2005年考研数学一真题解析
2005考研数学一真题及答案

2005考研数学一真题及答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z).[ ](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1 (C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ ] (14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0の解.(21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov参考答案一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'の通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}の方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵の形式,再用方阵相乘の行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.[ C ]【分析】 先求出f(x)の表达式,再讨论其可导情形.【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ]【分析】 本题可直接推证,但最简便の方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(E) 只能确定一个具有连续偏导数の隐函数z=z(x,y).(F) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(H) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z).[ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应の隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应の隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ]【分析】 讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k .由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关の充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(B) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B .(C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -. [ C ]【分析】 本题考查初等变换の概念与初等矩阵の性质,只需利用初等变换与初等矩阵の关系以及伴随矩阵の性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵の第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件の独立性又可得一等式,由此可确定a,b の取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ]【分析】 利用正态总体抽样分布の性质和2χ分布、t 分布及F 分布の定义进行讨论即可.【详解】 由正态总体抽样分布の性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y xxy .]1[22【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数の收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑, 122211()(1),(1,1)1n n n S x x x x∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '== 所以 2001()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0の函数值与导数值,在x=3处の函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数の介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式.【分析】 证明(I )の关键是如何将封闭曲线C 与围绕原点の任意分段光滑简单闭曲线相联系,这可利用曲线积分の可加性将C 进行分解讨论;而(II )中求)(y ϕの表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线3l=++⎰Cyx xydydx y 4222)(ϕ-++⎰+314222)(l l yx xydydx y ϕ022)(3242=++⎰+l l yx xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx y ϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式の右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2.(I ) 求a の值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形;③ ④(III ) 求方程),,(321x x x f =0の解.【分析】 (I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步の结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型の秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求の正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解.【分析】 AB=O, 相当于告之B の每一列均为Ax=0の解,关键问题是Ax=0の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解】 由AB=O 知,B の每一列均为Ax=0の解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0の基础解系所含解向量の个数为3-r(A)=2, 矩阵B の第一、第三列线性无关,可作为其基础解系,故Ax=0 の通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0の通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 の同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数の概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应の概率密度.【详解】 (I ) 关于X の边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y の边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求の概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立の随机变量求和,再用方差の性质进行计算即可;求1Y 与n Y の协方差),(1n Y Y Cov ,本质上还是数学期望の计算,同样应注意利用数学期望の运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。
2005考研数学一真题

2005考研数学一真题2005年考研数学一真题是考研数学复习中的经典之一,也是许多考生备战考研数学的必备材料。
这套真题共有12道选择题和8道填空题,覆盖了高等数学的各个知识点。
通过对这套真题的分析和解答,可以帮助考生更好地理解数学知识,提高解题能力。
首先,我们来看看选择题部分。
这部分题目涉及了微积分、线性代数、概率统计等多个知识点。
其中,一道关于微分方程的题目要求求解某一特定微分方程的通解,这需要考生对微分方程的基本概念和求解方法有一定的了解。
另外,还有一道关于概率统计的题目,要求计算某个事件的概率,这需要考生熟悉概率计算的方法和公式。
通过对这些选择题的解答,考生可以巩固和提高对数学知识的理解和应用能力。
接下来,我们来看看填空题部分。
这部分题目主要涉及了线性代数和高等数学的知识点。
其中,一道关于矩阵的题目要求求解一个线性方程组,这需要考生对矩阵的基本概念和运算规则有一定的了解。
另外,还有一道关于函数极值的题目,要求求解函数的极值点,这需要考生熟悉函数极值的判定条件和求解方法。
通过对这些填空题的解答,考生可以进一步巩固和提高对数学知识的掌握和应用能力。
除了对这套真题的解答,考生还可以通过分析题目的出题思路和解题方法,提高解题的技巧和效率。
例如,在解答选择题时,可以通过排除法来缩小答案的范围,从而更快地找到正确答案。
在解答填空题时,可以通过观察题目的特点和给定的条件,选择合适的方法和步骤进行求解。
通过这样的分析和思考,考生可以提高解题的准确性和速度。
此外,考生还可以结合教材和其他辅导资料,对这套真题进行更深入的学习和理解。
可以通过查阅相关的数学知识点,对每道题目的解题思路和方法进行详细的分析和总结。
可以通过做更多的类似题目,巩固和加深对数学知识的理解和掌握。
通过这样的学习和练习,考生可以更好地应对考试中的各种题型和难题。
总之,2005年考研数学一真题是一套经典的考研数学题目,通过对这套真题的分析和解答,可以帮助考生更好地理解数学知识,提高解题能力。
2005年考研数学一试题答案与解析

∫ x2 y = x2 ln xdx = 1x3 ln x − 1 x3 + C ,
3
9
NBF 考研辅导,全程包过,不1过退款! QQ 客服:296312040
NBF 辅导,真正为考研人着想的辅导!
再代入初始条件即可得所求解为 y = 1 x ln x − 1 x.
3
9
(6)从数 1,2,3,4 中任取一个数,记为 X , 再从1,2, , X 中任取一个数,记
为 Y, 则
P{Y = 2} =
..
答案: 13 48
考试分析解法:分析 本题考查离散型随机变量的概率分布和全概率公式。
∑ ∑ 解: P{Y = 2} = 4 P{X = i}P{Y = 2 X = i} = 4 1 × 1 = 13
【】
答案:(C)
考试分析解法:分析 本题是一道简单的综合题,考查的知识点主要有极限运算、
函数在一点可导的概念、导数与左、右导数的关系等。
解:当 x ≤ 1时, lim n 1+ x 3n = 1 ;当 x > 1 时, n→∞
NBF 考研辅导,全程包过,不3过退款! QQ 客服:296312040
NBF 辅导,真正为考研人着想的辅导!
F ′(x) = f (x).
当 F(x) 为 偶 函 数 时 , 有 F (−x) = F (x) , 于 是 F ′(−x) ⋅ (−1) = F ′(x) , 即
− f (−x) = f (x) ,也即 f (−x) = − f (x) ,可见 f(x)为奇函数;反过来,若 f(x)为奇
∫ ∫ 函数,则 x f (t)dt 为偶函数,从而 F (x) = x f (t)dt + C 为偶函数,可见(A)为正确
2005年考研数学真题

2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12sinlim 2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz dy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21 . 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a.【详解】 由题设,有=1234123121112aa a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= 0.4 , b= 0.1 .【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小. 【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是22c o s 0y x +≤)c o s (22y x +≤≤222)c o s (y x +因此<+⎰⎰σd y x D22cos<+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是 (A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a发散,进一步排除(C), 故应选(D).事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f s i n c o s)(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界.(C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由TA A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ]【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为0.90的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,)()()(1yxf y x y x f x y f x yg '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂, 所以 222222yg y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f xy ''-''-=).(2xy f x y ' (17)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的.【详解】 设∑∞=-+=12)1121()(n n x n x S , ∑∞=+=121121)(n n x n x S ,∑∞==122)(n n x x S ,则 )()()(21x S x S x S -=,).1,1(-∈x由于∑∞==122)(n n xx S =221x x -, )1,1(,1))((22121-∈-=='∑∞=x xx xx xS n n , 因此 ⎰-++-=-=xx x x dt t t x xS 022111ln 211)(, 又由于 0)0(1=S ,故.0,1,0,11ln 211)(1=<⎪⎩⎪⎨⎧-++-=x x x x x x S 所以 )()()(21x S x S x S -=.0,1,0,1111ln 212=<⎪⎩⎪⎨⎧---+=x x x x x x (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 010).1()()()()()( 【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'x g x f dt t g t f dt t f t g 010)1()()()()()(, 则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到=)1(F ⎰⎰-'+'1010)1()1()()()()(g f dt t g t f dt t f t g , 而 ⎰⎰⎰'-=='10101010)()()()()()()()(dt t g t f t f t g t df t g dt t f t g =⎰'-10)()()1()1(dt t g t f g f ,故F(1)=0. 因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有⎰⎰≥'+'a g a f dx x g x f dx x f x g 010).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 000)()()()()()( =⎰'-a dx x g x f a g a f 0)()()()(, ⎰⎰'+'adx x g x f dx x f x g 010)()()()( =⎰⎰'+'-100)()()()()()(dx x g x f dx x g x f a g a f a ⎰'+1.)()()()(a dx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈,⎰⎰-='≥'1010)]()1()[()()()()(a g g a f dx x g a f dx x g x f , 从而 ⎰⎰'+'a dx x g x f dx x f x g 010)()()()( ).1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a , 从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T )1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211, 显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101, 显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T ,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义.【详解】 (I) 因 ⎥⎦⎤⎢⎣⎡-=-n T mT E A C o E P 1,有 DP P T =⎥⎦⎤⎢⎣⎡--n T m E A C o E 1⎥⎦⎤⎢⎣⎡B C C A T ⎥⎦⎤⎢⎣⎡--n m E o C A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o C A T 1⎥⎦⎤⎢⎣⎡--n m E oC A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o o A T 1. (II )矩阵C A C B T 1--是正定矩阵.由(I)的结果可知,矩阵D 合同于矩阵.1⎥⎦⎤⎢⎣⎡-=-C A C B o o A M T 又D 为正定矩阵,可知矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故C A C B T 1--为对称矩阵. 对T X )0,,0,0( =及任意的0),,,(21≠=T n y y y Y ,有.0)(),(11>-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---Y C A C B Y Y X C A C B o o A Y X T T T T T 故C A C B T 1--为正定矩阵. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计21)(n Y Y c +,利用其数学期望等于2σ确定c 即可.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且 ),,2,1(,02n i DX EX i i ===σ,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11(=.1)1(1)1(222222σσσn n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑= =.112222σσσn n n -=+- (III ))(])([121n n Y Y cD Y Y c E +=+ =)],(2[121n Y Y Cov DY DY c ++ =222)2(2]211[σσσ=-=--+-c n n n n n n n c , 故 .)2(2-=n n c。
2005年数学考研真题分类解析

第一部分 高等数学一、函数、极限与连续1.(数二)当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k=43 .【分析】 题设相当于已知1)()(lim=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(limkxxx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k21143cos 1arcsin lim2==-+→kxxx x x ,得.43=k【评注】 无穷小量比较问题是历年考查较多的部分,本质上,这类问题均转化为极限的计算. 2.(数二)设函数,11)(1-=-x xe xf 则( )(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点.(C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点.【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;0)(l i m 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).【评注】 应特别注意:+∞=-+→1lim1x xx ,.1lim 1-∞=--→x x x 从而+∞=-→+11lim x x x e ,.0lim 11=-→-x xx e3.(数二)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→xxx dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用洛必塔法则,但分子分母求导前应先变形. 【详解】 由于⎰⎰⎰=-=-=-00)())(()(xxxut x du u f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→x xxx xxx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 00)()()()()(lim=⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=)()()(limx f xduu f x dtt f xxx +⎰⎰→=.21)0()0()0(=+f f f【评注】 本题容易出现的错误是:在利用一次洛必塔法则后,继续用洛必塔法则⎰⎰+→x xx x xf du u f dtt f 0)()()(lim=.21)()()()(lim='++→x f x x f x f x f x错误的原因:f(x)未必可导. 4.(数三、数四)极限12sinlim 2+∞→x x x x = 2 .【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12s i nl i m 2+∞→x x x x =.212lim 2=+∞→x x xx【评注】 若在某变化过程下,)(~)(x x αα,则 ).()(lim )()(lim x x f x x f αα=5.(数三、四)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则. 【详解】 )1(1lim)111(lim 20xxx xx ex e x x xex --→-→-+-+=--+=2201limxex x xx -→+-+ =xex xx 221lim-→-+=.2322lim=+-→xx e【评注】 本题属基本题型,在里用罗必塔法则求极限的过程中,应注意利用无穷小量的等价代换进行简化.二、导数与微分1.(数一)设函数nnn xx f 31lim)(+=∞→,则f(x)在),(+∞-∞内( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim)(3=+=∞→nnn xx f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xx x f n nn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).【评注】 本题综合考查了数列极限和导数概念两个知识点. 2.(数二)设xx y )sin 1(+=,则π=x dy= dx π- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]s i n 1c o s )s i n 1[l n ()s i n 1l n (xx x x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y ys i n 1c o s )s i n 1l n (1+++=',于是 ]sin 1cos )sin 1[ln()sin 1(xx x x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='【评注】 幂指函数的求导问题,既不能单纯作为指数函数对待,也不能单纯作为幂函数,而直接运用相应的求导公式.3.(数二)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是( )(A)32ln 81+. (B) 32ln 81+-.(C) 32ln 8+-. (D) 32ln 8+.【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).【评注】注意本题法线的斜率应为-8. 此类问题没有本质困难,但在计算过程中应特别小心,稍不注意答案就可能出错.三、中值定理与导数的应用 1.(数一)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f 【评注】 中值定理的证明问题是历年出题频率最高的部分,而将中值定理与介值定理或积分中值定理结合起来命题又是最常见的命题形式. 2.(数一)曲线122+=x xy 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=212lim)(lim22=+=∞→∞→xx xxx f x x ,[]41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。
2005年考研数学一真题及答案

2005年考研数学一真题及答案2005年考研数学一真题及答案2005年的考研数学一真题是考生们备战考研的重要参考资料之一。
在这篇文章中,我们将回顾一下这份真题的内容,同时给出对应的答案解析,帮助考生们更好地理解和掌握数学一的考试要点。
第一道题目是一道选择题,考察的是线性代数的知识。
题目要求求解一个线性方程组,考生需要根据矩阵的基本性质和行列式的计算方法,进行变换和计算,最终得到方程组的解。
接下来是一道解析几何的题目,考察的是平面与直线的交点。
考生需要根据平面和直线的方程,进行联立,解得交点的坐标。
这道题目需要考生对解析几何的基本概念和计算方法有一定的掌握。
第三道题目是一道概率统计的题目,考察的是随机变量的期望值和方差。
考生需要根据题目给出的概率密度函数,计算随机变量的期望值和方差。
这道题目需要考生对概率统计的基本概念和计算方法有一定的了解。
第四道题目是一道微积分的题目,考察的是函数的极值。
考生需要根据函数的导数和二阶导数的性质,求出函数的极值点和极值。
这道题目需要考生对微积分的基本概念和计算方法有一定的熟悉程度。
第五道题目是一道复变函数的题目,考察的是复数的运算和函数的性质。
考生需要根据题目给出的复数和函数的定义,进行复数的运算和函数的计算。
这道题目需要考生对复变函数的基本概念和计算方法有一定的掌握。
以上是2005年考研数学一真题的内容和解答,通过对这些题目的学习和理解,考生们可以更好地了解数学一的考试要点,提高自己的解题能力和应试水平。
总结起来,2005年考研数学一真题涵盖了线性代数、解析几何、概率统计、微积分和复变函数等多个数学领域的知识点。
通过对这些题目的分析和解答,考生们可以更好地掌握数学一的考试内容和解题技巧。
希望本文对考生们备战考研有所帮助,祝愿大家取得优异的成绩!。
2005年考研数学真题

2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = . (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______. (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____. (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ ] (8)设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ] (9)设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ ](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分) 求).111(lim 0x ex xx --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 12sinlim 2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xez yx +++=+,则=)0,1(dzdy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21 . 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a.【详解】 由题设,有=1234123121112aa a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ (6)设二维随机变量(X,Y) 的概率分布为X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= 0.4 , b= 0.1 .【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B). (8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小. 【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是22c o s 0y x +≤)c o s (22y x +≤≤222)c o s (y x +因此<+⎰⎰σd y x D22cos<+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是 (A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B )∑∞=12n na收敛,∑∞=-112n n a发散.(C))(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛. [ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a与∑∞=12n na均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a发散,进一步排除(C), 故应选(D).事实上,级数)(1212∑∞=--n n n a a的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f s i n c o s)(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界.(C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足TA A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D)3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由TA A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A). (13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ]【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为0.90的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,)()()(1yxf y x y x f x y f x yg '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂, 所以 222222yg y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f xy ''-''-=).(2xy f x y ' (17)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的.【详解】 设∑∞=-+=12)1121()(n n x n x S , ∑∞=+=121121)(n n x n x S ,∑∞==122)(n n x x S ,则 )()()(21x S x S x S -=,).1,1(-∈x由于∑∞==122)(n n xx S =221x x -, )1,1(,1))((22121-∈-=='∑∞=x xx xx xS n n , 因此 ⎰-++-=-=xx x x dt t t x xS 022111ln 211)(, 又由于 0)0(1=S ,故.0,1,0,11ln 211)(1=<⎪⎩⎪⎨⎧-++-=x x x x x x S 所以 )()()(21x S x S x S -=.0,1,0,1111ln 212=<⎪⎩⎪⎨⎧---+=x x x x x x (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 010).1()()()()()( 【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'xg x f dt t g t f dt t f t g 010)1()()()()()(, 则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到=)1(F ⎰⎰-'+'1010)1()1()()()()(g f dt t g t f dt t f t g , 而 ⎰⎰⎰'-=='10101010)()()()()()()()(dt t g t f t f t g t df t g dt t f t g =⎰'-10)()()1()1(dt t g t f g f ,故F(1)=0. 因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有⎰⎰≥'+'a g a f dx x g x f dx x f x g 010).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 000)()()()()()( =⎰'-a dx x g x f a g a f 0)()()()(, ⎰⎰'+'adx x g x f dx x f x g 010)()()()( =⎰⎰'+'-100)()()()()()(dx x g x f dx x g x f a g a f a ⎰'+1.)()()()(a dx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈,⎰⎰-='≥'1010)]()1()[()()()()(a g g a f dx x g a f dx x g x f , 从而 ⎰⎰'+'a dx x g x f dx x f x g 010)()()()( ).1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分)已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a , 从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T )1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211, 显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101, 显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算DP P T ,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义.【详解】 (I) 因 ⎥⎦⎤⎢⎣⎡-=-n T mT E AC o E P 1,有 DP P T =⎥⎦⎤⎢⎣⎡--n T m E A C o E 1⎥⎦⎤⎢⎣⎡B C C A T ⎥⎦⎤⎢⎣⎡--n m E o C A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o C A T 1⎥⎦⎤⎢⎣⎡--n m E oC A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o o A T 1. (II )矩阵C A C B T 1--是正定矩阵.由(I)的结果可知,矩阵D 合同于矩阵.1⎥⎦⎤⎢⎣⎡-=-C A C B o o A M T 又D 为正定矩阵,可知矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故C A C B T 1--为对称矩阵. 对T X )0,,0,0( =及任意的0),,,(21≠=T n y y y Y ,有.0)(),(11>-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---Y C A C B Y Y X C A C B o o A Y X T T T T T 故C A C B T 1--为正定矩阵. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计21)(n Y Y c +,利用其数学期望等于2σ确定c 即可.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且 ),,2,1(,02n i DX EX i i ===σ,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11(=.1)1(1)1(222222σσσn n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑= =.112222σσσn n n -=+- (III ))(])([121n n Y Y cD Y Y c E +=+ =)],(2[121n Y Y Cov DY DY c ++ =222)2(2]211[σσσ=-=--+-c n n n n n n n c , 故 .)2(2-=n n c。
【考研数学】2005年数学一真题、标准答案及解析

=
(5)设 均为3维列向量,记矩阵
, ,
如果 ,那么 2.
【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.
【详解】由题设,有
= ,
于是有
(6)从数1,2,3,4中任取一个数,记为X,再从 中任取一个数,记为Y,则
= .
【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.
(B)可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).
(C)可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).
(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ]
(11)设 是矩阵A的两个不同的特征值,对应的特征向量分别为 ,则 , 线性无关的充分必要条件是
(A) . (B) . (C) . (D) . [ ]
(12)设A为n( )阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则
(A)交换 的第1列与第2列得 . (B)交换 的第1行与第2行得 .
(C)交换 的第1列与第2列得 . (D)交换 的第1行与第2行得 .
[ ]
(13)设二维随机变量(X,Y)的概率分布为
(3)设函数 ,单位向量 ,则 = .
【分析】函数u(x,y,z)沿单位向量 }的方向导数为:
因此,本题直接用上述公式即可.
【详解】因为 , , ,于是所求方向导数为
=
(4)设 是由锥面 与半球面 围成的空间区域, 是 的整个边界的外侧,则 .
【分析】本题 是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为.4121-=x y【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】原方程等价为x y xy ln 2=+', 于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有.221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X,再从X ,,2,1 中任取一个数,记为Y,则}2{=Y P =4813. 【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A)处处可导.(B)恰有一个不可导点.(C)恰有两个不可导点.(D)至少有三个不可导点.[C] 【分析】先求出f(x)的表达式,再讨论其可导情形. 【详解】当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B )F(x)是奇函数⇔f(x)是偶函数.(C)F(x)是周期函数⇔f(x)是周期函数. (D)F(x)是单调函数⇔f(x)是单调函数.[A]【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1,则取F(x)=x+1,排除(B)、(C);令f(x)=x,则取F(x)=221x ,排除(D);故应选(A). (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A)2222y u x u ∂∂-=∂∂.(B )2222y ux u ∂∂=∂∂.(C)222yuy x u ∂∂=∂∂∂.(D)222x u y x u ∂∂=∂∂∂.[B] 【分析】先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是)()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y). (D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z).[D]【分析】本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy ,分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】令F(x,y,z)=1ln -+-xzey z xy ,则z e y F xz x +=',yz x F y -=',x e y F xzz +-='ln , 且2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F .由此可确定相应的隐函数x=x(y,z)和y=y(x,z).故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ.(B)02≠λ.(C)01=λ.(D)02=λ.[B]【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】方法一:令0)(21211=++αααA k k ,则022211211=++αλαλαk k k ,0)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k 当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二:由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B .(B)交换*A 的第1行与第2行得*B . (C)交换*A 的第1列与第2列得*B -.(D)交换*A 的第1行与第2行得*B -. [C]【分析】本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y)的概率分布为 XY01 00.4a 1b0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2,b=0.3(B)a=0.4,b=0.1 (C)a=0.3,b=0.2(D)a=0.1,b=0.4[B]【分析】首先所有概率求和为1,可得a+b=0.5,其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】由题设,知a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P ,即a=))(4.0(b a a ++,由此可解得a=0.4,b=0.1,故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B)).(~22n nS χ(C))1(~)1(--n t SXn (D)).1,1(~)1(2221--∑=n F X X n n i i [D] 【分析】利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SX n nS X ,可排除(C);而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为∑=-ni in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数.计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】令}0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=202131320cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】先求收敛半径,进而可确定收敛区间.而和函数可利用逐项求导得到.【详解】因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】由题设图形知,f(0)=0,2)0(='f ;f(3)=2,.0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】(I )令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II )在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】(I )1ll 2C oX l 3如图,将C 分解为:21l l C +=,另作一条曲线l =++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II )设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++①243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I )求a 的值;(II )求正交变换Qy x =,把),,(321x x x f 化成标准形; (III )求方程),,(321x x x f =0的解.【分析】(I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;(III )利用第二步的结果,通过标准形求解即可.【详解】(I )二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A ,由二次型的秩为2,知020011011=-++-=aa a a A ,得a=0. (II )这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A ,可求出其特征值为0,2321===λλλ. 解0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη 令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III )由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数). 从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分) 已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O,求线性方程组Ax=0的通解.【分析】AB=O,相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠,则r(B)=2,于是r(A)1≤,显然r(A)1≥,故r(A)=1.可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2,矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2)若k=9,则r(B)=1,从而.2)(1≤≤A r1) 若r(A)=2,则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I )(X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z【分析】求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】(I )关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x =.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II )令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3)当2≥z 时,.1}2{)(=≤-=z Y X P z F Z 即分布函数为:.2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I )i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11( =.1)1(1)1(222n n n n n n -=-⋅+- (II ))])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +- =22121)(][20X E X D X X X E n n j j +++-∑= =.112n n n -=+-声明:此资源由本人收集整理于网络,只用于交流学习,请勿用作它途。