交通流中的nasch模型及matlab代码元胞自动机

合集下载

交通流中地NaSch模型及MATLAB代码元胞自动机

交通流中地NaSch模型及MATLAB代码元胞自动机

元胞自动机 NaSch模型及其MATLAB代码作业要求根据前面的介绍,对NaSch模型编程并进行数值模拟:●模型参数取值:Lroad=1000,p=0.3,Vmax=5。

●边界条件:周期性边界。

●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。

●基本图(流量-密度关系):需整个密度范围内的。

●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画500个时间步即可)。

●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。

●流量计算方法:密度=车辆数/路长;流量flux=density×V_ave。

在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N;流量flux=N/T。

●在计算过程中可都使用无量纲的变量。

1、NaSch模型的介绍作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。

●时间、空间和车辆速度都被整数离散化。

● 道路被划分为等距离的离散的格子,即元胞。

● 每个元胞或者是空的,或者被一辆车所占据。

● 车辆的速度可以在(0~Vmax )之间取值。

2、NaSch 模型运行规则在时刻t 到时刻t+1的过程中按照下面的规则进行更新:(1)加速:),1min(max v v v n n +→规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。

(2)减速:),min(n n n d v v →规则(2)确保车辆不会与前车发生碰撞。

(3)随机慢化: 以随机概率p 进行慢化,令:)0,1-min(n n v v → 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。

这一规则也是堵塞自发产生的至关重要因素。

(4)位置更新:n n n v x v +→ ,车辆按照更新后的速度向前运动。

交通流元胞自动机源代码

交通流元胞自动机源代码

用Matlab实现元胞自动机(网上收集、转载)技术2010-03-13 13:04:28 阅读121 评论0 字号:大中小订阅.file:life.m%% 初始化m = 50;X = zeros(m,m);X(25,25) = 1;n = [m 1:m-1];e = [2:m 1];s = [2:m 1];w = [m 1:m-1];% 绘制初始图形[i,j] = find(X);figure(gcf);plothandle = plot(i,j,'.', ...'Color','blue', ...'MarkerSize',12);axis([0 m+1 0 m+1]);%% 演化for k = 1:50%邻居数N = X(n,:) + X(s,:) + X(:,e) + X(:,w) + ...X(n,e) + X(n,w) + X(s,e) + X(s,w);%概率阵RAND = rand(m);%换代X = X | (N.*RAND>0.99);%绘图[i,j] = find(X);set(plothandle,'xdata',i,'ydata',j)drawnowpause(0.2)kendfile 2:function sierpinski(n);% 使用元胞自动机生成sierpinski直角垫片% Example:% sierpinski(256);% %算法见:孙博文,《分形算法与程序设计:用Visual C++实现》if nargin==0;n=256;endX=ones(n);X(1,n-1)=0;H=imshow(X,[]);set(gcf,'doublebuffer','on');k=1;while k<n;X(k+1,1:end-1)=xor(X(k,1:end-1),X(k,2:end));X(k+1,n)=1;set(H,'CData',X);pause(0.1);k=k+1;endfile 3:function CA_sim_cloud;% 使用元胞自动机模拟地球卫星的云图%% reference:% Piazza, E.; Cuccoli, F.;% Cellular Automata Simulation of Clouds in Satellite Images,% Geoscience and Remote Sensing Symposium, 2001. IGARSS '01. % IEEE 2001 International Volume 4, 9-13 July 2001 Page(s):% 1722 - 1724 vol.4 Digital Object Identifier 10.1109/IGARSS.% 2001.977050time=888; % 程序执行步数M=240;N=320;S=round(rand(M,N)*15);p=[1,2,1,6,6,1,2,1];p=sum(tril(meshgrid(p)),2)/20;rand('state',0);SS=S;R=rand(M,N);G=R;B=R;C=cat(3,R,G,B);fig=figure;set(fig,'DoubleBuffer','on');mov = avifile('example2.avi');cc=imshow(C,[]);set(gcf,'Position',[13 355 157 194])x1=(1:3)+round(M/2);y1=(1:3)+round(N/3);x2=(1:3)+round(M/3);y2=(1:3)+round(N/2);x3=(1:3)+round(M/1.5);y3=(1:3)+round(N/2);q=0;qq=15/4;while q<time;SS=zeros(M,N);for k=1:15;r=rand(M,N); % 生成几率rK=zeros(M+2,N+2);T=(S-k>=0); % 粒子数矩阵K(2:end-1,2:end-1)=T;SS=K(1:end-2,1:end-2).*(r<p(1))+...K(1:end-2,2:end-1).*(r<p(2) & r>=p(1))+...K(1:end-2,3:end).*(r<p(3) & r>=p(2))+...K(2:end-1,1:end-2).*(r<p(4) & r>=p(3))+...K(2:end-1,3:end).*(r<p(5) & r>=p(4))+...K(3:end,1:end-2).*(r<p(6) & r>=p(5))+...K(3:end,2:end-1).*(r<p(7) & r>=p(6))+...K(3:end,3:end).*(r>=p(7))+SS;endS=SS; %SS是粒子扩散后的分布S(S>15)=15;S(x1,y1)=15;S(x2,y2)=15;S(x3,y3)=15; % 粒子源赋值G=(S<=7.5);B=(S>qq);R=(S>qq & S<=7.5);C=double(cat(3,R,G,B));set(cc,'CData',C);q=q+1;pause(0.2);title(['q=',num2str(q)]);Nu(q)=sum(S(1:end));F = getframe(gca);mov = addframe(mov,F);endmov = close(mov);figure;plot(Nu)file 4:题目: 六边形的元胞自动机上的单粒子运动摘要: 本程序在六边形的元胞自动机上模拟单粒子运动,算法是基于FHP规则.元胞自动机模拟地球卫星的云图关键词: 六边形, 元胞自动机, FHP规则figure('Position',[15 30 997 658],'NumberTitle','off');set(gcf,'name',' 六边形的元胞自动机上的单粒子运动');% Author's email: zjliu2001@% Reference:% U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas% automata for the Navier-Stokes rquation, Phys. Rev.% Lett. 1986,56: 1505-1508set(gcf,'DoubleBuffer','on');axis square;box on;set(gca,'XColor','r','YColor','r');set(gca,'Position',[-0.01 0.11 0.775 0.815]);L=17.5*0.1/sqrt(3);axis([0,L,0,1]); hold on;for p=0:.1:0.9;plot([0,(1-p)/sqrt(3)],[p,1],'k');endfor p=0:0.1/sqrt(3):1;plot([p,min(p+1/sqrt(3),17.5*0.1/sqrt(3))],[0,min(1,(L-p)*sqrt(3))],'k');endfor p=0:0.1/sqrt(3):1;plot([0,p],[p*sqrt(3),0],'k');endfor p=0:9;plot([L-[0.05+p/10]/sqrt(3),L],[1,1-[0.05+p/10]],'k');endfor p=0:0.05:1;plot([0,L],[p,p],'k');endpo=plot(0.8/sqrt(3),0.5,'r.','markersize',24);pz=0.8/sqrt(3)+0.5i; % the position of read pointA=pi/3*2; % the movement direction of read pointgc=gca;a1=axes('Position',[0.7,0.5,0.25,0.3]);axis square;hold on;axis([0,1,0,1]);plot([0.5+0.5i,(1+i)/2+0.4*exp(i*pi/3*2)]);plot([0.5+0.5i,(1+i)/2+0.4*exp(i*pi/3)]);plot([0.3,0.7],[0.5,0.5]);text(0.2,0.8,'Y','fontsize',14);text(0.73,0.8,'X','fontsize',14);text(0.2,0.4,'Z','fontsize',14);axes(gc);dt=0.1/sqrt(3); k=0;ses=['while k;',...'pz=pz+dt*exp(i*A);',...'if imag(pz)>0.99 | imag(pz)<0.01;',...' A=-A;',...'end;',...'if real(pz)>0.99 | real(pz)<0.01;',...' A=-A-pi;',...'end;',...'set(po,''XData'',real(pz),''YData'',imag(pz));',...'pause(0.2);',...'end;'];po1=uicontrol(gcf,'style','push',...'unit','normalized','position',[0.74,0.87,0.1,0.08],...'string','start','fontsize',18,'callback',[]);set(po1,'callback',['k=~k;if k==1;',...'set(po1,''string'',''stop'');',...'else set(po1,''string'',''start'');',...'end;',ses]);file 5:% DLA%%%%%来源:萝卜驿站/ clc;clear;close all;S=ones(40,100);% state matrixS(end,:)=0; % initial sttaeSs=zeros(size(S)+[1,0]); % top line is origin of particle Ss(2:end,:)=S; % showing matrixN=size(S,2);II=imagesc(Ss);axis equal;colormap(gray)set(gcf,'DoubleBuffer','on');while sum(1-S(1,:))<0.5;y=1;x=round(rand*[N-1]+1); % random positionD=0;while D<0.5; % random travelr=rand;if abs(x-1)<0.1;SL=1;elseSL=S(y,x-1);endif abs(x-N)<0.1;SR=1;elseSR=S(y,x+1);endif SL+SR+S(y+1,x)<2.5; % check the neighbor: left, right, under D=1;S(y,x)=0; % stop in the positionendif r<=1/3; % travel randomlyx=x-1;elseif r<=2/3;x=x+1;elsey=y+1;endSs(2:end,:)=S;if x<0.5|x>N+0.5;D=1; % out of the rangeelseSs(y,x)=0; % to show the moving particleendset(II,'CData',Ss); % to showpause(0.1);endendfile 6:function sands(N);% 砂堆规则% 参考书目:% 物理系统的元胞自动机模拟% 作者:(英国)肖帕德等著、祝玉学等译close allfigure;set(gcf,'Doublebuffer','on');D=ones(N);D1=D;[X,Y]=meshgrid(1:N);Z=2*X-Y;p=fix(9.5*N/21);D(Z>p & Z<9+p)=0;D(fix(end/2)+1:end,:)=1;D=min(D,flipud(D).*D1);D=min(D,fliplr(D).*D1);D(end,fix(end/4.13):end-fix(end/4.13))=0; D(end-1,fix(end/4.12):end-fix(end/4.12))=0; D(end-2,fix(end/4.1):end-fix(end/4.1))=0; % imshow(D,[])% 以上是生成装砂的瓶子B=ones(N);B(Z>9+p)=0;B(fix(end/2)+1:end,:)=1;B(:,fix(end/2)+1:end)=1;B=min(B,fliplr(B));B(1:3,:)=1;% figure;set(gcf,'Doublebuffer','on');% imshow(B,[])% mov = avifile('example2900.avi');kk=3800;for k=1:kk;[B,Nu]=duisha(D,B);Bk=min(D,B);imshow(Bk,[])Ha(k)=Nu;% F = getframe(gca);% mov = addframe(mov,F);end% mov = close(mov);figure;plot(Ha)function [Y,Nu]=duisha(D,B);Dq=10*(1-D);Bg=1-B+Dq;% 研究砂子下落S=zeros(size(B));S1=S;S2=S;S(2:end,:)=Bg(2:end,:)-Bg(1:end-1,:);S1(S==-1)=1;S2(1:end-1,:)=S1(2:end,:);Bg(S1==1)=~Bg(S1==1);Bg(S2==1)=~Bg(S2==1);% 研究砂子倾倒clear Sclear S1clear S2S=zeros(size(B));S1=S;S2=S;S(1:end-1,2:end-1)=Bg(1:end-1,2:end-1)+Bg(2:end,2:end-1)-Bg(2:end,1:end-2); S1(S==2)=1;S2(2:end,1:end-2)=S1(1:end-1,2:end-1);Bg(S1==1)=0;Bg(S2==1)=1;clear Sclear S1clear S2S=zeros(size(B));S1=S;S2=S;S(1:end-1,2:end-1)=Bg(1:end-1,2:end-1)+Bg(2:end,2:end-1)-Bg(2:end,3:end); S1(S==2)=1;S2(2:end,3:end)=S1(1:end-1,2:end-1);Bg(S1==1)=0;Bg(S2==1)=1;Y=(1-Bg).*D;Nu=prod(size(find(Y==0)));file 7:function CA_sim_cloud;% 使用元胞自动机模拟地球卫星的云图%% reference:% Piazza, E.; Cuccoli, F.;% Cellular Automata Simulation of Clouds in Satellite Images,% Geoscience and Remote Sensing Symposium, 2001. IGARSS '01.% IEEE 2001 International Volume 4, 9-13 July 2001 Page(s):% 1722 - 1724 vol.4 Digital Object Identifier 10.1109/IGARSS.% 2001.977050time=500; % 程序执行步数M=240;S=zeros(M,N);p=[1,2,1,6,6,1,2,1];p=sum(tril(meshgrid(p)),2)/20;rand('state',0);SS=S;R=1-S;G=S;B=S;C=cat(3,R,G,B);figure;cc=imshow(C,[]);x=round(M/2);y=(1:3)+round(N/3);q=0;while q<time;SS=zeros(M,N);for k=1:15;r=rand(M,N); % 生成几率rK=zeros(M+2,N+2);T=(S-k>=0); % 粒子数矩阵K(2:end-1,2:end-1)=T;SS=K(1:end-2,1:end-2).*(r<p(1))+...K(1:end-2,2:end-1).*(r<p(2) & r>=p(1))+...K(1:end-2,3:end).*(r<p(3) & r>=p(2))+...K(2:end-1,1:end-2).*(r<p(4) & r>=p(3))+...K(2:end-1,3:end).*(r<p(5) & r>=p(4))+...K(3:end,1:end-2).*(r<p(6) & r>=p(5))+...K(3:end,2:end-1).*(r<p(7) & r>=p(6))+...K(3:end,3:end).*(r>=p(7))+SS;endS=SS; %SS是粒子扩散后的分布S(S>15)=15;S(x,y)=15; % 粒子源赋值G=(S<=10);B=(S>5);R=(S>5 & S<=10);C=double(cat(3,R,G,B));set(cc,'CData',C);q=q+1;pause(0.2);title(['q=',num2str(q)]);Nu(q)=sum(S(1:end));endfigure;file 8:生命游戏(Came of Life)是J. H. Conway在20世纪60年代末设计的一种单人玩的计算机游戏(Garclner,M.,1970、1971)。

元胞自动机交通流模型.课件

元胞自动机交通流模型.课件
流量与密度关系的启示
模拟结果中流量与密度关系的曲线可以用来指导城市交通规划。在规划道路时,应考虑车辆密度对交通 流量的影响,合理设置道路宽度和车道数量。
模拟结果的比较与评价
不同模型之间的比较
我们将元胞自动机交通流模型的结果与其他经典交通流模型进行了比较。通过比较发现 ,元胞自动机模型能够更好地模拟实际交通情况,特别是在复杂路况和多车道情况下的
物流配送
利用元胞自动机模型模拟物流配 送过程中的车辆行驶和货物运输 ,优化配送路线和策略。
公共安全
元胞自动机模型可用于模拟人群 流动和应急疏散,为公共安全事 件提供决策支持。
环境影响评估
通过模拟污染物在环境中的扩散 和迁移,元胞自动机模型有助于 评估环境影响和制定环境保护措 施。
元胞自动机交通流模型的未来研究方向
元胞自动机的应用领域
交通流模拟
元胞自动机可以模拟和分析交通流的 行为和特性,如拥堵现象、车速分布 等。
城市规划
元胞自动机可以用于模拟城市的发展 和演化,预测城市扩张和人口分布等 。
生态学
元胞自动机可以用于模拟生态系统的 行为和演化,如物种竞争、群落演替 等。
社会学
元胞自动机可以用于模拟和分析社会 现象,如人口迁移、群体行为等。
表现更优。
模型的优缺点分析
元胞自动机交通流模型具有简单、易实现和可扩展性强的优点,但也存在计算量大、模 拟结果受参数设置影响较大的缺点。在实际应用中,需要根据具体需求和条件选择合适
的模型。
05
CHAPTER
元胞自动机交通流模型的应 用前景与展望
元胞自动机交通流模型在交通规划与管理中的应用前景
交通流模拟
阻塞波传播
在模拟中,我们观察到了阻塞波 在道路上的传播现象。当一辆慢 车出现时,后面的车辆会逐渐减 速并形成阻塞波,导致交通拥堵

元胞自动机的交通流模拟算法

元胞自动机的交通流模拟算法

元胞自动机的交通流模拟算法元胞自动机(Cellular Automata,CA)是一种离散的空间模型,由许多相同形态和行为的元胞组成,每个元胞根据一定的规则与周围的元胞进行交互作用。

其中,交通流模拟算法是元胞自动机在交通领域的应用之一。

本文将介绍交通流模拟算法的基本原理、应用场景和发展趋势。

一、交通流模拟算法的基本原理交通流模拟算法基于元胞自动机的思想,将道路划分为一系列的元胞,并对每个元胞进行状态的定义和更新。

在交通流模拟中,每个元胞可以表示一个车辆,其状态包括位置、速度、加速度等。

通过定义元胞之间的交互规则,模拟车辆在道路上的运动和交通流的演化。

交通流模拟算法的核心是规则的制定和更新。

常用的规则包括加速规则、减速规则、保持规则等。

加速规则可以使车辆在没有障碍物的情况下提高速度;减速规则可以使车辆在遇到障碍物或交通拥堵时减速;保持规则可以使车辆保持一定的距离和速度,以保证交通流的稳定性。

二、交通流模拟算法的应用场景交通流模拟算法广泛应用于城市交通规划、交通信号优化、交通拥堵预测等领域。

通过模拟交通流的运动和演化,可以评估不同交通策略对交通流的影响,优化交通信号控制,预测交通拥堵情况,提供科学依据和决策支持。

在城市交通规划中,交通流模拟算法可以模拟城市道路网络的运行情况,评估不同道路规划方案对交通流的影响。

通过模拟交通流的运动和演化,可以评估道路的通行能力、交通拥堵程度和交通状况的稳定性,为城市交通规划提供科学依据。

在交通信号优化中,交通流模拟算法可以模拟交通信号的控制策略,评估不同信号控制方案对交通流的影响。

通过模拟交通流的运动和演化,可以评估信号配时的合理性、交通信号的协调性和交通状况的改善程度,为交通信号优化提供科学依据。

在交通拥堵预测中,交通流模拟算法可以模拟交通拥堵的演化过程,预测交通拥堵的发生时间和地点。

通过模拟交通流的运动和演化,可以评估不同交通拥堵预测模型的准确性和可靠性,为交通拥堵预测提供科学依据。

元胞自动机matlab

元胞自动机matlab

元胞自动机matlab
元胞自动机(Cellular Automaton)是一种离散的数学模型,由许多简单的计算单元(称为“元胞”)组成,它们按照相同的规则在离散的空间和时间上进行演化。

在MATLAB中,你可以使用矩阵来表示元胞自动机的状态,然后编写规则来更新这些状态。

下面我将从几个方面介绍如何在MATLAB中实现元胞自动机。

首先,你可以使用MATLAB中的矩阵来表示元胞自动机的状态。

假设你有一个二维的元胞自动机,可以用一个二维的矩阵来表示。

矩阵中的每个元素可以表示一个元胞的状态,比如0表示空白,1表示存活等等。

你可以使用MATLAB的矩阵操作来初始化和更新这些状态。

其次,你需要编写规则来更新元胞的状态。

这些规则可以根据元胞的邻居状态来确定元胞下一个时刻的状态。

在MATLAB中,你可以使用循环和条件语句来实现这些规则。

例如,你可以遍历矩阵中的每个元素,然后根据它周围元胞的状态来更新它的状态。

另外,MATLAB还提供了一些内置的函数和工具箱,可以帮助你实现元胞自动机模型。

比如,MATLAB的CellularAutomata工具箱
提供了一些函数来简化元胞自动机模型的实现。

你可以使用这些函数来快速地创建和演化元胞自动机模型。

总之,在MATLAB中实现元胞自动机模型需要你熟练掌握矩阵操作、循环和条件语句等基本编程技巧,同时也需要对元胞自动机的原理有一定的了解。

希望这些信息能够帮助你在MATLAB中实现元胞自动机模型。

基于元胞自动机的城市交通流模拟与仿真研究

基于元胞自动机的城市交通流模拟与仿真研究

基于元胞自动机的城市交通流模拟与仿真研究近年来,随着城市化进程的不断加快,城市交通问题日益凸显。

为了解决城市交通流量高峰时的拥堵问题,提高交通效率,研究人员们开始使用元胞自动机模型来进行交通流模拟与仿真研究。

一、元胞自动机模型简介元胞自动机是一种复杂系统建模与仿真的重要工具。

它由一系列格点(元胞)组成的二维网格构成,每个元胞代表一个交通参与者,可以是车辆、行人等。

每个元胞都有一定的状态和行为规则,如按照红绿灯信号进行行驶或停止等。

二、城市交通流模拟城市交通流模拟主要包括流量模拟和行为模拟两方面。

流量模拟通过统计每个时刻通过某一点的交通流量,来研究交通流量的分布和变化规律。

而行为模拟则是通过调整元胞的行为规则,控制交通参与者的行为,以实现交通流的优化与控制。

在城市交通流模拟过程中,研究人员可以根据真实的路网和交通组成,将其构建为元胞自动机模型,然后通过调整元胞的状态转换规则,模拟出不同时间段内的交通流量分布、拥堵现象等。

这样可以帮助决策者更好地了解和分析城市交通问题,从而制定更科学合理的交通规划方案。

三、元胞自动机在城市交通流仿真中的应用元胞自动机模型在城市交通流仿真中有着广泛的应用。

通过模拟交通流的运行情况,可以评估不同交通组织方式的效果,如交叉口信号灯、交通流量管制等。

此外,还可以通过模拟不同交通流量分布情况下的交通拥堵现象,探索拥堵产生的原因和解决方法。

另外,元胞自动机模型还可以用于研究特定道路网络中的交通流特性。

例如,可以通过模拟不同区域的交通流量分布,并分析路段的通行能力,以找出导致交通瓶颈的关键路段,并采用合适的调控措施来改善交通流动性。

四、元胞自动机模型的优势和挑战元胞自动机模型在城市交通流模拟研究中具有以下优势:首先,可以模拟大量交通参与者的行为,从而更真实地反映交通流的特征。

其次,可以通过调整元胞的行为规则,实现交通流的优化与控制。

再次,模型参数可调性强,模型灵活性高,适用于不同道路网络和交通组织方式的研究。

交通流理论-元胞自动机模型

交通流理论-元胞自动机模型

主讲人: 李新刚 办公地点:8710(51684936) Email: lixingang@
元胞自动机交通流模型
• 主要内容
1 绪论 2 元胞自动机的定义和构成 3 184号规则 4 NS模型简介 5 BML模型简介 6 双车道模型简介
1 绪论
Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.
2 元胞自动机的定义和构成
B. 元胞空间边界条件
理论上,元胞空间是无限的;实际应用中无法达到 这一理想条件。常用的边界条件如下:
• • • •
周期型 定值型 绝热型 反射型
2 元胞自动机的定义和构成
B. 元胞空间边界条件

周期型边界条件(periodic boundary)
定义:周期型是指相对边界连接起来的元胞空间
2 元胞自动机的定义和构成
元胞自动机的定义:
元胞自动机(Cellular Automata,简称CA)实质 上是定义在一个由具有离散、有限状态的元胞组 成的元胞空间上,并按照一定的局部规则,在离 散的时间维度上演化的动力学系统。
2 元胞自动机的定义和构成
元胞自动机的构成:
元胞自动机最基本的组成:元胞、元胞空间、邻居及规 则四部分。另外,还应包含状态和时间。 可以视为由一个元胞空间和定义于该空间的变换 函数所组成。
1 绪论
元胞自动机应用
交通科学领域:1986年,M. Cremer和J. Ludwig初次将元 胞自动机运用到车辆交通的研究中。随后,元胞自动机在车 辆 交通中的应用主要沿着两条主线展开:对城市道路交通流 的研究,以Nagel-Schreckenberg模型为代表;对城市交通网 络 的研究,以BML模型为代表。另外,80年代以来,计算机 水平日新月异的发展为元胞自动机的 应用提供了强有力的支 持。因此,在进入上个世纪90年代后,元胞自动机在交通流 理论研究领域中得到了广泛的应用。

基于元胞自动机模拟带收费站和红绿灯的交通问题matlab源码

基于元胞自动机模拟带收费站和红绿灯的交通问题matlab源码

基于元胞自动机模拟带收费站和红绿灯的交通问题matlab源码基于元胞自动机模拟带收费站和红绿灯的交通问题,是交通仿真领域的一项研究。

这项技术可以帮助交通规划者预测交通问题的发生,并为改善交通流提供数据支持。

MATLAB是一款强大的数值计算软件,可以用来实现这个问题的仿真过程。

下面将分步骤阐述如何实现这个交通问题的元胞自动机仿真。

1.建立环境首先我们需要在MATLAB中建立仿真环境,包括定义道路网格、交通流量和车辆类型等。

在此基础上,我们可以设定道路的长度和宽度、车流量、车辆速度等参数,构建仿真模型。

这些参数的设定对仿真结果的准确性和效率都有较大影响。

2.模拟红绿灯控制在交通流模型中,红绿灯控制是最关键的问题之一。

我们需要设定红绿灯时序和控制方式,用元胞自动机“告诉”仿真环境哪些车辆可以通行、哪些车辆需要停车等。

3.实现收费站功能收费站是现代城市交通网络中一个非常重要的环节。

在仿真中,我们可以通过定义特定的元胞状态,用元胞自动机实现收费站的功能。

根据收费站的类型不同,我们可以定义不同的元胞状态和处理流程。

4.仿真流程优化模拟仿真的流程对最后的结果影响很大。

我们需要根据仿真实验的目标、节点、数据等内容对仿真流程进行优化,提升仿真效率、降低误差率。

5.仿真结果分析仿真结束后,我们需要对仿真结果进行分析,包括交通流量分布、车辆延误情况、交通拥堵等细节。

通过分析这些数据,我们可以了解交通流中的瓶颈和问题,提出相应的改进方案。

总之,利用MATLAB和元胞自动机技术可以很好地模拟带收费站和红绿灯的交通问题,为交通规划和改进提供有力的支持。

对于交通问题的研究者和交通规划人员,这项技术都有很大的研究与应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元胞自动机NaSch模型及其MATLAB代码作业要求根据前面的介绍,对NaSch模型编程并进行数值模拟:●模型参数取值:Lroad=1000,p=0.3,Vmax=5。

●边界条件:周期性边界。

●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。

●基本图(流量-密度关系):需整个密度范围内的。

●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画500个时间步即可)。

●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。

●流量计算方法:密度=车辆数/路长;流量flux=density×V_ave。

在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N;流量flux=N/T。

●在计算过程中可都使用无量纲的变量。

1、NaSch模型的介绍作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。

●时间、空间和车辆速度都被整数离散化。

● 道路被划分为等距离的离散的格子,即元胞。

● 每个元胞或者是空的,或者被一辆车所占据。

● 车辆的速度可以在(0~Vmax )之间取值。

2、NaSch 模型运行规则在时刻t 到时刻t+1的过程中按照下面的规则进行更新: (1)加速:),1min(max v v v n n +→规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。

(2)减速:),min(n n n d v v → 规则(2)确保车辆不会与前车发生碰撞。

(3)随机慢化: 以随机概率p 进行慢化,令:)0,1-min(n n v v → 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。

这一规则也是堵塞自发产生的至关重要因素。

(4)位置更新:n n n v x v +→ ,车辆按照更新后的速度向前运动。

其中n v ,n x 分别表示第n 辆车位置和速度;l (l ≥1)为车辆长度;11--=+n n n x x d 表示n 车和前车n+1之间空的元胞数;p 表示随机慢化概率;max v 为最大速度。

3、NaSch 模型实例根据题目要求,模型参数取值:L=1000,p=0.3,Vmax=5,用matlab 软件进行编程,扔掉前11000个时间步,统计了之后500个时间步数据,得到如下基本图和时空图。

3.1程序简介初始化:在路段上,随机分配200个车辆,且随机速度为1-5之间。

图3.1.1是程序的运行图,图3.1.2中,白色表示有车,黑色是元胞。

图3.1.1 NaSch模型运行图图3.1.2 NaSch模型3.2流量密度分析图3.2描述了交通流量与密度的关系,从图中可知,该模型中,当密度为0——0.185时,流量随密度的增加而增加;当密度超过0.185时,流量开始随密度的增加而下降。

图3.2 基于NaSch模型的流量密度图3.3 NaSch模型时空图分析图3.3.1和图3.3.2描述了,时间步从11001开始到11500结束,共500个时间步的空间和时间的关系,从图中可以模拟出自发产生的堵塞现象。

图3.3.1 基于NaSch模型的时空图图3.3.2 基于NaSch模型的时空图4 模型评价优点:该程序基本实现了NaSch模型的基本功能,并且最大速度、元胞数量、车辆数量以及运行间隔时间都可以修改,程序很灵活,并且可以清晰的看出每一次运行过程。

缺点:当时间步超过20000步时,内存占用量大。

附件% 主程序:NaSch_3.m程序代码% 单车道最大速度3个元胞开口边界条件加速减速随机慢化clfclear all%build the GUI%define the plot buttonplotbutton=uicontrol('style','pushbutton',...'string','Run', ...'fontsize',12, ...'position',[100,400,50,20], ...'callback', 'run=1;');%define the stop buttonerasebutton=uicontrol('style','pushbutton',...'string','Stop', ...'fontsize',12, ...'position',[100,500,50,20], ...'callback','freeze=1;');%define the Quit buttonquitbutton=uicontrol('style','pushbutton',...'string','Quit', ...'fontsize',12, ...'position',[100,600,50,20], ...'callback','stop=1;close;');number = uicontrol('style','text', ...'string','1', ...'fontsize',12, ...'position',[20,400,50,20]);%CA setupn=1000; %数据初始化z=zeros(1,n); %元胞个数z=roadstart(z,200); %道路状态初始化,路段上随机分布200辆cells=z;vmax=5; %最大速度v=speedstart(cells,vmax); %速度初始化x=1; %记录速度和车辆位置memor_cells=zeros(3600,n);memor_v=zeros(3600,n);imh=imshow(cells); %初始化图像白色有车,黑色空元胞set(imh, 'erasemode', 'none')axis equalaxis tightstop=0; %wait for a quit button pushrun=0; %wait for a drawfreeze=0; %wait for a freeze(冻结)while (stop==0 & x<11502)if(run==1)%边界条件处理,搜素首末车,控制进出,使用开口条件a=searchleadcar(cells);b=searchlastcar(cells);[cells,v]=border_control(cells,a,b,v,vmax);i=searchleadcar(cells); %搜索首车位置for j=1:iif i-j+1==n[z,v]=leadcarupdate(z,v);continue;else%======================================加速、减速、随机慢化if cells(i-j+1)==0; %判断当前位置是否非空continue;else v(i-j+1)=min(v(i-j+1)+1,vmax); %加速%=================================减速k=searchfrontcar((i-j+1),cells); %搜素前方首个非空元胞位置if k==0; %确定于前车之间的元胞数d=n-(i-j+1);else d=k-(i-j+1)-1;endv(i-j+1)=min(v(i-j+1),d);%==============================%减速%随机慢化v(i-j+1)=randslow(v(i-j+1));new_v=v(i-j+1);%======================================加速、减速、随机慢化%更新车辆位置z(i-j+1)=0;z(i-j+1+new_v)=1;%更新速度v(i-j+1)=0;v(i-j+1+new_v)=new_v;endendendcells=z;memor_cells(x,:)=cells; %记录速度和车辆位置memor_v(x,:)=v;x=x+1;set(imh,'cdata',cells) %更新图像%update the step number diaplaypause(0.0001);stepnumber = 1+str2num(get(number,'string'));set(number,'string',num2str(stepnumber))endif (freeze==1)run = 0;freeze = 0;enddrawnowendfigure(1)for l=11001:1:11500for k=1:1:1000if memor_cells(l,k)>0plot(k,l,'k.');hold on;endendendxlabel('空间位置')ylabel('时间(s)')title('时空图')for i=1:1:500density(i)=sum(memor_cells(i,:)>0)/1000;flow(i)=sum(memor_v(i,:))/1000;endfigure(2)plot(density,flow,'k.');title('流量密度图')xlabel('density')ylabel('flow')%% /////////////////////////////////////////////////////////////////////// %%% 函数:searchlastcar.m程序代码function [location_lastcar]=searchlastcar(matrix_cells)%搜索尾车位置for i=1:length(matrix_cells)if matrix_cells(i)~=0location_lastcar=i;break;else %如果路上无车,则空元胞数设定为道路长度location_lastcar=length(matrix_cells);endend% 函数:searchfrontcar.m程序代码function [location_frontcar]=searchfrontcar(current_location,matrix_cells)i=length(matrix_cells);if current_location==ilocation_frontcar=0;elsefor j=current_location+1:iif matrix_cells(j)~=0location_frontcar=j;break;elselocation_frontcar=0;endendend% 函数:roadstart.m程序代码function [matrix_cells_start]=roadstart(matrix_cells,n)%道路上的车辆初始化状态,元胞矩阵随机为0或1,matrix_cells初始矩阵,n初始车辆数k=length(matrix_cells);z=round(k*rand(1,n));for i=1:nj=z(i);if j==0matrix_cells(j)=0;elsematrix_cells(j)=1;endendmatrix_cells_start=matrix_cells;% 函数:randslow.m程序代码function [new_v]=randslow(v)p=0.3; %慢化概率rand('state',sum(100*clock)*rand(1));%?¨?????ú??×?p_rand=rand; %产生随机概率if p_rand<=pv=max(v-1,0);endnew_v=v;% 函数:leadcarrupdate.m程序代码function [new_matrix_cells,new_=leadcarupdate(matrix_cells,v) %第一辆车更新规则n=length(matrix_cells);if v(n)~=0matrix_cells(n)=0;v(n)=0;endnew_matrix_cells=matrix_cells;new_v=v;% 函数:searchleadcar.m程序代码function [location_leadcar]=searchleadcar(matrix_cells)i=length(matrix_cells);for j=1:iif matrix_cells(i-j+1)~=0location_leadcar=i-j+1;break;elselocation_leadcar=0;endend% 函数:speadstart.m程序代码function [v_matixcells]=speedstart(matrix_cells,vmax)%道路初始状态车辆速度初始化v_matixcells=zeros(1,length(matrix_cells));for i=1:length(matrix_cells)if matrix_cells(i)~=0v_matixcells(i)=round(vmax*rand(1));endend。

相关文档
最新文档