有关点和直线间的对称问题
与直线有关的对称问题

与直线有关的对称问题山东 杨道叶一、知识精析1.关于直线对称的点若两点111(,)P x y 与222(,)P x y 关于直线l :0Ax By C ++=对称,则线段12PP的中点在对称轴l 上,而且连结1P 、2P 的直线垂直于对称轴l ,由方程组 12121212022x x y y A B C y y Bx x A⎧++⎛⎫⎛⎫++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎪=⎪-⎩可得到点1P 关于l 对称的点2P 的坐标222(,)P x y (其中120,A x x ≠≠)。
2.关于直线对称的两条直线此类问题一般转化为关于直线的对称点来解决。
若已知直线1l 与对称轴l 相交,则交点必在与1l 对称的直线2l 上,然后再求出1l 上任一个已知点1P 关于对称轴l 对称的点2P ,那么经过交点及点2P 的直线就是2l ;若已知直线1l 与对称轴l 平行,则与1l 对称的直线和1l 到直线l 的距离相等,由平行直线系和两条平行线间的距离,即可求出1l 的对称直线。
3.点关于特殊直线对称点的坐标例1 求与点(3,5)P 关于直线l :320x y -+=对称的点/P 的坐标。
分析:设点/P 的坐标为00(,)x y ,则直线l 为/PP 的垂直平分线,所以/PP l ⊥,/PP 的中点M 在l 上,列出关于0x ,0y 的方程组,求解即可。
解析:设/00(,)P x y ,则/0053PP y k x -=-,/PP 的中点0035,22x y M ++⎛⎫ ⎪⎝⎭。
∴0000511333532022y x x y -⎧⨯=-⎪-⎪⎨++⎪-⨯+=⎪⎩,解得0051x y =⎧⎨=-⎩, ∴点/P 的坐标为()5,1-。
评注:另解为:先求出过点(3,5)P 与l 垂直的直线/PP 的方程,解/PP 与直线l 的方程组成的方程组,求得交点M 的坐标,再运用中点坐标公式求出点/P 的坐标。
例2 求直线a :240x y +-=关于直线l :3410x y +-=对称的直线b 的方程。
点 ,线关于直线对称问题

13 13
13
A(33 , 9 ) ; 13 13
例 2 已知点 A(x0 , y0 ) ,(1)求 A 关于直线 x y c 0 的对称点坐标;(2)求 A 关
于直线 x y c 0 的对称点坐标;
解(1)设对称点 B(x1, y1) ,则由求对称点公式得:
x1 x0 1 2(x0 y0 c) y0 c , y1 y0 1 2(x0 y0 c) x0 c ,
2
2
2
2
所以对称点是 ( y0 c,x0 c) ;
(2) x1 x0 1 2(x0 y0 c) y0 c , y1 y0 1 2(x0 y0 c) x0 c
2
2
2
2
即对称点是: ( y0 c, x0 c) ;
二 圆锥曲线中存在点关于直线对称问题
对于此类问题有第一种通法,即抓住两点对称中体现的两要点:垂直(斜率之积为-1) 和两点连线中点在对称直线上,至于参数的范围则是由联立后方程的△产生,下面举例说明:
产生的垂直及中点问题,不过在有关范围关系式的产生上有差别.
上有不同两点关于这条直线对称.
解:设存在两点 A(x1,y1)、B(x2,y2)关于 l 对称,中点为 C(x,y),则
3x12+4y12=12,
3x22+4y22=12,
得
y1-y2 x1-x2
=-
3(x1+x2) 4(y1+y2)
=-
3x 4y
=-
1 4
,
∴ y=3x.
联立 y=4x+m,解的 x=-m,y=-3m,
一 点关于直线的对称点的一种公式求法
结论:设直线 l : ax by c 0 ,( a 、 b 至少有一个不为 0),点 A(x0 , y0 ) 关于直线 l 的
点直线的对称问题课件

直线关于点的对称定义是几何学中的基本概念之一。如果一条直线上的任意一点关于某一定点对称的点都在该直 线上,则这条直线被称为关于该定点对称。这个定义是理解点、线、面对称关系的基础。
直线关于点的对称性质
总结词
根据对称的性质,直线关于点的对称具 有平移不变性、旋转不变性和反射不变 性。
VS
详细描述
详细描述
直线关于点的对称是几何学中的基本概念之一,它在解 析几何、光学、力学和机器人学等领域中都有广泛的应 用。例如,在光学中,光的反射和折射都涉及到对称的 概念;在力学中,物体运动轨迹的对称性可以用对称的 直线来表示;在机器人学中,机器人的运动路径规划和 姿态调整也需要用到对称的概念。因此,理解直线关于 点的对称性质和应用对于深入理解这些领域中的基本概 念和原理非常重要。
点关于直线的对称性质
总结词
点关于直线的对称具有一些重要的性质,如对称点的连线与 对称轴垂直,且被对称轴平分。
详细描述
如果点A关于直线l对称于点B,则线段AB与直线l垂直,且线 段AB的中点M位于直线l上。此外,对称轴上的任意一点到两 个对称点的距离相等。
点关于直线的对称应用
总结词
点关于直线的对称在几何学、物理学和工程学等领域有广泛的应用。
详细描述
在几何学中,点关于直线的对称可用于研究图形的性质和变换。在物理学中,点关于直线的对称可用 于描述粒子的运动轨迹和电磁场的分布。在工程学中,点关于直线的对称可用于设计、分析和优化各 种结构。
03
直线关于点的对称
直线关于点的对称定义
总结词
根据对称的定义,如果一个直线上的任意一点关于某一定点对称的点都在该直线上,则该直线被称为关于该定点 对称。
美丽的图案。
点和直线对称问题

·P
x
法一: l2上的任意一点的对称点在l 1上; 法二: l1∥l2 ,点斜式;
法三: l1∥l2点P到两直线等距。
练习:直线2x+3y-6=0关于点(1,-1)的对 称直线方程
.
四、直线关于直线对称
例4. 试求直线l1:x-y-2=0关于直线l2:3x-y-1=0
对称的直线l 的方程。
解: 7x+y+6=0
C、3x-4y+5=0
D、-3y+4x-5=0
五、反射问题
例5.光 线 通A( 过2, 4) , 经 过l直 :2x线 y70 反 射 , 若 反 射 线B( 通 5, 8) 过, 点求 入 射 线 和 反 所在的直线. 方程
y-4 2 ·2=-1
A′ (10,-2) y
x-2 y+4 2·2 - 2 -7=0
.
二、点关于直线对称
例2.已知点A的坐标为(-4,4),直线l 的方
程为3x+y-2=0,求点A关于直线l 的
对称点A’的坐标。
y-4
-3· x-(-4) =-1
解: 3·-42+x +
4+y
A·
2 -2=0
解题要点: k • kAA’ = -1 O
AA’中点在l 上
y
·A′ (x,y)
(2,6)
点P(x,y)关于a,点 b)( 对称的点_(的 2_a _坐 x_,2b _标 _y_)
点 P( x,y)关于 yx直 对线 称的点_(的 _ y, _ x)坐 __ 点 P( x,y)关于 y直 x对线 称的点 (__ y的 ,_x_ )坐 _
点 P( x,y)关于 yx直 m 对 线称的点 (y_m _的 ,x __ m 坐 )_ 点 P( x,y)关于 y直 xm 对 线称的( 点 y_m _的 , _x _m 坐
点到直线的对称点公式

点到直线的对称点公式在平面几何中,点到直线的对称点是一个经常用到的概念。
当我们需要确定一个点关于直线的对称点时,可以利用点到直线的对称点公式来求解。
点到直线的对称点公式可以用来求解以下问题:1. 已知直线上的一点P,求其关于直线的对称点P'的坐标;2. 已知直线上的一点P和直线的方程,求其关于直线的对称点P'的坐标;3. 已知直线上的两点A和B,求点A关于直线的对称点A'的坐标;4. 已知直线上的一点P和点A,求点A关于直线的对称点A'的坐标。
下面我们来详细介绍点到直线的对称点公式及其应用。
1. 已知直线上的一点P,求其关于直线的对称点P'的坐标。
设直线的方程为ax + by + c = 0,点P的坐标为(x0, y0)。
点P关于直线的对称点P'的坐标为(x', y'),则有以下公式:x' = x0 - 2 * (ax0 + by0 + c) * a / (a^2 + b^2)y' = y0 - 2 * (ax0 + by0 + c) * b / (a^2 + b^2)2. 已知直线上的一点P和直线的方程,求其关于直线的对称点P'的坐标。
设直线的方程为ax + by + c = 0,点P的坐标为(x0, y0)。
点P关于直线的对称点P'的坐标为(x', y'),则有以下公式:x' = x0 - 2 * (ax0 + by0 + c) * a / (a^2 + b^2)y' = y0 - 2 * (ax0 + by0 + c) * b / (a^2 + b^2)3. 已知直线上的两点A和B,求点A关于直线的对称点A'的坐标。
设直线的方程为ax + by + c = 0,点A的坐标为(x1, y1),点B的坐标为(x2, y2)。
点A关于直线的对称点A'的坐标为(x1', y1'),则有以下公式:x1' = x1 - 2 * (ax1 + by1 + c) * a / (a^2 + b^2)y1' = y1 - 2 * (ax1 + by1 + c) * b / (a^2 + b^2)4. 已知直线上的一点P和点A,求点A关于直线的对称点A'的坐标。
有关点和直线间的对称问题

A'
B
第6页/共10页
练习(2 P99.T 4)与直线l1 : 2x 3y 6 0,关于 点M(1,-1)对称的直线方程。
解:设其对称直线方程为l2: 2x 3y C 0(. C 6)
在l1上取一点A(3,0),其关于O的对称点设为B(m,n), 则:
m3 1 2 n 1
第4页/共10页
二、两直线关于一点的对称问题
例2、求直线l1 : x 2 y 1 0,关于点M(1,6)
对称的直线方程。
解:解法一:在直线l1上取两点A(0,12), B(1,0).
A, B两点关于M的对称点为A' (x1,y1), B' (x2,y2 ),则:
6
1
x1 2
y1 2
解:联立方程组,
x 2y 3 0 ① 2x y 3 0 ② ① 2 ②,得: 3y 3 0 y 1 即:x 1 直线l1与l2的交点为A(1,1) 点A在直线l上 1 a 0 即:a 1
第8页/共10页
第9页/共10页
感谢您的观看!
第10页/共10页
一、两点关于直线的对称问题
例1、已知点A(1,-2),B(m,2),且线段AB的垂直平分线的方程是x+2y2=0,求实数m的值。
解:解法一:设AB中点为O(x0 , y0),则:
l
x0
1 m 2
y0
2 2
2
x0
y0
1 m
2 0
O(1 m ,0) 2
AO B
将O(1 m ,0)代入直线l方程,则: 2
2
m 1
n
2
B(1,2)
点B(1,2)在直线l2上
数学对称问题

数学对称问题数学对称问题对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化,本文特作以下归纳。
一、点关于已知点或已知直线对称点问题1、设点P(x,y)关于点(a,b)对称点为P(x,y),x=2a-x由中点坐标公式可得:y=2b-y2、点P(x,y)关于直线L:Ax+By+C=O的对称点为x=x-(Ax+By+C)P(x,y)则y=y-(AX+BY+C)事实上:∵PPL及PP的中点在直线L上,可得:Ax+By=-Ax-By-2C解此方程组可得结论。
(-)=-1(B0)特别地,点P(x,y)关于1、x轴和y轴的对称点分别为(x,-y)和(-x,y)2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)例1光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x 轴下方图象翻折上去得到y=|f(x)|的图象。
例2(全国高考试题)设曲线C的方程是y=x3-x。
将C沿x 轴y轴正向分别平行移动t,s单位长度后得曲线C1:1)写出曲线C1的方程2)证明曲线C与C1关于点A(,)对称。
(1)解知C1的方程为y=(x-t)3-(x-t)+s(2)证明在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:s-b1=(t-a1)3-(t-a1)`b1=(a1-t)3-(a1-t)+s`B1(a1,b1)满足C1的方程`B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上`曲线C和C1关于a对称我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)`y=(x-t)3-(x-t)+s此即为C1的方程,`C关于A的对称曲线即为C1。
常见的对称问题及求解方法

常见的对称问题及求解方法一、中心对称1、点关于点的对称,可以利用中点坐标公式求解例1、已知点(5,6)A 和点(1,2)B ,求点A 关于点B 的对称点A '。
解:设(,)A x y ',由题意可知点B 为点A 与点A '的中点,即有512622x x +⎧=⎪⎪⎨+⎪=⎪⎩, 解得32x y =-⎧⎨=-⎩所以点A '的坐标为(3,2)A '--。
2、直线关于点的对称,可以利用点到直线的距离来求解例2、已知直线:210l x y ++=和点(1,2)A ,求直线l 关于点A 对称的直线l '。
分析:l '与l 互相平行,且点A 到直线l '的距离等于点A 到直线l 的距离 解:设直线l '的方程为:20(1)x y m m ++=≠,则有|= 解得11m =-或1m =(舍)所以直线l '的方程为:2110x y +-=。
3、图形关于点的对称,可以转化为点关于点的对称来求解例3、求曲线1C 22231x y +=的图象关于点(1,1)A 对称的曲线2C 的解析式。
解:在曲线2C 上任取一点(,)P x y ,则它关于点(1,1)A 的对称点为(2,2)Q x y --, 由点Q 在22231x y +=上可得 222(2)3(2)1x y -+-=即曲线2C 的解析式为222(2)3(2)1x y -+-=。
二、轴对称1、点关于直线的对称,可以利用垂直平分线的性质求解例4、已知直线:230l x y ++=和点(1,1)A ,求点A 关于直线l 的对称点A '的坐标。
解:设(,)A x y ',则由点A 与点A '关于直线l 对称可得,A A l '⊥,且点A 与点A '的中点 在直线l 上。
故有11()1121123022y x x y -⎧⋅-=-⎪⎪-⎨++⎪+⋅+=⎪⎩ 解得75195x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 所以点A '的坐标为719(,)55A '--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、两直线关于一点的对称问题
例2、求直线l1 : x 2 y 1 0, 关于点M(1,6) 对称的直线方程。
l1
A
l2
B'
M
A'
B
练习2。求直线l1 : 2 x 3 y 6 0, 关于 点M( ,-1)对称的直线方程。 1
l1
A
l2
O
BHale Waihona Puke 三、两直线关于某直线的对称问题
例3、求直线l1 : x 2 y 3 0关于直线 l : x y 0对称的直线l 2的方程
有关点和直线间的对称问题
1.两点关于直线的对称问题 2.两直线关于一点的对称问题 3.两直线关于某直线的对称问题
一、两点关于直线的对称问题
例1、已知点A(1,-2),B(m,n),且A,B两点 关于直线x+2y-2=0对称,求实数m,n的值。
l
A
O
B
练习1.点A(4,5)关于直线l的对称点为 B(-2,7),则直线l的方程为
解:由题意知: O为AB中点,O为(m, n)则: , 42 m 2 m 1 57 n 6 n 2 O(1,6) 75 1 k AB , 24 3 1 kl 3 k AB AB 直线l
。
l
A
O
B
直线l : y 6 3( x 1) 即: 3 x y 3 0.