高一数学竞赛试题卷

合集下载

高级中学高一数学竞赛班选拔考试试题第三卷

高级中学高一数学竞赛班选拔考试试题第三卷

高中高一年级数学竞赛试题学生注意:1、本试卷共有三大题(15个小题),全卷满分150分。

2、用圆珠笔或钢笔作答。

3、解题书写不要超过装订线,班级、姓名写在左上角。

4、不能使用计算器。

一、选择题(本题共有6个小题,每题均给出(A)(B)(C)(D)四个结论,其中有且仅有一个是正确的。

请将正确答案的代表字母填在题后的括号内,每小题选对得6分;不选、选错或选的代表字母超过一个(不论是否写在括号内),一律得0分。

)1.设有三个函数,已知第一个函数是y=f(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,则第三个函数的解析式为(A) y=f(-x ) (B) y =- f (- x ) ( C ) y=f(x) ( D ) y =- f ( x )2.在1到250的自然数中,能被2、3、5、7中任何一个整除的整数个数为(A) 191 (B) 192 (C) 193 (D) 1943.已知x1, x2是关于x的方程x2-(k-2)x+k2+3k+5=0的两个实根,那么x12+x22的最大值为(A) 19 (B) 17 (C) (D) 184.已知f(x)=,则和f()+f()+…+f()+f()+f()+…+f()+…+f()+f()+…+f()的值等于(A) 10000 (B) 5000 (C) 1000 (D) 1005.已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)(A) 在区间(-1,0)上是减函数(B) 在区间(0,1)上是减函数(C) 在区间(-2,0)上是增函数(D) 在区间(0,2)上是增函数6.函数f(x)=(a>0,b>0,a≠b) 在R上的单调性为(A) 增函数(B) 减函数(C) 不增不减(D) 与a、b无关二、填空题本题共有6小题,要求直接将答案写在横线上。

1.已知函数y=log a|x2-2|在区间(,0)上是减函数,那么它的单调递增区间为;2.函数y=在2≤x≤4范围内的最大值和最小值的和为;3.已知f(x)=ax5+b+4,且a,b为实数,f(lglog310)=5,则f(lglg3)的值为;4. 函数y=log a x在x∈[2,+∞)上恒有|y|>1,则a的取值范围是;5. 用[t]表示不超过t的最大整数,当n∈N+时,[log2(n+1-)]+[log2(n+1+)]的值的集合为;6.设f(x)=,其中a∈R,如果当x∈(-∞,1]时,f(x)有意义,则a的取值范围是;三、解答题(本题满分60分,每小题20分)1.已知函数f(x)=log a[(m2-1)x2+(m+1)x+1]①若f(x)的定义域为R,求实数m的取值范围;②若f(x)的值域为R,求实数m的取值范围。

数学竞赛试题高一及答案

数学竞赛试题高一及答案

数学竞赛试题高一及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 + 3x + 1的图像关于直线x = -1/2对称,则下列哪个函数的图像也关于直线x = -1/2对称?A. g(x) = x^2 + 2x + 3B. h(x) = -x^2 + 2x - 3C. i(x) = x^2 - 2x + 3D. j(x) = -x^2 - 2x - 3答案:B2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∪B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 3, 4}答案:A3. 若方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为:A. 1B. 2C. 3D. 5答案:C4. 函数y = |x - 2| + 3的图像与x轴交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 已知等差数列的前三项依次为2, 5, 8,则该数列的第五项为________。

答案:112. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,则圆心坐标为________。

答案:(3, 4)3. 函数y = sin(x)在区间[0, π]上的最大值为________。

答案:14. 已知三角形的三边长分别为3, 4, 5,则该三角形的面积为________。

答案:6三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 =c^2(c为第三边长),则该三角形为直角三角形。

证明:根据勾股定理,若三角形的两边长为a和b,且满足a^2 + b^2 = c^2,则第三边c所对的角θ为直角,即θ = 90°。

因此,该三角形为直角三角形。

2. 解方程:2x^2 - 3x - 2 = 0。

解:首先,我们计算判别式Δ = b^2 - 4ac = (-3)^2 - 4*2*(-2) = 9 + 16 = 25。

高一数学竞赛试题含答案

高一数学竞赛试题含答案

高一数学竞赛试题高一数学竞赛试题时间:时间:8:30-11:00 8:30-11:00 8:30-11:00 总分:总分:总分:150150分一、填空题(本大题共15小题,每小题5分,共75分)分)1、如图,、如图,P P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B ,过PA 的中点Q 作割线交⊙O 于C ,D 两点,若QC QC==1,CD CD==3,则PB PB==________________。

2、若函数()()2ln f x x x a x=++为偶函数,则a = 。

3、函数()()2ax bf x x c +=+的图像如图所示,则a 0 0,,b 0 0,,c 0 0。

4、已知()221x f x x=+,则()()()()111123...2015...232015f f f f f f f æöæöæö+++++++=ç÷ç÷ç÷èøèøèø。

5、函数则()()222log 2log 3f x x x =-+的单调递减区间为的单调递减区间为 。

6、若方程2104xxeae -+=有负实数根,则a 的取值范围是的取值范围是。

7、设函数()31,12,1x x x f x x -<ì=í³î,则满足()()()2f af f a =的a 的取值范围是的取值范围是 。

8、设集合}{1,2,3......6A =,则集合A 的所有非空子集元素和的和为的所有非空子集元素和的和为 。

9、设函数()y f x =的图像与2x ay +=的图像关于y x =-对称,且()()241f f -+-=,则a = 。

1010、已知实数、已知实数,x y 满足()()()()3312011*********x x y y ì-+-=-ïí-+-=ïî,则x y += 。

高级中学高一数学竞赛班选拔考试试题第二卷

高级中学高一数学竞赛班选拔考试试题第二卷

高级中学高一数学竞赛班选拔考试试题第二卷(第二轮 考试时间60分钟,满分100分)班级 姓名 得分一、选择题(每题6分,36分)1.集合{0,1,2,2004}的子集的个数是 ( )(A )16 (B )15 (C )8 (D )7 2.乘积22221111(1)(1)(1)(1)23910---- 等于( ). (A)125 (B)21 (C)2011 (D)107 3 .某公司从2001年起每人的年工资主要由三个项目组成并按下表规定实施:若该公司某职工在2005年将得到的住房补贴与医疗费之和超过基础工资的25%,到2005年底这位职工的工龄至少是( ) (A )2年(B )3年(C )4年(D )5年4.若F(11x x-+)=x 则下列等式正确的是( ). (A )F(-2-x)=-1-F(x)(B )F(-x)=11x x+-(C )F(x -1)=F(x)(D )F (F (x ))=-x 5.已知c b a 、、是实数,条件0:=abc p ;条件0:=a q ,则p 是q 的( )(A)必要不充分条件(B)充分不必要条件(C)充分必要条件(D)不充分也不必要条件6.已知四边形ABCD 在映射f :),(y x →)2,1(+-y x 作用下的象集为四边形D C B A ''''。

四边形ABCD 的面积等于6,则四边形D C B A ''''的面积等于( )A .9B .26C .34D .6 二、填空题(每题5分,25分)7.如果}66{}42,3,2,1{}2,{22--=-a a a a ,则a 的值是 。

8. Let f be a function such that 22))((2)()(y f x f y x f +=+ for any real numbers x and y , and 0)1(≠f , then (2005)f is equal to _____________.9.甲、乙、丙、丁、戊五位同学,看五本不同的书A 、B 、C 、D 、E ,每人至少要读一本书,但不能重复读同一本书,甲、乙、丙、丁分别读了2、2、3、5本书,A 、B 、C 、D 分别被读了1、1、2、4次。

高一数学竞赛试题参考答案

高一数学竞赛试题参考答案

高一数学竞赛试题参考答案一、选择题:(本题共10小题,每题4分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求的。

)1.[答案] B[解析] 当a ≤0时,B =∅,满足B ⊆A ;当a >0时,欲使B ⊆A ,则⎩⎪⎨⎪⎧3-a ≥-43+a ≤4⇒a ≤1.故选B.2.[答案] C[解析] 由已知ax 2+ax -3≠0恒成立, 当a =0时,-3≠0成立; 当a ≠0时,Δ<0,∴a 2+12a <0, ∴-12<a <0,综上所述,a ∈(-12,0].3.C 【解析】 依题意,函数y =x 2-ax +12存在大于0的最小值,则a >1且a 2-2<0,解得a∈(1,2),选择C.4.B 【解析】 ∵2=log 24>log 23>log 22=1,故f (log 23)=f (1+log 23)=f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=124 5.C 【解析】 由f (x -1)=f (x +1)知f (x )是周期为2的偶函数,因为x ∈[0,1]时,f (x )=x 2,故当x ∈[-1,0],-x ∈[0,1]时,f (x )=f (-x )=(-x )2=x 2,由周期为2可以画出图象,结合y =⎝⎛⎭⎫110x的图象可知,方程f (x )=⎝⎛⎭⎫110x在x ∈⎣⎡⎦⎤0,103上有三个根,要注意在x ∈⎝⎛⎦⎤3,103内无解. 6.[答案] D[解析] 由题意,DE ⊥平面AGA ′, ∴A ,B ,C 正确,故选D. 7.[答案] B[解析] 设f (x )=2x -3-x ,因为2x ,-3-x 均为R 上的增函数,所以f (x )=2x -3-x 是R 上的增函数.又由2x -3-x >2-y -3y =2-y -3-(-y ),即f (x )>f (-y ),∴x >-y ,即x +y >0.8.[答案] A[解析] m =x -1-x ,令t =1-x ≥0,则x =1-t 2,∴m =1-t 2-t =-(t +12)2+54≤1,故选A.9.[答案] B[解析] 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 10.[答案] B[解析] 由已知得f (x )=⎩⎨⎧x 2-2(-1≤x ≤32),x -x 2(x <-1或x >32),如图,要使y =f (x )-c 与x 轴恰有两个公共点,则-1<c <-34或c ≤-2,应选B.二、填空题(本大题共4小题,每小题4分,共16分。

数学竞赛高一试题及答案

数学竞赛高一试题及答案

数学竞赛高一试题及答案一、选择题(每题5分,共10分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 4B. 6C. 8D. 102. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共10分)3. 已知\( a \)、\( b \)、\( c \)为三角形的三边长,且\( a^2 + b^2 = c^2 \),这个三角形是________。

4. 将\( 1 \)、\( 2 \)、\( 3 \)三个数字排列成三位数,所有可能的组合数是________。

三、解答题(每题15分,共30分)5. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = a_n + 2n \),求\( a_5 \)。

6. 一个直角三角形的斜边长为\( 5 \),一条直角边长为\( 3 \),求另一条直角边长。

四、证明题(每题15分,共30分)7. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。

8. 证明:若\( a \)、\( b \)、\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则这个三角形是直角三角形。

五、综合题(每题15分,共20分)9. 一个工厂计划在一年内生产\( x \)个产品,已知生产每个产品的成本是\( 10 \)元,销售每个产品的价格是\( 20 \)元。

如果工厂希望获得的利润不少于\( 10000 \)元,求\( x \)的最小值。

10. 已知函数\( g(x) = x^3 - 6x^2 + 11x - 6 \),求\( g(x) \)的极值点。

答案:一、选择题1. 答案:B. 6(计算方法:\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 2 + 3 + 1 = 6 \))2. 答案:B. 50π(计算方法:圆面积公式为\( πr^2 \),代入\( r = 5 \))二、填空题3. 答案:直角三角形4. 答案:6(排列组合方法:\( 3 \times 2 \times 1 = 6 \))三、解答题5. 答案:\( a_5 = 1 + 2(1) + 2(2) + 2(3) + 2(4) = 1 + 2 + 4 +6 + 8 = 21 \)6. 答案:根据勾股定理,另一条直角边长为\( 4 \)(计算方法:\( 5^2 - 3^2 = 4^2 \))四、证明题7. 证明:根据等差数列求和公式,\( 1 + 2 + ... + n =\frac{n(n+1)}{2} \),立方后得到\( \left(\frac{n(n+1)}{2}\right)^2 \),展开后即为\( 1^3 + 2^3 + ... + n^3 \)。

高一数学竞赛试题北京

高一数学竞赛试题北京

高一数学竞赛试题北京【试题一:代数问题】题目:已知函数\( f(x) = ax^2 + bx + c \),其中\( a \),\( b \),\( c \)为常数,且\( a \neq 0 \)。

若函数\( f(x) \)在\( x = 1 \)处取得极小值,求\( a \),\( b \),\( c \)之间的关系。

解答:首先,我们知道一个二次函数的极值点可以通过求导数来找到。

对于函数\( f(x) \),其导数为\( f'(x) = 2ax + b \)。

由于\( x = 1 \)是极小值点,我们有\( f'(1) = 2a + b = 0 \)。

又因为极小值点处的导数为0,我们可以得出\( a \)和\( b \)之间的关系。

同时,我们可以利用极小值的定义,即\( f(1) \)是\( x \)在\( 1 \)附近的最小值,进一步确定\( a \)的符号。

由于\( a \)是二次项系数,它决定了函数的开口方向,而极小值意味着开口向上,所以\( a > 0 \)。

结合以上信息,我们可以得出\( b = -2a \)。

【试题二:几何问题】题目:在直角三角形ABC中,∠C = 90°,AB是斜边,且AC = 6,BC = 8。

求直角三角形ABC的周长。

解答:根据勾股定理,我们知道在直角三角形中,斜边的平方等于两直角边的平方和。

即\( AB^2 = AC^2 + BC^2 \)。

将已知的AC和BC的值代入,我们得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以\( AB = 10 \)。

直角三角形的周长是三边之和,所以周长为\( AC+ BC + AB = 6 + 8 + 10 = 24 \)。

【试题三:数列问题】题目:给定数列\( \{a_n\} \),其中\( a_1 = 1 \),\( a_{n+1} =a_n + 2n \)。

邯郸一中高一数学竞赛试题

邯郸一中高一数学竞赛试题

邯郸一中高一数学竞赛试题邯郸一中是一所历史悠久、教学质量优异的高中,其数学竞赛试题通常涵盖了高中数学的各个方面,包括代数、几何、数论、组合等。

以下是一份模拟的邯郸一中高一数学竞赛试题,供同学们参考和练习。

一、选择题(每题3分,共15分)1. 若函数\( f(x) = ax^2 + bx + c \)在\( x = 1 \)处取得极小值,且\( f(0) = 1 \),则下列哪个选项是正确的?A. \( a = 0 \),\( b = 0 \),\( c = 1 \)B. \( a = 1 \),\( b = -2 \),\( c = 1 \)C. \( a = -1 \),\( b = 2 \),\( c = 1 \)D. \( a = 1 \),\( b = 0 \),\( c = 1 \)2. 已知\( \sin \alpha = \frac{3}{5} \),\( \cos \beta = -\frac{4}{5} \),且\( \alpha, \beta \)均在第一象限,求\( \cos\alpha \)的值。

3. 一个圆的半径为5,圆心在原点,求圆上一点到直线\( 2x + 3y =7 \)的距离的最大值。

4. 若\( \log_{2}8 + \log_{4}16 = x \),求\( x \)的值。

5. 集合A={1, 2, 3},集合B={2, 4, 6},求集合A和集合B的交集。

二、填空题(每题4分,共20分)6. 若\( \frac{1}{x} + \frac{1}{y} = \frac{m}{n} \),且\( xy = 6 \),求\( x + y \)的值。

7. 已知等差数列的首项为2,公差为3,求第10项的值。

8. 若\( a^2 + b^2 = 10 \),\( ab = 2 \),求\( a + b \)的值。

9. 一个直角三角形的斜边长为5,一条直角边长为3,求另一条直角边的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档