数知识应用到实际生活中。
教学资源:1. 实数的定义和性质的讲解材料;2. 数轴和实数的图示工具;3. 实际问题的应用练习题。
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标1. 知识与技能:(1)理解和掌握实数的定义及分类,包括有理数和无理数;(2)熟练运用实数的基本性质,如加、减、乘、除、乘方等;(3)掌握实数的运算规则,如负数的运算、分数的运算、根式的运算等。
2. 过程与方法:(1)通过复习和练习,提高学生对实数的认识和理解;(2)培养学生运用实数解决实际问题的能力;(3)引导学生运用数形结合的方法,加深对实数概念的理解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生的团队合作精神,提高学生沟通交流能力;(3)引导学生认识数学在生活中的重要性,培养学生的数学应用意识。
二、教学内容1. 实数的定义及分类;2. 实数的基本性质;3. 实数的运算规则;4. 实数在实际问题中的应用。
三、教学重点与难点1. 教学重点:实数的定义及分类,实数的基本性质和运算规则,实数在实际问题中的应用。
2. 教学难点:实数的概念理解和运用,实数的运算规则,实数在实际问题中的运用。
四、教学方法1. 采用讲解法,引导学生理解和掌握实数的定义及分类,实数的基本性质和运算规则;2. 采用案例分析法,分析实数在实际问题中的应用,培养学生的数学应用意识;3. 采用小组讨论法,激发学生的思考,提高学生的团队合作精神;4. 采用练习法,巩固学生对实数的理解和运用。
五、教学过程1. 引入:通过数轴,引导学生回顾实数的概念,理解实数的定义及分类;2. 讲解:讲解实数的基本性质和运算规则,结合实际例子,让学生深刻理解;3. 案例分析:分析实数在实际问题中的应用,让学生体会数学的价值;4. 小组讨论:引导学生进行小组讨论,分享各自的思考和理解,提高团队合作精神;5. 练习:布置练习题,巩固学生对实数的理解和运用。
六、教学评价1. 课堂表现评价:观察学生在课堂中的参与程度、提问回答情况,以及小组讨论的表现,了解学生的学习状态和理解程度。
2. 练习题评价:对学生的练习题进行批改,评估学生对实数的理解和运用能力,发现并纠正学生的错误。
八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会运用实数解决实际问题。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实例分析,培养学生解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。
(2)无理数:不能表示为两个整数比的数。
2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。
(2)绝对值:数轴上表示一个数的点到原点的距离。
(3)平方:一个数与自身的乘积。
三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。
2. 难点:实数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。
2. 运用举例法,分析实数在实际问题中的应用。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。
3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。
4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。
5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。
6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。
(2)学生能熟练运用实数的性质解决实际问题。
2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。
(2)练习题:评估学生运用实数性质解决问题的能力。
(3)小组讨论:观察学生在团队中的参与程度和协作效果。
七、教学资源1. 教材:八年级数学教材。
2. 课件:实数复习的相关课件。
3. 练习题:针对实数性质的练习题。
人教版七年级数学下册复习课优秀教学案例:6.3实数

我鼓励学生进行小组合作,共同探讨和解决问题。在教学过程中,我设计了多个小组讨论的活动,让学生在小组内交流自己的想法和理解,共同探讨实数的分类和实数与数轴的关系。
例如,在讲解实数的分类时,我让学生在小组内讨论并总结实数的分类,每个小组成员都能发表自己的观点,共同得出实数的分类结果。通过小组合作,学生能够互相学习、互相启发,提高他们的合作能力和团队精神。
在教学过程中,我采用了“问题驱动”的教学方法,通过设置一系列具有启发性的问题,引导学生主动思考、探究和交流。同时,我还运用了数形结合的方法,让学生直观地理解实数与数轴的关系。
本节课结束后,学生对实数的认识得到了加深,他们在实数的分类、实数与数轴的关系等方面的理解更加清晰。此外,通过本节课的学习,学生的数学思维能力得到了锻炼,他们能更好地运用实数解决实际问题。总体来说,本节课达到了预期的教学目标,取得了较好的教学效果。
然后,我组织学生进行小组讨论,让他们共同探讨和解决问题。我提出了与实数相关的问题,引导学生进行思考和交流,培养他们的合作能力和团队精神。
在总结归纳环节,我将学生的小组讨论结果进行总结和归纳,突出实数的重要性和应用。我通过总结归纳,帮助学生形成系统的知识结构,提高他们的理解和记忆能力。
最后,我布置作业小结,让学生在课后进行自主学习和复习。我设计了相关的练习题和思考题,使学生能够巩固所学知识,提高他们的实际应用能力。
在课程开始之前,我通过调查了解到学生对实数的认识存在一定的模糊地带,特别是在实数的分类、实数与数轴的关系等方面。因此,我决定以这些问题为切入点,引导学生进行自主探究,从而提高他们的数学素养。
针对这一章节的内容,我设计了以下教学目标:一是使学生掌握实数的分类,理解有理数和无理数的概念;二是让学生了解实数与数轴的关系,能正确地在数轴上表示实数;三是培养学生运用实数解决问题的能力,提高他们的数学思维品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数复习课教案
活动目标
1.复习平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;
2.复习无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;
3.复习数轴、相反数、绝对值的性质,并在实数范围内准确运用。
4. 能对实数进行运用和比较大小。
活动重点
1. 平方根、立方根的概念、性质,会求一个实数的平方根、立方根。
2.对实数准确分类和比较大小。
活动难点:
掌握实数的有关概念及会进行实数大小比较;会进行开平方和开立方运算,会求一个非负数的算术平方根;能够运用实数的有关性质解决问题
教学准备
课件、导学案
活动过程
一、 知识疏理
(一) 平方根、算术平方根、立方根
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立
方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 设计意图:对比复习平方根、算术平方根、立方根让学生对知识之间的联系,进一步掌握它们之间的区别,达到正确求一个数的方根的目的。
一点一练我能行!
1.明辩事非
3是9的算术平方根 ( )
0的平方根是0,0的算术平方根也是0 ( )
(-2)2的平方根是2- ( )
64的立方根是4± ( )
-10是1000的一个立方根 ( )
2.填一填
25的平方根是 16的算术平方根是 27的立方根是
______ 327 的平方根是_________
3.火眼睛睛
(1
)
A .3
B .3-
C .3±
D . 9
(2)下列说法中正确的是( )
A .81的平方根是±3
B .1的立方根是±1
C .1=±1
D .-5是5的平方根的相反数
(3)下列式子中
① 4是16
的算术平方根,即4= ②4是16的算术平方根,即
4=
③-7是49的算术平方根,即
7= ④7是(-7)²的算术平方根,即
7= 其中正确的是( )
A. ①③
B. ②③
C. ②④
D. ①④
(二)实数的分类、性质、比较大小、运算
1.实数分类(按定义分和按正负分)
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数0 分类中特别强调无理数的形式
针对练习:
(2) 7
3是( ): A .无理数
B .有理数
C .整数
D .负数
1、在下列各数、、、
、、、、、2711
1311010010001.672232.0051525354.0 π 中无理数的个数是( )
A .2
B .3
C .4
D .5
2、把下列各数填在相应的大括号内: 1010010001.2,64,333.3,14.3,,7
5,13---π 整数集合:{ ……};
分数集合:{ ……};
有理数集合:{ };
无理数集合:{ }。
3. 下列说法错误的有( )
①无限小数一定是无理数; ②无理数一定是无限小数;③带根号的数一定是无理数; ④不带根号的数一定是有理数.
A ①②③
B ②③④
C ①③④
D ①②④
2.实数的性质
5.实数与数轴:实数与数轴上的点______________对应.
6.实数的相反数、倒数、绝对值:
相反数:实数a 的相反数为______;若a,b 互为相反数,则a+b=______; 倒数:非零实数a 的倒数为_____(a ≠0);若a ,b 互为倒数,则ab=________。
绝对值:______(0)||______(0)a a a ≥⎧=⎨<⎩
9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.
10.常用公式:
2a = (a )2= 33a = (3a )3=
针对练习:
1.
5
_______.-2的绝对值是3的相反数是
2.1
2-的相反数是_________,3
2-= .
3.如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()
A.1.5B.1.4C.2D.3
5.相反数是本身的数是;绝对值是本身的数是;倒数是本身的数是。
6.a、b互为相反数,c与d互为倒数则a+1+b+cd= 。
7.31-2
3(1)
-=________.
(1)、计算3
38
4
16
27-
+
-
+的值是()。
A、1
B、±1
C、2
D、7
(2)、计算2
5
2
8
2
6-
+的值。
3.实数大小比较的方法:
1)有理数大小的比较法则在实数范围内同样适用,即:
法则1:在数轴上表示的两个实数,右边的数总比左边的数大。
法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝对值大的反而小。
考考你:
1.下列各数中,最小的数是 ( ) A.-1 B.0 C.1 D.2
2.实数a,b,c,d在数轴上的对应点如图所示,则它们从小到大的顺序是。
3.比较下列各组数的大小
4.若2
,1=
=y
x,且=
+
〉y
x
xy,0。
2
3
)1(-
-2
3
13
)2(
9.=-+=++++-c b a c b a 那么已知,01)5(22 。
3.
4. 5.两个无理数的和为有理数,这两个无理数可以是______和_______.
6.若│x 2-25│则x=_______,y=_______.
7.已知x 的平方根是±8,则x 的立方根是______
二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解)
1.求下列各数的平方根:
(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 6.在实数2-、13.0 、3
π、71、0.80108中,无理数的个数为_______个.
三、查缺补漏,归纳提升.
1.通过今天的探究学习,你们有哪些收获?
2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.
3.对于本章的内容你还有那些疑问?
_.
二、选一选: 8.4的平方根是( )
A.2
B.-2
C.±2
D.
9.下列各式中,无意义的是( )
10.下列各组数中,互为相反数的一组是( )
A.-2
B.-2与-12
D.│-2│与2 11. 下列说法正确的是 ( )
A.1的平方根是1;
B.1的算术平方根是1;
C.-2是2的平方根;
D.-1的平方根是-1
三、做一做:
12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214
13. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.
15.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.
5. 3.若643-=x ,则=x ______________. 327
125-=_______。