固体物理完整版本

合集下载

第一章固体物理课件U

第一章固体物理课件U
激光产生
通过受激辐射使光子在固体中放大并产生相干光。
光电子学的基本原理
光电效应
光子与固体中的电子相互作用,使电子获得能量并从固体表面逸 出。
光子吸收
固体吸收光子后,电子从低能级跃迁到高能级。
光子发射
固体中的电子从高能级跃迁到低能级时释放出光子。
光电子学的应用与发展
太阳能电池
利用光电效应将太阳能 转换为电能。
能带理论的计算方法
01
02
03
04
近自由电子近似
假设电子在固体中的运动接近 于自由电子,通过微扰理论计
算能带结构。
紧束缚近似
假设电子被束缚在原子附近, 通过原子轨道线性组合方法计
算能带结构。
正交化平面波方法
将电子波函数表示为平面波和 周期函数的乘积,通过求解薛
定谔方程计算能带结构。
赝势方法
用有效势代替真实的原子势, 简化能带结构的计算过程。
04
固体的光学性质与光电子学
固体的光学常数
折射率
描述光在固体中传播速 度相对于真空中的速度 的比值。
消光系数
表示光在固体中传播时 的衰减程度。
反射相移
光从一种介质反射到另 一种介质时发生的相位 变化。
固体的发光与激光
发光现象
固体受到激发后,电子从高能级跃迁到低能级时释放出的光子。
发光类型
包括荧光、磷光和化学发光等。
磁随机存取存储器(MRAM)
MRAM是一种基于自旋电子学的非易失性存储器件,具有高速读写、无限次擦写、低功 耗等优点,被广泛应用于嵌入式系统、数据中心等领域。
自旋逻辑器件
利用自旋极化电流实现逻辑运算,可以构建出全新的自旋逻辑器件,为未来的量子计算和 光计算提供技术支持。

固体物理总复习(阎守胜)最全.pdf

固体物理总复习(阎守胜)最全.pdf
(6)维格纳-赛茨原胞 还有另一种外形比较复杂但能反映晶格对称性的原胞,称为维格纳-赛茨原胞(简称 WS 原胞).它是一个阵点与最近邻阵点(有时也包括次近邻)的线中垂面所围成的多面体,其中 只包含一个阵点;对于晶体,一个原胞只包含一个基元. (7)配位数和致密度 配位数:晶体中一个原子的最近邻原子数目称为配位数.配位数的大小描述晶体中粒子 排列的紧密程度,粒子排列越紧密,配位数越大. 致密度:假设晶体由完全相同的一种粒子组成,而把粒子看作硬球,硬球之间彼此紧挨 相切,下面计算反映粒子排列紧密程度的致密度,即单胞内粒子硬球所占的体积与单胞体积 之比.
晶体周期性可以用布拉伐点阵表征,也可以等价地用原胞描述. (5)单胞和单胞基矢 单胞:在能够保持晶格对称性的前提下,构成晶体的最小的周期性结构单元称为晶体的
单胞;
单胞基矢:单胞的边矢量称为单胞基矢,通常用 a 、 b 、 c 表示.
原胞是晶体最小的周期性结构单元,利用原胞基矢可以很方便地写出各个格点的位矢; 而单胞直观地反映了晶体的对称性.晶体的原胞和单胞,在晶体结构分析和性质研究中,各 有所长.
该判据只是原胞的一个必要判据,如果一个单元含有两个或两个以上的基元,该单元就肯定
不是原胞。原胞有时称为初基原胞,相应地原胞基矢称为初基基矢。
简立方:
a1
ai , a2
aj , a3
ak
体心;立方: 面心立方:
a1
a 2
(i
j
k)
a2
a
(i
2
j
k)
a3
a 2
(i
j
k)
a1
第一章 晶体结构
§1.1 晶体结构的基本概念
1 晶体结构的基本概念
(1)晶体和基元

(完整PPT)固体物理学

(完整PPT)固体物理学

(a)理想石英晶体(b)人造石英晶体
属于同一品种的晶体,两个对应晶面之间的夹角 恒定不变,这一规律称为晶面角守恒定律。
显然,晶面之间的相对方位是晶体的特征因素, 因而常用晶面法线的取向来表征晶面的方位,而以 法线间夹角来表征晶面间的夹角(两个晶面法线间 的夹角是这两个晶面夹角的补角)。
二、晶体的基本性质
显然,WS 原胞也只包含一个格点,因此它与固 体物理学原胞的体积一样,也是最小周期性重复单 元。
3.晶格的周期性
* 一维布喇菲格子
一维布喇菲格子是由一种
原子组成的、无限周期性的 点列,所有相邻原子间的距
a
离均为周期为a,如图所示。
在一维情况下,原胞取原子及周围长度为 a 的区 域。重复单元的长度矢量称为基矢,通常用以某原 子为起点,相邻原子为终点的有向线段 a 表示。
1
2
3
原胞的体积为
a3
简立方体格子的原胞和基矢 选取,如图所示。
a3 ai a2 aj a2 ai a2
尽管由于生长条件的不同,会使同一晶体外型产 生一定的差异。但是对同一种晶体,相应两个晶面 之间的夹角却总是恒定的。即:每一种晶体不论其 外形如何,总具有一套特征性的夹角。
例如,对于石英晶体,在下图中所示的 mm 两面 间的夹角总是60º0' , mR 两面间的夹角总是38º13' , mr 两面间的夹角总是38º13' 。
点之间的距离。
三个基矢不要求相互正交, 且大小一般也不相同。并且, 对于同一个晶格,基矢的选择 也不是唯一的。
* 晶格平移矢量
若选择某一格点为坐标原点,则晶体中任一格点 的位置可以表示为
Rn n1a1 n2a2 n3a3 (ni 0,1,2,......)

第三章 固体物理ppt课件

第三章  固体物理ppt课件

§2
三维晶格的振动
设实际三维晶体沿基矢a1、a2、a3方向的初基原胞数分 别为N1、N2、N3,即晶体由N=N1·N2·N3个初基原胞组成, 每个初基原胞内含s个原子。 一维情况下,波矢q和原子振动方向相同,所以只有纵波。 三维情况下,有纵波也有横波。
原则上讲,每支格波都描述了晶格中原子振动的一类运动 形式。初基原胞有多少个自由度,晶格原子振动就有多少种 可能的运动形式,就需要多少支格波来描述。
一个波矢为K的第S支模式处在第N个激发态,我们就说在晶 体中存在着N个波矢为K的第S支声子(因为给定了K与第S支模 式则ω可由色散关系唯一确定),在晶体中波矢为K的纵声学支 模式处于N激发态,我们就说晶体中有N个波矢为K的纵声学支 声子。
声子这个名词是模仿光子而来(因为电磁波也是一种简谐振 动)。声子与光子都代表简谐振动能量的量子。所不同的是光子 可存在于介质或真空中,而声子只能存在于晶体之中,只有当晶 体中的晶格由于热激发而振动时才会有声子,在绝对零度下,即 在0K时,所有的简正模式都没有被激发,这时晶体中没有声子, 称之为声子真空。声子与光子存在的范围不同,即寄居区不同。
每一组整数(L1,L2,L3 )对应一个波矢量q。将这些波矢在倒空 间逐点表示出来,它们仍是均匀分布的。每个点所占的“体积” 等于“边长”为(b1/N1)、(b2/N2)、(b3/N3)的平行六面体的 “体积”,它等于: b b b 3 1 2 N N N 1 N 2 3 式中Ω*是倒格子初原胞的“体积”,也就是第一 布里渊区的“体积”,而Ω*=(2π)3/Ω ,所以每个波 矢q在倒空间所占的“体积”为:
子的位移构成了波,这个波称之为格波,把寻求到的
运动方程的解带入运动方程就能找出ω 与q的关系即

固体物理学01_05

固体物理学01_05

§1.5 晶体的宏观对称性晶体在几何外形上表现出明显的对称性,同时这些对称性性质也在物理性质上得以体现。

—— 介电常数可以表示为一个二阶张量:),,,(z y x =βαεαβ—— 电位移分量∑=ββαβαεE D可以证明对于立方对称的晶体:αβαβδεε0=——对角张量所以:E D KK 0ε=—— 介电常数可以看作一个简单的标量。

在六角对称的晶体中,如果将坐标轴选取在六角轴和垂直于六角轴的平面内,介电常数具有如下形式: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⊥⊥εεε000000//对于平行轴(六角轴)的分量://E //////E D ε=对于垂直于轴(垂直于六角轴的平面)的分量:⊥E ⊥⊥⊥=E D ε正是由于六角晶体的各向异性,而具有光的折射现象。

而立方晶体的光学性质则是各向同性的。

原子的周期性排列形成晶格,不同的晶格表现出不同的宏观对称性,怎样描述晶体的宏观对称性? 概括晶体宏观对称性的系统方法就是考察晶体在正交变换的不变性。

在三维情况下,正交变换表示为:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛→⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛z y x a a a a a a a a a z y x z y x 331313232212131211'''—— 矩阵是正交矩阵。

3,2,1,},{=j i a ij —— 如图XCH001_062所示,绕z 轴转θ角的正交矩阵: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−1000cos sin 0sin cos θθθθ—— 中心反演的正交矩阵:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−100010001—— 一个变换为空间转动,矩阵行列式等于+1; —— 变换为空间转动加中心反演,矩阵行列式等于-1。

一个物体在某一个正交变换下保持不变,称之为物体的一个对称操作,物体的对称操作越多,其对称性越高。

1 立方体的对称操作1) 绕三个立方轴转动:23,,2πππ,共有9个对称操作;如图XCH001_026_01所示。

固体物理第一章晶体-文档资料

固体物理第一章晶体-文档资料
不规则性。
三. 固体物理的一些主要研究方向:
1. 有机固体: 电, 磁, 光, 超导. 2. 量子Hall效应: 整数, 分数. 3. 人工微结构: 半导体超晶格, 量子点, 量子
线, 量子阱, 声子晶体, 光子晶体 4. 准晶体 5. 高温超导
6. C60 7. C纳米管 8. 石墨烯 9. 磁性, 巨磁阻 10. 自旋电子学
点对称操作:在对称操作过程中至少有一 点保持不动。
点对称操作要素: 点:对称中心;线:对称轴;面:对称面。
二、晶体的对称轴定理 若一晶体绕一直线至少转过角或角的整数倍,
其性质复原,称为基转角,称 n 360 为对称轴的轴次。
晶体的对称轴定理:晶体中只有1,2,3,4,6 五 种对称轴。 三、晶体中八种独立的对称要素
1.晶体所具有的自发地形成封闭凸多面体的能力称为自限 性。(能量最小)
2.晶体沿某些确定方位的晶面劈裂的性质,称为晶体的解 理性,这样的晶面称为解理面。
3.晶面角守恒定律:属于同一品种的晶体,两个对应晶面 间的夹角恒定不变。
石英晶体:
a、b 间夹角总是141º47´; a、c 间夹角总是113º08´; b、 c 间夹角总是120º00´。
精品
固体物理第一章晶体
二. 固体的分类
➢晶 体: 规则结构,分子或原子按一定的周期性排列。 长程有序性,有固体的熔点。E.g. 水晶 岩盐
➢ 非晶体:非规则结构,分子或原子排列没有一定的周期性。 短程有序性,没有固定的熔点。 玻璃 橡胶
➢ 准晶体: 有长程的取向序,有准周期性,但无长程周期性 。 没有缺陷和杂质的晶体叫做理想晶体。缺陷: 缺陷是指微量的
二.微观特性: 周期性.
密排六方结构(hcp) 面心立方结构(fcc)

(完整版)固体物理课件ppt完全版

(完整版)固体物理课件ppt完全版

布拉伐格子 + 基元 = 晶体结构
③ 格矢量:若在布拉伐格子中取格点为原点,它至其

他格点的矢量 Rl 称为格矢量。可表示为
Rl

l1a1

l2a2

l3a3

a1,
a2 ,
a3为
一组基矢
注意事项:
1)一个布拉伐格子基矢的取法不是唯一的
2
4x
·
1
3
二维布拉伐格子几种可能的基矢和原胞取法 2)不同的基矢一般形成不同的布拉伐格子
2·堆积方式:AB AB AB……,上、下两个底面为A
层,中间的三个原子为 B 层
3·原胞:
a, 1
a 2
在密排面内,互成1200角,a3
沿垂直
密排面的方向构成的菱形柱体 → 原胞
B A
六角密排晶格的堆积方式
A
a
B c
六角密排晶格结构的典型单元
a3
a1
a2
六角密排晶格结构的原胞
4·注意: A 层中的原子≠ B 层中的原子 → 复式晶格
bγ a
b a
b a
b a
简六体心底正简单三面心正单方底心单心交 立斜交斜 方 简单立方体心正交面立方简四体心四方简单正交简单菱方简单单斜单方
二 、原胞
所有晶格的共同特点 — 具有周期性(平移对称性)

用原胞和基矢来描述


位置坐标描述

1、 定义:
原胞:一个晶格最小的周期性单元,也称为固体物理 学原胞
a1, a2 , a3 为晶格基矢
复式晶格:
l1, l2 , l3 为一组整数
每个原子的位置坐标:r l1a1 l2a2 l3a3

固体物理11090214PPT课件

固体物理11090214PPT课件
1980,1981 (根据谢希德,方俊鑫,国体物理学 1965版扩充改编) 5.顾秉林,王喜坤,固体物理学* 清华大学出版社 1990 6. 王矜奉, 固体物理教程 (4版) 山东大学出版社 2004 (1999年初版)
7.Kittel C. Introduction to Solid State Physics, 8th ed. John Wiley ﹠ Sons Inc.,2005
➢ 面心立方(face-centered cubic, fcc)堆积 排列方式: ABCABC (立方密堆积)
典型晶体:Ca、Sr、Al、Cu、Ag
2.固体分类
(1)晶体(晶态) :原子按一定的周期、排列规则的固体(长程有 序),例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是 晶体.
图1 图3
图2
图1和图2是CaCO3和雪花结 晶的结构; 图3是高温超导体 YBaCuO 晶 体的结构。
(2)非晶体(非晶态):原子的排列没有明确的周期性(短程有
中译本:固体物理导论 (原著8版)化学工业出版社,2005 8. Busch G. Sc文,瑞士联邦技术学院教材,1972) 9.M A Omar Elementary Solid State Physics: Principle and
Applications 中译本:固体物理学基础 北京师范大学出版社 1987 10.H E Hall Solid State Physics John Wiley ﹠ Sons Ltd 1974 (英国曼彻斯特大学教材) 11. Ashcroft, Mermin Solid State Physics 1976
表面物理——在研究体内过程的基础上进入了固体表面 (界面)的研究,半导体实际界面的研究在改善和稳定 半导体器件性能上已显示锐利的锋芒。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这种在图形中贯彻始终的规律称为 远程规律或长程有序 — 微米量级
晶体
晶体中既存在短程有序又存在长程有序!
非晶体中,质点虽然可以是近程有序的(每一黑点为 三个圆圈围绕),但不存在长程有序!
液体和非晶体中的短程序: 1.参考原子第一配位壳层的结构 有序化,其范围为0.35 — 0.4nm 以内;
2.基于径向分布函数上可以清晰 的分辨出第一峰与第二峰,有明 确的最近邻和次近邻配位层,其 范围一般为0.3 — 0.5nm
学习内容: 第一章 晶体结构
第二章 晶体中原子的结合 第三章 晶格振动与晶体的热学性质 第四章 能带理论
二维晶格的晶系和布拉伐格子
晶系 轴和角度 布拉伐格子
斜方 长方 正方 六角
a≠b γ ≠90℃
a≠b γ = 90℃
a=b γ = 90℃
a=b γ=120℃
简单斜方
简单长方 中心长方 简单正方
结构:每一种等价原子形成一个简单晶格; 不同等价原子形成的简单晶格是相同的
由若干个相同的 简单晶格 相对错位套构而成
Cs+
Cl-
CsCl 结构
NaCl晶格结构的典型单元
举例:
★NaCl,CsCl — 包含两种等价离子
★所有原子都是一样的
包含两种等价原子
六角密排晶格结构 Be,Mg,Zn
金刚石晶格结构 C,Si,Ge
1,2,....i.,
ra
: 原胞内各种等价原子之间的相对位移
面心立方位置的原子 B 表示为:l1 a 1 l2 a 2 l3 a 3
立方单元体内对角线上的原子 A 表示为: l1 a 1 l2 a 2 l3 a 3
其中 为 1/4 体对角线
构成:由面心立方单元的中心到顶
角引8条对角线,在其中互不相邻的 4条对角线的中点,各加一个原子 — 得到金刚石晶格结构!
非晶体
1985年在电子显微镜研究中, 发现了一种新的物态,其内 部结构的具体形式虽然仍在 探索之中,但从其对称性可 知,其质点的排列应是长程 有序,但不体现周期重复, 即不存在格子构造,人们把 它称为准晶体。如图绘出一 具有五次对称轴定向长程 种长程有序但不具周期重复 有序但无重复周期的图形 的几何图形。
特点:每个原子有4个最近邻,它们
正好在正四面体的顶角位置!
B
A
τ
金刚石晶格结 构的典型单元
三、 晶胞(单胞)
晶胞:为反映晶格的对称性,在结晶学中选择较大 的周期单元 → 称为晶体学原胞
晶胞的基矢:用沿晶a胞,b的,三c个表棱示所。作的三个矢量,常
晶格常数:指晶胞的边长
注意:
固体物理学原胞:最小重复单元—只反映周期性 (n=1) 晶体学原胞:反映周期性和对称性 (n ≥2)
用一个点 来代表基元中的空间位置(例如:基元的
重心),这些呈周期性无限分布的几何点的集合形成 的空间点阵
等价数学定义:R l l1 a 1 l2 a 2 l3 a 3 中取一切整数值
所确定的点 的集合称为布拉伐格子。
(a)基元
(b)晶体结构
: 两类不同的原子
: 基元中特定的点 — 格点 黑点的总体形成 Bravais 格子
③ 平行六面体形原胞 — 固体物理学原胞,有时难 反映晶格的全部宏观对称性→Wigner-Seitz 取法
3、 晶格分类
① 简单晶格:
性质:每个原胞有一个原子 → 所有原子完全“等价 ” 举例:具有体心立方晶格的碱金属
具有面心立方结构的 Au, Ag,Cu 晶体
② 复式晶格:
性质:每个原胞包含两个或更多的原子 → 实际上表 示晶格包含两种或更多种等价的原子或离子
原子在三维空间中有规则地周期性重复排列的物质称为晶体
晶体中一种质点(黑点)和周围的另一种质点(小圆圈)的排列是一 样的,这种规律叫做近程规律或短程有序。
每种质点(黑点或圆圈)在整个 图形中各自都呈现规律的周期 性重复。把周期重复的点用直 线联结起来,可获得平行四边 形网格。可以想像,在三维空 间,这种网格将构成空间格子。
布拉伐格子 + 基元 = 晶体结构
③ 格矢量:若在布拉伐格子 中取格点为原点,它至其
他R l 格 点l1 a 的 1 矢 l 量2 a 2 Rl 称l3 为a 3 格,矢a1量,a。2,可a3为表示一为组基矢
注意事项:
1)一个布拉伐格子基矢的取法不是唯一的
2
4x
·
1
3
二维布拉伐格子几种可能的基矢和原胞取法 2)不同的基矢一般形成不同的布拉伐格子
A
a
复式晶格的原胞:就是相应的 B
c
简单晶格的原胞,在原胞中包
含了每种等价原子各一个。
六角密排晶格结构的典型单元
4、位置坐标描述晶格周期性:
简单晶格:
每个原子的位置坐标:l1 a 1 l2 a 2 l3 a 3
a1,a2,a3为晶格基矢
l1, l2 , l3 为一组整数
复式晶格:
每个原子的位置坐标:r l1 a 1 l2 a 2 l3 a 3
简单六角
bγ a
b a
b a
b a
简六体心底正简单三面心正单方底心单心交 立斜交斜 方 简单立方体心正交面立方简四体心四方简单正交简单菱方简单单斜单方
二 、原胞 认识:
所有晶格的共同特点 — 具有周期性(平移对称性)

用原胞和基矢来描述


位置坐标描述

1、 定义:
原胞:一个晶格最小的周期性单元,也称为固体物理 学原胞
晶格基矢:指原胞的边矢量,一般用 a1,a2,a3表示
2 、注意:
① 三维晶格原胞(以基矢 a1,a2,a3为棱的平行六面体是晶Βιβλιοθήκη 体积的最小重复单元) 的体积 为:
a 1.a 2a 3
二维晶格原胞的面积 S 为:
Sa1a2
一维晶格原胞的长度 L 为最近邻布拉伐格点的间距
② 原胞的取法不是唯一的(基矢取法的非唯一性)
一、布拉伐格子 → 表征了晶格的周期性
理想晶体:可看成是由完全相同的基本结构单元 (基元)在空间作周期性无限排列构成
单个原子或离子或若干个原子的集团
① 格点:代表基元中空间位置的点称为格点 一切格点是等价的 — 每个格点的周围环 境相同 → 因为一 切基元的组成,位相和取 向都相同!
② 布拉伐(Bravais)格子:
学习内容: 第一章 晶体结构
第二章 晶体中原子的结合 第三章 晶格振动与晶体的热学性质 第四章 能带理论
第一章 晶体结构
学习内容:
前言 第一节 晶体结构的周期性
第二节 一些晶格的举例 第三节 晶面、晶向和它们的标志 第四节 倒格子 第五节 晶体的对称性
第一节 晶体结构的周期性
一、布拉伐格子 二 、原胞 三、 晶胞(单胞)
相关文档
最新文档