初一数学二元一次方程组的概念及解法

合集下载

初一 二元一次方程组及其解法(学生版)

初一 二元一次方程组及其解法(学生版)

3.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如 也是二元一次方程组.4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.题型1:二元一次方程【例1-1】已知下列方程,其中是二元一次方程的有________. (1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6);(7);(8);(9);(10).举一反三:下列各方程中,是二元一次方程的是( ) A .=y+5x B .3x+2y=2x+2y C .x=y 2+1 D .题型2:二元一次方程的解【例2-1】下列数组中,是二元一次方程x+y=7的解的是( ) A .B .C .D .【例2-2】已知二元一次方程. ⎩⎨⎧=-=+52013y x x x ay b =⎧⎨=⎩2526x y x y +=⎧⎨+=⎩1222x y x y +=-⎧⎨+=-⎩102x +=251x y+=132x y +=280x y -=462x y +=3142x y +=(1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ; (3)用适当的数填空,使是方程的解.举一反三:1、若方程的一个解是,则a= .2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .题型3:二元一次方程组及方程组的解【例3-1】下列各方程组中,属于二元一次方程组的是( ) A .B .C .D .【例3-2】判断下列各组数是否是二元一次方程组的解.(1) (2)举一反三:2_______x y =-⎧⎨=⎩24ax y -=21x y =⎧⎨=⎩4221x y x y +=⎧⎨+=-⎩①②35x y =⎧⎨=-⎩21x y =-⎧⎨=⎩1、写出解为的二元一次方程组.知识点二:代入消元法1、消元法消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.消元的基本思路:未知数由多变少.消元的基本方法:把二元一次方程组转化为一元一次方程. 2、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; ③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.题型1:用代入法解二元一次方程组 【例1-1】用代入法解方程组:的解为 .12x y =⎧⎨=-⎩【例1-2】用代入法解二元一次方程组:举一反三:1、若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.2、与方程组有完全相同的解的是( )A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .3、若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .题型2:由解确定方程组中的相关量 【例2-1】已知关于x ,y 的二元一次方程组的解互为相反数,求k 的值.【例2-1】若方程组的解为,试求的值.举一反三:524050x y x y --=⎧⎨+-=⎩①②2020x y x y +-=⎧⎨+=⎩22(2)0x y x y +-++=ax+by=11(5-a)x-2by+14=0⎧⎨⎩14x y =⎧⎨=⎩a b 、1、已知是二元一次方程组的解,则m﹣n的值是.知识点三:加减消元法1、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.2、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.题型1:加减法解二元一次方程组【例1-1】直接加减:已知21xy=⎧⎨=⎩是二元一次方程组21mx nynx my+=⎧⎨-=⎩的解,则3m n+的值为.【例1-2】先变系数后加减:2521 4323x yx y-=-⎧⎨+=⎩①②【例1-3】建立新方程组后巧加减:解方程组2511 524x yx y+=⎧⎨+=-⎩①②【例1-4】先化简再加减:解方程组0.10.3 1.3123x yx y+=⎧⎪⎨-=⎪⎩①②举一反三:1、已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.题型2:用适当方法解二元一次方程组【例2-1】(1)323112x yx y-=⎧⎨=-⎩(2)5(1)2(3)2(1)3(3)m nm n-=+⎧⎨+=-⎩举一反三:1、用两种方法解方程组29(1) 321(2) x yx y+=⎧⎨-=-⎩三、课堂练习一、选择题1.下列方程组是二元一次方程组的是()A.53x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩2. 是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.13. 方程组233x yx y-=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .23x y =⎧⎨=⎩4.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解5.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ) A .4和6 B .6和4C .2和8D .8和﹣26.对于方程3x-2y-1=0,用含y 的代数式表示x ,应是( ). A .1(31)2y x =- B .312x y += C .1(21)3x y =- D .213y x += 7.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a-b 的值为( ).A .-1B .1C .2D .38.已知2|21|(27)0x y x y --++-=,则3x y -的值是( ) A .3 B .1 C .﹣6 D .8 9.用加减消元法解二元一次方程组231543x y x y +=⎧⎨-=⎩①②,下列步骤可以消去未知数x 的是( )A .①×4+②×3B .①×2-②×5C .①×5+②×2D .①×5-②×2 10.解方程组①3759y x x y =-⎧⎨+=-⎩,②3512,215 6.x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法 二、填空题11.已知方程2x+y ﹣5=0用含y 的代数式表示x 为:x= .12.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==13.若(a ﹣3)x+y |a|﹣2=1是关于x 、y 的二元一次方程,则a 的值是 .14.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.15.若方程3x-13y =12的解也是x-3y =2的解,则x =________,y =_______. 16.方程组的解是 .17.用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________. 18.若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 19.已知关于x ,y 的方程组271x y x y +=⎧⎨-=-⎩满足3x y +=,则k = .三、解答题20.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组. (1)甲数的13比乙数的2倍少7;(2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元.21.用代入法解下列方程组:一、选择题1.下列各方程中,是二元一次方程的是()A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=12. 关于,m n的两个方程23321m n m n-=+=与的公共解是()A.3mn=⎧⎨=-⎩B.11mn=⎧⎨=-⎩C.12mn=⎧⎪⎨=⎪⎩D.122mn⎧=⎪⎨⎪=-⎩3.利用代入消元法解方程组,下列做法正确的是()A.由①得x= B.由①得y=C.由②得y= D.由②得y=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13- C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.用加减消元法解二元一次方程组时,必须使这两个方程中()A.某个未知数的系数是1 B.同一个未知数的系数相等C.同一个未知数的系数互为相反数 D.某一个未知数的系数的绝对值相等7.方程组231498x yx y+=-⎧⎨-=⎩的解是()A.13xy=⎧⎪⎨=-⎪⎩B.2xy=⎧⎨=⎩C.1223xy⎧=⎪⎪⎨⎪=-⎪⎩D.1223xy⎧=-⎪⎪⎨⎪=-⎪⎩8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣二、填空题9.若是二元一次方程的一个解,则的值是__________.10.已知,且,则___________.11.若方程ax-2y=4的一个解是21xy=⎧⎨=⎩,则a的值是 .12.二元一次方程组的解是.13.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.14.已知二元一次方程组2728x yx y+=⎧⎨+=⎩,则x-y=________,x+y=________.三、解答题15.若方程组是二元一次方程组,求a的值.16.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.。

初一二元一次方程组的解法

初一二元一次方程组的解法

二元一次方程组的解法考点名称:二元一次方程组的解法二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。

二元一次方程组解的情况:一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

求方程组的解的过程,叫做解方程组。

一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:1、有一组解。

如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。

如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3、无解。

如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。

当a/d=b/e=c/f 时,该方程组有无数组解。

当a/d=b/e≠c/f 时,该方程组无解。

二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c>0)一、消元法1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成 y = ax +b 或x = ay + b的形式;②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出 x 或 y 值;④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

例:解方程组:x+y=5①{6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即 y=59/7把y=59/7代入③,得x=5-59/7即 x=-24/7∴ x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

二元一次方程组的解法

二元一次方程组的解法

二元一次方程组的解法二元一次方程组是指包含两个未知数和两个方程的方程组。

解二元一次方程组的常用方法有消元法、代入法和矩阵法等。

下面将分别介绍这三种方法的步骤和应用。

一、消元法消元法是解二元一次方程组常用的方法,它的基本思想是通过消去一个未知数,从而将方程组转化为只含一个未知数的一次方程,进而求解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 通过等式的加减消去一个未知数。

选择其中一个方程,将其系数乘以另一个方程中与其同未知数的系数的相反数,然后将两个方程相加或相减,消去该未知数。

2. 获得新的一次方程,其中只含有一个未知数。

3. 解新的一次方程,求得该未知数的值。

4. 将求得的未知数值代入原方程中,求得另一个未知数的值。

5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。

二、代入法代入法是解二元一次方程组的另一种常用方法,它的基本思想是将一个方程的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程,从而将方程组转化为只含一个未知数的方程,进而求解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 选择一个方程,将其一个未知数表示为另一个未知数的函数,例如将(1)中的 x 表示为 y 的函数:x = f(y)。

2. 将函数表达式代入另一个方程(2),得到只含有一个未知数 y的一次方程。

3. 解这个一次方程,求得 y 的值。

4. 将求得的 y 值代入第一个方程(1),求得 x 的值。

5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。

三、矩阵法矩阵法是用矩阵运算的方法解二元一次方程组,它的基本思想是将方程组转化为矩阵方程,通过对矩阵的运算得到解。

假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)将方程组表示为矩阵形式:⎛ a₁ b₁⎞⎛ x ⎞⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ a₂ b₂⎠ * ⎝ y ⎠ = ⎝ c₂⎠利用矩阵的逆矩阵,可以得到未知数向量的值:⎛ x ⎞⎛ a₁ b₁⎞⁻¹⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ y ⎠ = ⎝ a₂ b₂⎠⎝ c₂⎠通过计算矩阵的逆矩阵,可以求得未知数的值。

初中数学二元一次方程组知识点+习题

初中数学二元一次方程组知识点+习题

一、二元一次方程含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——分母中不能含有字母; ②有两个未知数——“二元”;③含有未知数的项的最高次数为1——“一次”.关于x 、y 的二元一次方程的一般形式:ax by c +=(0a ≠且0b ≠). 二、二元一次方程的解使二元一次方程两边的值相等的两个未知数的一组取值叫做二元一次方程的解.在写二元一次方程解的时候我们用大括号联立表示.如:方程2x y +=的一组解为11x y =⎧⎨=⎩,表明只有当1x =和1y =同时成立时,才能满足方程.一般的,二元一次方程都有无数组解,但如果确定了一个未知数的值,那么另一个未知数的值也就随之确定了.【例1】 若211350a b x y +-+=是关于x 、y 的二元一次方程,则a =______,b =______.【例2】 已知方程()21320m n m x y ---+=是关于x 、y 的二元一次方程,则m =______,n =______. 【例3】 下列方程中,属于二元一次方程的是( )A .10x y +-=B .54xy +=-C .2389x y +=D .12x y+= 【例4】 在方程325x y -=中,若2y =-,则x =________.【例5】 二元一次方程21x y -=有无数多个解,下列四组值中不是该方程的解的是( )A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩【例6】 求二元一次方程25x y +=的所有非负整数解.例题解析知识精讲模块一:二元一次方程二元一次方程组的概念及解法【例7】 已知23x y =⎧⎨=⎩是关于x 、y 的二元一次方程432x y a =+的一组解,求231a a -+的值.一、二元一次方程组由几个一次方程组成并且一共含有两个未知数的方程组叫做二元一次方程组. 特别地,134x y x +=⎧⎨-=⎩和31x y =⎧⎨=-⎩也是二元一次方程组.二、二元一次方程组的解二元一次方程组中所有方程(一般为两个)的公共解叫做二元一次方程组的解. 注意:(1)二元一次方程组的解一定要写成联立的形式,如方程组2397x y x y -=⎧⎨+=⎩的解是61x y =⎧⎨=⎩.(2)二元一次方程组的解必须同时满足所有方程,即将解代入方程组的每一个方程时,等号两边的值都相等.例如:因为12x y =⎧⎨=⎩能同时满足方程3x y +=、1y x -=,所以12x y =⎧⎨=⎩是方程组31x y y x +=⎧⎨-=⎩的解.【例8】 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B .52313x y y x-=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .57x y =⎧⎨=⎩【例9】 下列各组数中,_________是方程32x y -=的解;_________是方程29x y -=的解;例题解析知识精讲模块二:二元一次方程组的概念________是方程组3229x y x y -=⎧⎨-=⎩的解.①.11x y =-⎧⎨=-⎩;②.51x y =⎧⎨=⎩;③.32x y =⎧⎨=⎩;④.25x y =⎧⎨=-⎩【例10】 下列方程中,与方程325x y +=所组成的方程组的解是32x y =⎧⎨=-⎩的是()A .34x y -=B .434x y +=C .1x y +=D .432x y -=【例11】 请以122x y ⎧=⎪⎨⎪=-⎩为解,构造一个二元一次方程组__________________.【例12】 若x ay b =⎧⎨=⎩是方程31x y +=的一个解,则934_______a b ++=.【例13】 若关于x 、y 的二元一次方程组2x y m x my n -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩,则m n -的值是()A .1B .3C .5D .2【例14】 已知方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组()()()()223113325130.9x y x y ⎧+--=⎪⎨++-=⎪⎩的解是_________.一、消元思想二元一次方程组中有两个未知数,如果能“消去”一个未知数,那么就能把二元一次方程组转化为我们熟悉的一元一次方程.这种将未知数的个数由多化少、逐一解决的思想,叫做“消元”.使用“消元法”减少未知数的个数,使多元方程组最终转化为一元方程,再逐步解出未知数的值. 二、代入消元法1、代入消元法的概念将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法.2、用代入消元法解二元一次方程组的一般步骤:①等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y ),用另一个未知数(如x )的代数式表示出来,即将方程写成y ax b =+的形式;知识精讲模块三:二元一次方程组的解法②代入消元:将y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程; ③解这个一元一次方程,求出x 的值;④回代:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.三、加减消元法1、加减消元法的概念当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法.2、用加减消元法解二元一次方程组的一般步骤:①变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求得一个未知数的值;④回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.【例15】 把方程513yx y +=+写成用含x 的式子表示y 的形式,下列各式正确的是( ) A .352y x =+ B .3102y x =-C .31522y x =--D .31522y x =-+【例16】 若222x ty t ⎧=⎪⎨=⎪⎩,则x 与y 之间的关系式为_________.【例17】 已知代数式133m x y --与52n m n x y +是同类项,那么m 、n 的值分别是()A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩【例18】 若()2523100x y x y +-+--=,则( )A .32x y =⎧⎨=⎩B .23x y =⎧⎨=⎩C .50x y =⎧⎨=⎩D .05x y =⎧⎨=⎩例题解析【例19】 用代入消元法解下列二元一次方程组:(1)2342x y y +=⎧⎨=⎩(2)50180x y x y =-⎧⎨+=⎩(3)53210x y x y -=-⎧⎨+=⎩(4)34194x y x y +=⎧⎨-=⎩【例20】 解二元一次方程组345527x y x y +=⎧⎨-=⎩①②正确的消元方法是() A .53⨯+⨯①②,消去x B .35⨯-⨯①②,消去x C .2-⨯①②,消去yD .2+⨯①②,消去y【例21】 用加减消元法解下列二元一次方程组:(1)37232x y x y +=⎧⎨-=⎩(2)3263524x y x y -=⎧⎨-=⎩(3)3210512x y x y +=⎧⎨+=⎩(4)324432x y y x -=⎧⎨-=-⎩【例22】已知x 、y 满足方程组2100721006x y x y +=⎧⎨+=-⎩,则x y -的值为_________.【例23】在方程组2122x y mx y +=-⎧⎨+=⎩中,若未知数x 、y 满足0x y +>,则m 的取值范围为()A.3m >B.3m <C.3m ≥D.3m ≤【例24】解下列二元一次方程组:(1)235455y xx y=⎧⎨+=⎩(2)2333215x yx y-=-⎧⎨+=⎩(3)()()()()31425125y xx y⎧-=-⎪⎨-=+⎪⎩(4)2153224111466x yx y⎧+=-⎪⎪⎨⎪-=-⎪⎩【例25】解二元一次方程组:(1)1243231y xx y++⎧=⎪⎨⎪-=⎩(2)2132245313245yxyx--⎧+=⎪⎪⎨++⎪-=⎪⎩(3)2320.40.7 2.8yxx y⎧+=⎪⎨⎪+=⎩【例26】已知关于x、y的方程组227x y kx y k-=-⎧⎨+=⎩,则:________x y=.【习题1】下列各式是二元一次方程的是()A .30x y z -+=B .30xy y x -+=C .12023x y -=D .210y x+-=【习题2】若2211a b a b x y -+--=是关于x 、y 的二元一次方程,那么a 、b 的值分别是()A .10a b =⎧⎨=⎩B .01a b =⎧⎨=-⎩C .21a b =⎧⎨=⎩D .23a b =⎧⎨=-⎩【习题3】二元一次方程组224x y x y -=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .02x y =⎧⎨=-⎩D .20x y =⎧⎨=⎩【习题4】由4360x y -+=,可以得到用y 表示x 的式子为________________.【习题5】解下列方程:(1)2328y xy x =⎧⎨+=⎩(2)1035x y x y +=⎧⎨-=⎩(3)233511x y x y +=⎧⎨-=⎩(4)1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩(5)372513x y x y -=⎧⎨+=⎩(6)347910250m n m n -=⎧⎨-+=⎩随堂练习【作业1】若24341358m n m n x y --+--=是关于x 、y 的二元一次方程,则22()()m n m mn n -++的值为_________. 【作业2】若12x y =⎧⎨=⎩是关于x 、y 的二元一次方程31ax y -=的解,则a 的值为( )A .5-B .1-C .2D .7【作业3】下列方程组:①220x y x y -=⎧⎨+=⎩;②11x y y z -=⎧⎨-=⎩;③12xy x y =⎧⎨+=⎩;④120x y =⎧⎨-=⎩其中,是二元一次方程组的是_________.【作业4】已知12x y =-⎧⎨=⎩是关于x 、y 的方程组12x ay bx y +=-⎧⎨-=⎩的解,则a b +=______.【作业5】若12x y =⎧⎨=-⎩是关于x 、y 的方程1ax by -=的一组解,且3a b +=-,求52a b -的值.【作业6】解下列二元一次方程组:(1)45805620x y y x -=⎧⎨+=⎩(2)23953x y x y +=-⎧⎨-=⎩(3)()39312x y y x +=⎧⎪⎨-=⎪⎩(4)1243231y x x y ++⎧=⎪⎨⎪-=⎩(5)734628x y x y +=⎧⎨+=⎩(6)134723m nm n ⎧-=-⎪⎪⎨⎪+=⎪⎩课后作业。

七年级下-二元一次方程组的定义及解法

七年级下-二元一次方程组的定义及解法

二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。

所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。

注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。

例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。

注意三条:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1。

③方程组中每个方程均为整式方程。

注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。

例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。

2.未知数的次数为1。

注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。

例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。

'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。

数学二元一次方程组解法讲解和实例分析的完整教案

数学二元一次方程组解法讲解和实例分析的完整教案

数学二元一次方程组解法讲解和实例分析的完整教案:大家好!今天来给大家讲解一下数学中的二元一次方程组解法,并且使用实例展示这个解法的具体应用情况。

一、二元一次方程组的概念二元一次方程组是指由两个含有两个未知数的线性方程所组成的方程组。

一般形式为:$$\begin{cases} ax+by=c \\ dx+ey=f \end{cases}$$其中,a、b、c、d、e、f都是已知数,x、y是未知数。

解方程组就是求出x和y的值,使得这两个方程组成立。

二、二元一次方程组的解法1、代数法采用代数方法解二元一次方程组,我们可以先通过其中一个方程将其中一个未知数表示成另一个未知数的函数。

将这个函数式代入另一个方程中,就会得到只含有一个未知数的一元一次方程,从而可以解出这个未知数的值。

接着,将求解出的值代入函数式中,可以得到另一个未知数的值。

二元一次方程组的代数解法具有操作简单、过程规范等特点。

我们可以通过实例来解释这个方法的正确性。

例1:用代数法解下列方程组:$$\begin{cases} 3x+5y=12 \\ 4x+2y=10 \end{cases}$$解:由第二个方程式得:$$y=\frac{10-4x}{2}=5-2x$$于是,方程组变成为:$$\begin{cases} 3x+5(5-2x)=12 \\ \\ 4x+2y=10\end{cases}$$将y=5-2x带入第一个方程式,可以消去y,得到:$$x=1$$将x=1代入y=5-2x,可以得到:$$y=3$$所以,这个方程组的解是(1,3)。

2、消元法消元法也是解二元一次方程组的一种方法。

它的核心思想是将两个含有两个未知数的方程中的一个未知数系数相等再作差,通过消元得到一个一元一次方程。

最后代入到其中一个方程,解出另一个未知数。

消元法解方程组的步骤如下:1)将其中一个方程两边同乘以一个数,使得两个未知数的系数相等或相反(决定于方便操作,一般情况下选择系数小的未知数)2)将两个方程加起来,消去某个未知数,从而得到另一个未知数的值3)代入其中一个方程式中,求出另一个未知数的值通过实例来解释这个方法的正确性。

二元一次方程基本概念及基本解法讲解(最新整理)

二元一次方程基本概念及基本解法讲解(最新整理)

2
2x y 3
4.
方程组
x
y
3
的解是(

x 1
A.
y
2
x 2
B.
y
1
x 1
C.
y
1
x 2
D.
y
3
6x 5y 11, ①
5.已知二元一次方程组
3
y
2x
7,

,下列说法正确的是()
A.适合②的 x, y的值 是方程组的解①②
B.适合①的 x, y的值 是方程组的解
C.同时适合①和②的 x, y的值 不一定是方程组的解
8.在二元一次方程组
x 2x
y m
4 3
y
中,有
x
6
,则
y
_____,
m
______ .
9.若 x 2 (3y 2x)2 0 ,则 x 的值是

y
10.若
是二元一次方程
的一个解,则
的值是__________.
11.已知
,且
,则 ___________.
x 2
12.若方程
ax-2y=4
的一个解是
x
y
2 ,
8
x
y
4 ,
6
x y
1 9
等等
练习 2:二元一次方程 x-2y=1 有无数多个解,下列四组值中不是该方程解的是( )
x 0
A.
y
1 2
x 1
B.
y
1
x 1
C.
y
0
x 1
D.
y
1
【变式
2】若方程
ax

七年级数学二元一次方程组(学生讲义)

七年级数学二元一次方程组(学生讲义)

第一章 二元一次方程组【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。

①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。

2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。

3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。

5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解1.1 二元一次方程组的解法(1)用代入法解二元一次方程组例:解方程组 ⎩⎨⎧=+=+1523y x y x※解题方法:①编号:将方程组进行编号;②变形:从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y=ax+b (或x=ay+b )的形式;③代入:将y=ax+b (或x=ay+b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;④求x (或y ):解这个一元一次方程,求出x (或y )的值;⑤求y (或x ):把x (或y )的值代入y=ax+b (或x=ay+b )中,求出y (或x )的值;⑥联立:用“{”联立两个未知数的值,就是方程组的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组的概念及解法中考要求例题精讲版块一 二元一次方程(组)的基本概念☞二元一次方程1.含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”; ③含有未知数的项的次数为1——“一次”.2.二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解. 一般情况下,一个二元一次方程有无数个解.【例1】 若32125m n x y ---=是二元一次方程,则求m 、n 的值. 【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x ym ---+=是关于x 、y 的二元一次方程,求m 、n 的值. 【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =. 【例2】 已知21x y =⎧⎨=⎩是方程3kx y -=的解,那么k 的值是( )A.2B.2-C.1D.1-【答案】A【巩固】已知21x y =⎧⎨=⎩是方程25x ay +=的解,则a =【答案】1a =【例3】 ⑴设x 、y 为正整数,求524x y +=的所有解⑵设x 、y 为非负整数,求25x y +=的所有解 ⑶设x 为正数,y 为正整数,求36x y +=的所有解【答案】⑴119x y =⎧⎨=⎩,214x y =⎧⎨=⎩,39x y =⎧⎨=⎩,44x y =⎧⎨=⎩;⑵05x y =⎧⎨=⎩,13x y =⎧⎨=⎩,21x y =⎧⎨=⎩,⑶531x y ⎧=⎪⎨⎪=⎩,432x y ⎧=⎪⎨⎪=⎩,13x y =⎧⎨=⎩,234x y ⎧=⎪⎨⎪=⎩,135x y ⎧=⎪⎨⎪=⎩【例4】 若方程24341358m n m n x y --+--=是二元一次方程,则22()()m n m mn n -++的值为 . 【答案】由二元一次方程的概念可列二元一次方程组2413411m n m n --=⎧⎨+-=⎩,解得21m n =⎧⎨=-⎩,22()()339m n m mn n -++=⨯=.☞二元一次方程组:1.由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组.二元一次方程组不一定由两个二元一次方程合在一起:方程可以超过两个,有的方程可以只有一元(一元方程在这里也可看作另一未知数系数为0的二元方程). 如2631x x y =⎧⎨-=⎩也是二元一次方程组.2.二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数. 【例5】 下列方程组中,是二元一次方程组的是( )(多选)A.3257x y xy -=⎧⎨=⎩B.54x y =⎧⎨=⎩C.1345y xx y ⎧=-⎪⎪⎨⎪=+⎪⎩ D.270453x y x z -=⎧⎨-=⎩E.3435x y x y -=⎧⎨+=⎩F.241241x y x y -=⎧⎨-=⎩G.4541x z x z -=⎧⎨-=⎩H.423531x y x x y -=⎧⎪=⎨⎪-=⎩【解析】区别二元一次方程组的方式,只需要抓住以下几点:①包含2个未知数;②最高次项为1次;整式方程;与方程的个数,字母的选择没有任何关系。

因此B 、E 、F 、G 、H 均为二元一次方程组,很多同学易在F 、G 、H 出错。

【答案】B 、E 、F 、G 、H【例6】 下列每个方程组后的一对数值是不是这个方程组的解?⑴1325x y x y +=⎧⎨+=⎩ 10x y =⎧⎨=⎩; ⑵264344x y y x =-⎧⎨=-⎩ 82x y =⎧⎨=⎩; ⑶2783108x y x y -=⎧⎨-=⎩ 6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】判断一组数是不是方程的解,必须要看它是不是方程组中每个方程的解,如果是,则是方程组的解,否则,不是方程组的解【答案】⑴将1xy=⎧⎨=⎩代入方程组中的第二个方程:左边3=,右边5=,左边≠右边,∴1xy=⎧⎨=⎩不是第二个方程的解,从而不是方程组的解⑵将82xy=⎧⎨=⎩方程组中的第一个方程:左边8=,右边18=,左边≠右边,∴82xy=⎧⎨=⎩不是第一个方程的解,从而不是方程组的解⑶将6545xy⎧=⎪⎪⎨⎪=-⎪⎩代入方程组中的第一个方程:左边8=,右边8=,左边=右边,∴6545xy⎧=⎪⎪⎨⎪=-⎪⎩是第一个方程的解;将6545xy⎧=⎪⎪⎨⎪=-⎪⎩代入方程组中的第二个方程:左边325=-,右边325=-,左边=右边,∴6545xy⎧=⎪⎪⎨⎪=-⎪⎩是第二个方程的解;∴6545xy⎧=⎪⎪⎨⎪=-⎪⎩是原方程组的解【例7】请以12xy=⎧⎨=⎩为解,构造一个二元一次方程组【解析】本题答案不唯一,很多学生对类似的问题都无从下手,其实此类问题非常简单,构造的方式也多样,完全可以转化为代数式求值有关的问题,如2____2____x yx y+=⎧⎨-=⎩,3____3____x yx y+=⎧⎨-=⎩,42____42____x yx y+=⎧⎨-=⎩,因此只需要将12xy=⎧⎨=⎩分别代入求值,填入数值即可【答案】参考答案31x yx y+=⎧⎨-=-⎩,其他答案符合条件即可【巩固】请以13xy=-⎧⎨=⎩为解,构造一个二元一次方程组【答案】参考答案24x yx y+=⎧⎨-=-⎩,答案不唯一版块二二元一次方程组的解法☞代入消元法代入法是通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法是解二元一次方程组的基本方法之一.“消元”体现了数学研究中转化的重要思想,代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法. ☞用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y ,用另一个未知数如x 的代数式表示出来,即写成y ax b =+的形式;②y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程; ③解这个一元一次方程,求出x 的值;④回代求解:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解. ⑤把这个方程组的解写成x a y b =⎧⎨=⎩的形式.【例8】 把方程2()3()3x y y x +--=改写成用含x 的代数式表示y 的形式,则( )A.53y x =-B.3y x =--C.53y x =+D. 53y x =--【解析】 先去括号,再移项,合并同类项,整理后分析选项可得答案. 【答案】选A .【例9】 用代入消元法求解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩①②, ⑵52253415x y x y +=⎧⎨+=⎩ ①②【解析】学生初学时,注意要求格式 【答案】⑴由①得,25y x =- ③将③代入②得,34(25)2x x +-=,解得2x =,代入③得1y =-,∴原方程组的解为21x y =⎧⎨=-⎩⑵由①得,2552xy -=③ 将③代入②得25534152xx -+⨯=,解得5x =,代入③得0y =,∴原方程组的解为50x y =⎧⎨=⎩【巩固】用代入法解下列方程组⑴23724x y x y -=⎧⎨+=⎩, ⑵732232x y y x -=⎧⎨-=⎩, ⑶4241x y x y -=⎧⎨+=⎩, ⑷2434y x x y -=⎧⎨+=⎩【答案】⑴26717x y ⎧=⎪⎪⎨⎪=⎪⎩;⑵452310x y ⎧=⎪⎪⎨⎪=⎪⎩;⑶917217x y ⎧=⎪⎪⎨⎪=⎪⎩;⑷56196x y ⎧=⎪⎪⎨⎪=⎪⎩☞加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法.☞用加减法解二元一次方程组的一般步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求得一个未知数的值;④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值; ⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.☞加减消元方法的选择:①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元;③某一未知数系数成倍数关系时,直接对一个方程变形,使其系数互为相反数或相等,再用加减消元求解; ④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同,再用加减消元求解. 【例10】 用加减消元法、解下列方程⑴251x y x y -=⎧⎨+=⎩①② ⑵2422x y x y -=⎧⎨-=⎩①② 【解析】学生初学时,注意格式上的要求 【答案】⑴①+②得,36x =,解得2x =将2x =代入①得,1y =- ∴原方程的解为21x y =⎧⎨=-⎩⑵ ①2⨯得,248x y -= ③ ③-②得,36y -=,解得2y =- 将2y =-代入①得0x = ∴原方程的解为02x y =⎧⎨=-⎩【巩固】用加减消元法、解下列方程⑴235324x y x y +=⎧⎨+=⎩;⑵54310x y x y -=⎧⎨+=⎩;⑶358223x y x y +=⎧⎨-=⎩;⑷267322x y x y -=⎧⎨+=⎩【答案】⑴2575x y ⎧=⎪⎪⎨⎪=⎪⎩;⑵257607x y ⎧=⎪⎪⎨⎪=⎪⎩;⑶3116716x y ⎧=⎪⎪⎨⎪=⎪⎩;⑷13111722x y ⎧=⎪⎪⎨⎪=-⎪⎩☞选用恰当的方法解下列方程组【例11】 已知x 、y 满足方程组2100521004x y x y +=⎧⎨+=-⎩,则x y -的值为_________.【解析】观察方程组的系数,显然用减法即可整体求得x y -的值. 【答案】2009x y -=【巩固】在方程组2122x y mx y +=-⎧⎨+=⎩中,若未知数x 、y 满足0x y +>,则m 的取值范围为( )A.3m >B.3m <C.3m ≥D.3m ≤【解析】已知0x y +>,因此只需构造出x y +的整体即可【答案】2122x y m x y +=-⎧⎨+=⎩①②,①+②得,3()3x y m +=-,∴303mx y -+=>,∴3m <【例12】 已知关于x 、y 的方程组227x y kx y k -=-⎧⎨+=⎩,则:________x y =【解析】先用含k 的代数式表示x 、y ,再求:x y 的值. 【答案】两方程相加得:26x k =解得3x k =将3x k =代入2x y k -=-得:2y k =. 则:3:23:2x y k k ==.【巩固】已知,,x y z 满足方程组207450x y z x y z -+=⎧⎨+-=⎩,且0x ≠,求:::x y z 的值.【解析】此题为求解未知数比值的问题.可以先把其中的一个未知数看作常数,解方程组,然后再求比值. 【答案】207450x y z x y z -+=⎧⎨+-=⎩①②,①2⨯+②得,930x z -=,所以3z x =将3z x =代入①式,得42x y =,即2y x = ∵0x ≠,∴:::2:31:2:3x y z x x x ==【例13】 解方程组199519975989199719955987x y x y +=⎧⎨+=⎩①②【解析】此题系数比较复杂,因此需要进行同解变换,得到比较简单的方程.在进行求解. 【答案】解:①-②,得:1y x -= ③①+②,得:3y x += ④ ③+④得,24y =,2y =④-③得,22x =,1x = 所以,该方程组的解为:12x y =⎧⎨=⎩【巩固】解方程组:231763172357 x y x y +=⎧⎨+=⎩【解析】第7届华罗庚邀请赛,整体叠加法系数对调型方程组,可采用整体相加然后相减的方法速算; ①+②得3x y +=,进而可得2x =,1y =【答案】2x =,1y =【例14】 解方程组:54 2 127320 12x y x y ⎧+=⎪+-⎪⎨⎪+=⎪+-⎩【答案】换元法,观察原方程组可得:1154 2 12117320 12x y x y ⎧⋅+⋅=⎪+-⎪⎨⎪⋅-⋅=⎪+-⎩,令11a x =+,12b y =-,原方程组转化为二元一次方程组:5427320a b a b +=⎧⎨-=⎩,解得:22a b =⎧⎨=-⎩;从而解得方程组的解为1232x y ⎧=-⎪⎪⎨⎪=⎪⎩.此题是较复杂的方程组类问题,通常依据整体的思想,采用换元法,能使问题得到简化.【巩固】解方程组:254323625323x y x y ⎧+=-⎪-+⎪⎨⎪-=⎪-+⎩【答案】令13a x =-,123b y =+,原方程组转化为254625a b a b +=-⎧⎨-=⎩,解得121a b ⎧=⎪⎨⎪=-⎩;原方程组的解为52x y =⎧⎨=-⎩.板块三、三元一次方程组☞三元一次方程组解三元一次方程组的基本方法是将三元一次方程组通过消元的方式,转化为二元一次方程组来求解 【例15】 解下列方程组⑴3423126x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩ ①②③ ⑵224104x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩①②③ 【解析】代入消元法或加减消元法【答案】⑴ ①+②得,5216x y += ④②+③得,3418x y += ⑤④2⨯-⑤得,714x =,2x =,把2x =代入④式得3y = 把2x =,3y =代入③得1z = ∴原方程组的解为231x y z =⎧⎪=⎨⎪=⎩⑵310x y z =⎧⎪=⎨⎪=⎩【巩固】已知有理数x 、y 、z 满足2(2)3673340x z x y y z --+--++-=,求x 、y 、z 的值 【解析】考查了非负数性质的应用【答案】由非负数的性质可得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩板块四 含参数方程组☞方程组解x 与y 之间数量关系【例16】 方程组43235x y kx y -=⎧⎨+=⎩的解x 与y 的值相等,则k 等于________【解析】方法一:将43235x y k x y -=⎧⎨+=⎩求解得,56109k x k y +⎧=⎪⎪⎨-⎪=⎪⎩,∵x 与y 的值相等,∴51069k k +-=∴1k =此方法为通用解法,很多同学都会采用这种方法,但是我们发现这种方法虽然正确,但是解题效率比较低,因此我们可以考虑其他方法 方法二:∵x 与y 的值相等,∴x y =我们可以降原问题转化为解关于x 、y 、k 的三元一次方程组43235x y k x y x y -=⎧⎪+=⎨⎪=⎩①②③,只需要求出k 的值即可,将③代入①、②得55x kx =⎧⎨=⎩,∴1x =,1k =【答案】1k =【巩固】若方程组431(1)3x y ax a y +=⎧⎨+-=⎩的解x 与y 相等,则a 的值等于_________【解析】转化为关于x 、y 、a 的三元方程组431(1)3x y ax a y x y +=⎧⎪+-=⎨⎪=⎩,求解即可【答案】11a =【巩固】若联立方程式31023x ay x y +=⎧⎨-=⎩的解x 与y 之和是3,试求出此联立方程的解与a 的值【解析】转化为310233x ay x y x y +=⎧⎪-=⎨⎪+=⎩①②③,可以先将②③组合求出x 、y ,再代入方程①,略【答案】21x y =⎧⎨=⎩,4a =【巩固】若方程组322543x y kx y k +=⎧⎨+=+⎩的解之和5x y +=-,求k 的值【解析】方法一:解方程组322543x y kx y k +=⎧⎨+=+⎩,然后代入5x y +=-,略方法二:转化为解三元方程组3225435x y k x y k x y +=⎧⎪+=+⎨⎪+=-⎩,略方法三:整体构造,322543x y k x y k +=⎧⎨+=+⎩①②,②-①得,223x y k +=-∵5x y +=-,∴310k -=-,∴13k =【答案】13k = ☞同解方程【例17】 已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m 、n 的值【解析】∵方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解∴可以将原问题转化为3247231953x y mx ny mx ny y x -=⎧⎪+=⎪⎨-=⎪⎪-=⎩①②③④,可由方程①④,先进行求解,再将所得的结果代入②③求解m 、n 的值【答案】由题意得32453x y y x -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩将21x y =⎧⎨=⎩代入72319mx ny mx ny +=⎧⎨-=⎩得274319m n m n +=⎧⎨-=⎩,解得41m n =⎧⎨=-⎩【巩固】已知方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解,求a b ,的值.【解析】解方程组5325x y x y +=⎧⎨-=⎩得:12x y =⎧⎨=-⎩把12x y ==-,分别代入方程5451ax y x by +=+=,可得:142a b ==,【答案】142a b ==, ☞错数与错解问题【例18】 小明与小强同解x 、y 的方程组3315ax y x by -=⎧⎨+=⎩①②,小明除了看错①中a 之外,无其他错误,求得解为16x y =⎧⎨=⎩;小强除了看错②式中的b 之外,无其他错误,求得解为21x y =⎧⎨=⎩,试求出a 、b 之值与方程组的解【答案】小明看错①式,求得16x y =⎧⎨=⎩,故16x y =⎧⎨=⎩是方程②的解代入求出2b =小强看错②式,求得21x y =⎧⎨=⎩,故21x y =⎧⎨=⎩是方程①的解代入求出2a =因此原方程为233215x y x y -=⎧⎨+=⎩,解得33x y =⎧⎨=⎩【巩固】小刚在解方程组278ax by cx y +=⎧⎨-=⎩时,本应解出32x y =⎧⎨=-⎩由于看错了系数c ,而得到的解为22x y =-⎧⎨=⎩求a b c ++的值.【答案】由题意得:322222a b a b -=⎧⎨-+=⎩,解得:45a b =⎧⎨=⎩,把32x y =⎧⎨=-⎩代入方程78cx y -=得:2c =-∴7a b c ++=【巩固】已知方程组278ax by mx y +=⎧⎨-=⎩的解应为32x y =⎧⎨=-⎩,由于粗心,把m 看错后,解方程组得22x y =-⎧⎨=⎩,则a b m⋅⋅的值是 .【解析】将32x y =⎧⎨=-⎩,22x y =-⎧⎨=⎩代入2ax by +=可得222322a b a b -+=⎧⎨-=⎩,解得45a b =⎧⎨=⎩32x y =⎧⎨=-⎩代入78mx y -=可得2m =-,45(2)40a b m ⋅⋅=⨯⨯-=- 【答案】40-☞引入参数 【例19】 若345x y z==且24x y z ++=,求x 、y 、z 的值 【解析】见比设k 的思想 【答案】设345x y zk ===,则3x k =,4y k =,5z k =,分别代入24x y z ++=,得34524k k k ++= 解得2k =将2k =代入3x k =,4y k =,5z k =,得6x =、8y =、10z =【巩固】解下列方程组4562343x y z x y z ⎧==⎪⎨⎪+-=-⎩ 【答案】121518x y z =⎧⎪=⎨⎪=⎩板块五 二元一次方程组解的讨论☞二元一次方程组解的三种情况 二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩⑴若1122a b a b ≠,则该方程组有唯一解 ⑵若111222a b c a b c =≠,则该方程组无解 ⑶若111222a b c a b c ==,则该方程组有无数组解【例20】 解二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(1a 、1b 、1c 、2a 、2b 、2c 、均不为0)【解析】加减消元法 【答案】111222a xb yc a x b y c +=⎧⎨+=⎩①②①2a ⨯得,122121a a x a b y a c +=③ ②1a ⨯得,121212a a x a b y a c +=④ ③-④得,21122112()a b a b y a c a c -=-⑤当21120a b a b -≠时,整理得1122a b a b ≠,方程⑤有唯一解,即此时方程组有唯一解 当21120a b a b -=,21120a c a c -=时,整理得,111222a b c a b c ==,方程⑤的解为任意解,即此时方程组有无数个解当21120a b a b -=,21120a c a c -≠时,整理得,111222a b c a b c =≠,方程⑤无解,即此时方程组无解 【例21】 k 、b 满足什么条件时,方程组(31)2y kx by k x =+⎧⎨=-+⎩⑴有唯一一组解 ⑵无解 ⑶有无穷组解【答案】⑴12k ≠,b 取任意值;⑵12k =,2b ≠时,无解;⑶12k =,2b =时有无穷多解 【巩固】选择一组a ,c 值使方程组572x y ax y c +=⎧⎨+=⎩,①有无数多解;②无解;③有唯一的解.【答案】①当10a =,14c =时,方程组有无数多解;②当10a =,14c ≠时,方程组无解; ③当10a ≠时,方程组有唯一的解.【巩固】当m n ,为何值时,方程组(21)4mx y nm x y -=-⎧⎨--=-⎩⑴无解;⑵惟一解;⑶有无穷多解. 【答案】②-①,得(1)4m x n -=-⑴当1040m n -=-≠,,即14m n =≠,时,原方程组无解; ⑵当10m -≠,即1m ≠时,原方程组有惟一解;⑶当10m -=,40n -=时,即14m n ==,时,原方程组有无穷多个解.课堂检测1. 解方程组:56812 412345x y z x y z x y z +-=⎧⎪+-=-⎨⎪+-=⎩【解析】由①得:2(234)12 x x y z ++-=④,将③代入④可得2x =,将其代入②、③得:43341y z y z -=-⎧⎨-=⎩ ,解得:211x y z =⎧⎪=-⎨⎪=-⎩【答案】211x y z =⎧⎪=-⎨⎪=-⎩2. 解方程组::::1:2:3:49732200x y z u x y z u =⎧⎨+++=⎩【解析】设x k =,2y k =,3z k =,4u k =所以有91498200k k k k +++=,即5k =,故5x =,10y =,15z =,20u =【答案】5x =,10y =,15z =,20u = 3. 已知关于x 、y 的方程组72x y ax y c +=⎧⎨+=⎩⑴当a 、c 满足什么条件时,方程组有唯一解 ⑵当a 、c 满足什么条件时,方程组有无数组解 ⑶当a 、c 满足什么条件时,方程组无解 【答案】⑴当2a ≠时,原方程组有唯一解⑵当2a =,14c =时,原方程组有无数解 ⑶当2a =,14c ≠时,原方程组无解课后作业1. 解下列方程组:⑴3(1)4(4)5(1)3(5)y x x y -=-⎧⎨-=+⎩,⑵21322453132045y x y x --⎧+=⎪⎪⎨++⎪-=⎪⎩, ⑶2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩,⑷35724310()4(1)3x y y x x y x y-+⎧+=-⎪⎪⎨---⎪=⎪⎩ 【答案】 (1)75x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩;(3)1214x y ⎧=-⎪⎪⎨⎪=⎪⎩;(4)44x y =⎧⎨=⎩.2. 已知:::1:2:7x y z =,2321x y z -+=,求,,x y z 的值. 【答案】解:因为::1:2:7x y z =,所以:2y x =,7z x =将,,x y z 代入方程2321x y z -+=,得:2121x =,所以:1x = 所以:22y x ==,77z x ==.3. 如果二元一次方程组4x y ax y a +=⎧⎨-=⎩的解是二元一次方程3528x y a --=的一个解,那么a 的值是?【解析】解方程组4x y a x y a +=⎧⎨-=⎩得:5232a x a y ⎧=⎪⎪⎨⎪=-⎪⎩把方程组的解代入方程3528x y a --=得:2a =【答案】2。

相关文档
最新文档