【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:1.2直角三角形(1)
广东省清远市八年级数学下册 1.4 角平分线导学案(2)(无答案) (新版)北师大版

1.4 角平分线(二)一、问题引入:三角形角平分线性质定理和判定定理的内容是什么?作用呢?二、基础训练:1. 如图:设△ABC的角平分线交于P,求证:P点在∠BAC的平分线上定理:三角形的三条角平分线交于点,并且这一点到三条边的距离 .引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a.b.c,则三角形的面积S= .2. 已知:△ABC中,BP.CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为 .3. 到三角形三边距离相等的点是()A.三条中线的交点;B.三条高的交点;C.三条角平分线的交点;D.不能确定三、例题展示:例:△ABC中,AC=BC, ∠C=900,AD是△ABC的角平分线,DE⊥AB于E.(1)已知:CD=4cm,求AC长(2)求证:AB=AC+CD四、课堂检测:1. 到一个角的两边距离相等的点在 .2. △ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D到AB的距离为 .3. Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm.4. △ABC中,∠ABC和∠BCA的平分线交于O,则∠BAO和∠CAO的大小关系为 .5. Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是 .6. 已知:OP是∠MON内的一条射线,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C.D.E.F,且AC=AD求证:BE=BF中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置.。
(新新导学案)广东省清远市八年级数学下册 2.5 一元一次不等式与一次函数导学案(2)(无答案) (

一、问题引入:某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?解:设要买x 台电脑,购买甲商场的电脑所需费用y 1元,购买乙商场的电脑所需费用为y 2元,由题意得:(1)y 1=6000+(1-25%)(x -1)×6000= ;y 2=80%×6000x = ;(2)当y 1<y 2时,有 ;解得, ;即当所购买电脑 台时,到甲商场购买更优惠;(3)当y 1>y 2时,有 ;解得, ;即当所购买电脑 台时,到乙商场买更优惠;(4)当y 1=y 2时,即有 ;解得, ;即当所购买电脑为 台时,两家商场的收费相同.二、基础训练:1.已知关于x 的不等式(1-a )x >2的解集为x <a -12,则a 的取值应为( ) A.a >0 B.a >1 C.a <0D.a <1 2.若方程组⎩⎨⎧-=-=+323a y x y x 的解是正数,那么( ) A.a >3 B.a ≥6 C.-3<a <6 D.-5<a <33.已知不等式4k -3x <-2,k 取何值时,x 不为负数( )A.k >-21B.k <-21C.k ≥-21D.k ≤-21 4.一次函数y =-3x +12与x 轴的交点坐标是________,当函数值大于0时,x 的取值 范围是________,当函数值小于0时,x 的取值范围是________.5.一次函数y 1=-x +3与y 2=-3x +12的图象的交点坐标是________,当x ________时,y 1>y2,当x________时,y1<y2 .6.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.三、例题展示:例1:某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?四、课堂检测:1.某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知(如图),当x________时,选用个体车较合算.2.某单位要制作一批宣伟材料,甲公司提出每份材料收费20元,另收3000元设计费;乙公司提出:每份材料收费30元,不收设计费.(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?(3)什么情况下两公司的收费相同?解:设宣传材料有x份,则选择甲公司所需费用为y1元,选择乙公司所需费用为y2元,由题意得:(1)y1= ;y2= ;(2)当y1<y2时,有;解得,;(3)当y1>y2时,有;解得,;(4)当y1=y2时,即有;解得,;所以,当材料份时,选择甲公司比较合算.当材料份时,选择乙公司比较合算.当材料份时,两公司的收费相同.。
广东省清远市八年级数学下册 1.4 角平分线导学案(2)(无答案) (新版)北师大版(1)

1.4 角平分线(二)一、问题引入:三角形角平分线性质定理和判定定理的内容是什么?作用呢?二、基础训练:1. 如图:设△ABC的角平分线交于P,求证:P点在∠BAC的平分线上定理:三角形的三条角平分线交于点,并且这一点到三条边的距离 .引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a.b.c,则三角形的面积S= .2. 已知:△ABC中,BP.CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为 .3. 到三角形三边距离相等的点是()A.三条中线的交点;B.三条高的交点;C.三条角平分线的交点;D.不能确定三、例题展示:例:△ABC中,AC=BC, ∠C=900,AD是△ABC的角平分线,DE⊥AB于E.(1)已知:CD=4cm,求AC长(2)求证:AB=AC+CD四、课堂检测:1. 到一个角的两边距离相等的点在 .2. △ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D到AB的距离为 .3. Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm.4. △ABC中,∠ABC和∠BCA的平分线交于O,则∠BAO和∠CAO的大小关系为 .5. Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是 .6. 已知:OP是∠MON内的一条射线,AC⊥OM,AD⊥ON,BE⊥OM,BF⊥ON,垂足分别为C.D.E.F,且AC=AD求证:BE=BF中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置.。
北师大版八年级数学下册全册导学案

北师大版八年级数学下册全册导学案前言本文档为北师大版八年级数学下册全册的导学案,旨在帮助学生掌握数学的基本知识和方法,提高数学素养,适用于八年级学生和教师使用。
本导学案按照教材的章节顺序编排,每章节包括学习目标、学习内容、课堂要求、课后作业等内容,以帮助学生有效地学习数学知识。
第一章一次函数学习目标1.了解一次函数的定义和性质;2.能够根据函数表、图像和函数式等信息确定一次函数;3.掌握一次函数的图像及其与系数的关系;4.能够解一元一次方程及简单应用。
学习内容1.一次函数的定义及性质;2.函数表和函数图像;3.解一元一次方程及简单应用。
课堂要求1.认真听讲,积极思考;2.熟练掌握函数表和函数图像的绘制方法;3.能够根据函数式计算出函数值;4.能够解一元一次方程。
课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。
第二章平面图形的认识学习目标1.掌握平面图形的基本性质和特征;2.熟悉平面图形的正确定义和分类;3.能够求解平面图形的周长和面积。
学习内容1.平面图形的定义和性质;2.平面图形的正确定义和分类;3.计算平面图形的周长和面积。
课堂要求1.认真听讲,积极思考;2.熟悉各种平面图形的特征;3.能够用公式计算平面图形的周长和面积。
课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。
第三章空间与立体图形学习目标1.掌握三棱柱、三棱锥、四棱柱、四棱锥、棱台和正六面体的定义和特征;2.熟悉空间中的方向及投影方法;3.能够计算立体图形的表面积和体积。
学习内容1.立体图形的定义和特征;2.空间中的方向及投影方法;3.计算立体图形的表面积和体积。
课堂要求1.认真听讲,积极思考;2.熟悉各种立体图形的特征;3.能够用公式计算立体图形的表面积和体积。
课后作业1.完成课后习题,巩固知识点;2.思考并尝试解决课外练习。
第四章数据的收集和处理学习目标1.掌握数据的收集和处理方法;2.熟悉统计所需的计量尺度和基本术语;3.能够利用频数分布表和统计图形对数据进行描述和分析。
dahuasan北师版八下等腰三角形(三)导学稿

2013—2014学年度第二学期八年级新北师版数学导学案§1.1 等腰三角形(三)【教学目标】:1. 理解并掌握等腰三角形的判别,证明的基本步骤和书写格式。
2.理解反证法。
【学习重点】:会证明等腰三角形的判定定理,即:“等角对等边”。
【学习难点】:区别等腰三角形性质定理和判定定理的证明。
【学习过程】【温故知新】已知:如图,∠CAE 是△ABC 的外角,AD ∥BC ,且AB=AC 。
求证:∠1=∠2【自主学习,合作探究】;1.证明:等腰三角形判定定理:有两个 相等的三角形是等腰三角形(简称:等 对等 ) 已知:在△ABC 中,∠B =∠C ,证明:AB =AC ,1 2 EA DB CAAB C E D例1:如图在△ABC 中,AB=AC ,BE 为角平分线,DE ∥BC 。
求证:①BD=DE;②BD=CE; ③CD 平分∠ACB.例2:已知:∠ABC,∠ACB 的平分线相交于F,过F 作DE ∥BC,交AB 于D,交AC 于E(1) 找出图中的等腰三角形(2) BD,CE,DE 之间存在着怎样的关系?(3) 证明以上的结论。
2.证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等。
AC AB C B ,ABC :≠∠≠∠∆:,求证中在已知 AC AB CB B ACAB ∴∠≠∠∠=∠∴=相矛盾已知又假设证明 )(: (以上的证明过程用了反证法)反证法的一般步骤:1、假设 不成立;2、由假设推出 ;3、 错误,原命题正确。
【巩固训练】:完成课本第9页的随堂练习1,2题。
【归纳总结】:【作业布置】1. 完成课本第8页的例2题。
2. 完成课本第9--10页的习题1.3的第1,2,3,4题。
A B C。
【新新导学案】2013-2014学年 八年级数学(北师大版)下学期备课导学案:第1章《三角形的证明》单元检测

第一章 单 元 检 测一、填空题(每小题3分):1.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.2. 如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 三角形.3. 如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 或 .4. 命题:“全等三角形的对应角相等”的逆命题是 ___________________________________ ___.这条逆命题是______命题(填“真”或“假”)5. 如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21_________ ;6. 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm ,则∠BAC = ,∠DAC = ,BD = cm ;7. 已知,如图,O 是△ABC 的∠ABC.∠ACB 的角平分线的交点,OD ∥AB交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10,则△ODE 的周长为 .8. 如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .9. △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D.若DC=7,则D 到AB 的距离是 .10. 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD的长为 .二、选择题(每小题3分)1.等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( )A.90°B.60°C.120°D.150°2.下列两个三角形中,一定全等的是 ( )A.有一个角是40°,腰相等的两个等腰三角形第18题图C B A 第1题 第5题B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形3. 到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点4. △ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( ) A.21a B.23a C.23a D.3a 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A.30°B.36°C.45°D.70°三、解答题(每题12分)1. 如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC 的度数(2)AD 和CD 的长.2.已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC. AB 于点M.N(保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.四、证明题(每题10分)1.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.求证:D 在∠BAC 的平分线上.2. 已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、(本题11分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法提示,请任意选择其中一种,对原题进行证明.。
2014学年八年级数学下册导学案(教师版)修改过的

课题 1.1等腰三角形(一)教师二备一、问题引入(建议老师们在这里引导学生证明三角形全等的判定定理)1.公理:两边及其对应的两个三角形全等().2.公理:两角及其对应的两个三角形全等().3.公理:对应相等的两个三角形全等().4.定理:及其中一角的对边对应相等的两个三角形全等( ).5.公理:全等三角形的对应边,对应角.6.定理:等腰三角形的相等.简称为:“.7.推论:等腰三角形、及互相重合.习惯上称作等腰三角形“”.二、基础训练1. 如图1,若⊿AB E≌⊿ADC,则AD = AB,DC = ;∠D = ∠;∠BAE = ∠.2.如图2,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠DEC=.3.等腰三角形的两边分别是7cm和3cm,则它的周长为.4.等腰三角形的顶角为50°,则它的底角为.三、例题展示(本题为一题多解,可以通过证三角形全等,也可以利用等腰三角形三线合一)例1 如图3,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.图3四、课堂检测1.如图4,已知:AB ∥CD ,AB=CD ,若要使△ABE ≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE ≌△CDF 的是( ).A .∠A=∠B B . BF=CEC .AE ∥DFD .AE=DFEDCABHFG2.如图5,AB ∥CD ,点E 在BC 上,且CD=CE ,∠D=74°,则∠B 的度数为( ).A . 68°B . 32°C .22°D .16°3.已知△ABC ,AB =AC ,∠A=80°,∠B 度数是_________.4.如图6,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是 . 5.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,且DE ⊥AB ,DF ⊥AC .求证:∠DEF=∠DFE .6.(选做题)如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.教学反思EDCBA 图5 图4 图6AB CDEF课题 1.1 等腰三角形(二)教师二备一、问题引入1. 等腰三角形两个底角的平分线;等腰三角形腰上的高;等腰三角形腰上的中线.2. 证明两条线段相等或两个角相等的一般方法为.3.等边三角形的三个内角都,并且每个内角都等于°.二、基础训练1.△ABC中,AB=AC,∠A=∠C,则∠B=_______.2.已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.3.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°4.如图1,已知∠1=∠2,则下列条件中,不能使△ABC≌△DBC成立的是()A.AB=CD B.AC=BD C.∠A=∠D D.∠ABC=∠DBC图1三、例题展示(讲解完本例后,老师们再按议一议的要求展开)例1 证明:等腰三角形的两底角的平分线相等.已知:如图2,△ABC中,AB=AC,BF,CE分别是∠ABC,∠ACB的角平分线.求证:BF=CE.图2四、课堂检测1.边长为4的正三角形的高为()A.2 B.4 C.3D.322.如图3,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180° B.220° C.240° D.300°3.如图4,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=_________度.4.如图5,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是.5.如图6,已知△ABC和△BDE都是等边三角形,求证:AE=CD.6.已知:如图7,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.教学反思图3 图4AQ CPB图7图6课题 1.1 等腰三角形(三) 教师二备 一、问题引入(讲解定理时,老师们多强调文字、图象、符号语言的结合) 1.等腰三角形的性质定理: . 简称为:“ ” . 符号语言:如图,∵ ,∴ . 2.等腰三角形的判定定理: .简称为:“ ” . 符号语言:如图,∵ ,∴ . 3.先假设命题的结论 ,然后推导出与定义、基本事实、已有定理或已知条件 的结果,从而证明命题的结论 成立,这种证明方法称为反证法.二、基础训练 1.如图1,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=_______度. 2.在△ABC 中,∠A =∠B =21∠C ,则△ABC 是__________三角形. 3.(2013•成都)如图2,在△ABC 中,∠B=∠C ,AB=5,则AC 的长为( ) A .2 B .3 C .4 D .54.用反证法证明“△ABC 中,若∠A ﹥∠B ﹥∠C ,则∠A ﹥60°”,第一步就假设( ) A .∠A=60° B .∠A ﹤60° C .∠A ≠60° D .∠A ≤60°三、例题展示例1 已知:如图,在△ABC 中,D 为BC 上的一点,AD 平分∠EDC ,且∠E=∠B ,DE=DC ,求证:AB=AC .AB C 图2 图1图3四、课堂检测1.(2013•武汉)如图4,△ABC 中,AB=AC ,∠A=36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°2.如图5,在△ABC 中,∠B=∠C=40°,D ,E 是BC 上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( ) A .6个 B .5个C .4个D .3个3.如图6,已知△ABC 中,CD 平分∠ACB 交AB 于D ,又DE ∥BC ,交AC 于E ,若DE=4 cm ,AE=5 cm ,则AC 等于( ) A .5 cm B .4 cm C .9 cm D .1 cm4.用反证法证明命题“若b a ≠,则b a ≠”时,应假设 . 5.用反证法证明“三角形三角内角中,至少有一个内角小于或等于60°” .6.如图7,△ABC 中BA=BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,求证:△DBE 是等腰三角形.ED CABF教学反思图4图5图6图7课题1.1 等腰三角形(四)教师二备 一、问题引入1.等边三角形的判定定理1:三个角 的三角形是等边三角形. 2.等边三角形的判定定理2:有一个角等于 °的 是等边三角形.3.等边三角形是特殊的 三角形,它具有等腰三角形的一切性质,除此之外,它不具有每个角都是 °的特殊性质.4.定理:在直角三角形中,如果一个锐角等30°,那么它所对的直角边等于斜边的 . 二、基础训练1.如图1,BC=AC ,若 ,则△ABC 是等边三角形.2.如图2,在Rt △ABC 中,∠B=30°,AC=6,则AB= ;若AB=7,则AC= .3.在△ABC 中,∠B=60°,AB=AC ,,BC=3,则△ABC 的周长为( ) A .9 B .8 C .6 D .124.下列命题不正确的是( ) A.等腰三角形的底角不能是钝角. B.等腰三角形不能是直角三角形.C.若一个三角形有三条对称轴,那么它一定是等边三角形.D.两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形. 三、例题展示例 求证:如果等腰三角形的底角为15°,那么腰上的高是腰长的一半.ABC图1ABC图2四、课堂检测1.在Rt △ABC 中,∠ACB=90°, ∠A =30°,CD ⊥AB 于点D ,BD=1,则AB= .2.在△ABC 中,AB=AC ,∠BAC=120°,D 是BC 的中点, DE ⊥AC 于点E ,则AE :EC= . 3.等腰三角形的底角等15°,腰长为20,则这个三角形腰上的高是 . 4.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④5.在Rt △ABC 中,如图4所示,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离DE=3.8 cm ,则BC 等于( )A .3.8 cmB .7.6 cmC .11.4 cmD .11.2 cm6.已知:如图5,△ABC 中,∠ACB=90°,AD=BD ,∠A=30°, 求证:△BDC 是等边三角形.8.(选做题)如图6,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,①求证:△BCE ≌△ACD ;②求证:CF=CH ;③判断△CFH 的形状并说明理由.EDCABHF教学反思 图3图4 图5图6课题 1.2 直角三角形(一)教师二备一、问题引入1.直角三角形两锐角.2.有两个角的三角形是直角三角形.3.勾股定理:直角三角形两条直角边的等于.4.在两个命题中,如果一个命题的分别是另一个命题的,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.5.勾股定理逆定理:如果三角形两边的等于,那么这个三角形是直角三角形.6.写出四组你知道的勾股数、、、.二、基础训练1.以下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.5,6,72.在△ABC中,BC︰AC︰AB=1︰1︰2,则△ABC是()A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形3.已知直角三角形两直角边长分别为6和8,则斜边长为_______,斜边上的高为.4.命题“如果ab=0,那么a=0,b=0.”的逆命题是.5.如图1,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4cm,则∠ADC的度数是度.图1三、例题展示例网格图中每个方格都是边长为1的正方形,若A,B,C都是格点,(1)判断△ABC的形状并说明理由;(2)求△ABC的面积.四、课堂检测1.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.只有②B.①②C.①③D.②③2.如果直角三角形的三条边为2,4,a,那么a的取值可以有( ) A.0个 B.1个 C.2个 D.3个3.以下命题的逆命题属于假命题的是()A.两底角相等的两个三角形是等腰三角形. B.全等三角形的对应角相等.C.两直线平行,内对角相等.D.直角三角形两锐角互等.4.一个直角三角形两条直角边的比是3:4,斜边的长为10cm,则这个直角三角形的面积是________cm2,斜边上的高为________cm.5.命题:等腰三角形两腰上的高相等的逆命题是_______________________ _.6.如图2,为修铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB=5 km,BC=4 km,若每天凿隧道0.3 km,问几天才能把隧道凿通?7.已知某开发区有一块四边形的空地ABCD,如图3所示,现计划在空地上种植草皮,经测量∠A=90°,AB=30m,BC=120m,CD=130m,DA=40m,若植草皮的单价为30元/m2,问:将这块空地植满草皮,开发区需要投入多少元? 教学反思图2 图3课题 1.2 直角三角形(二)教师二备一、问题引入1.一般三角形全等的判定方法有:.2.直角三角形的判定:①有一个角是的三角形叫做直角三角形.②有两个角互余的三角形是三角形.③如果三角形两边的等于第三边的,那么这个三角形是三角形.3.斜边和一条对应相等的两个三角形全等.(简称“斜边、直角边”或“”).二、基础训练1.如图1,Rt△ABC和Rt△DEF,∠C=∠F=90°.图1(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是__________.(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是__________.(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.(5)若AC=DF,CB=FE,则Rt△ABC≌Rt△DEF的依据是__________.2.下列条件不可以判定两个直角三角形全等的是( )A.两条直角边对应相等B.有两条边对应相等C.一条边和一锐角对应相等D.一条边和一个角对应相等三、例题展示例如图2所示,有两个长度相等的滑梯,左边滑梯BC的高AC与右边滑梯EF水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?图2四、课堂检测1.下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形.B.两条锐角边对应相等的两个直角三角形.C.斜边和一条直角边对应相等的两个直角三角形.D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等.2.如图3,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是( )A.HL B.AAS C.SSS D.ASA3.已知:如图4,AB=CD,DE⊥AC于E,BF⊥AC于F,且DE=BF,∠D=60°,则∠A=______°.4.如图5,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△_________≌△_________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________.5.如图6,CD⊥AD,CB⊥AB,垂足分别为D和B,AB=AD.求证:CD=CB.6.如图7,在Rt△ABC中,∠C = 90°,且DE⊥AB于点E,CD = ED.求证:AD是∠BAC的角平分线教学反思图3图4图5图6图7课题 1.3 线段的垂直平分线(一) 教师二备 一、问题引入(在讲垂直平分线的判定定理,建议老师们结合例题作具体分析定理的意思) 1.垂直平分线:垂直且 一条线段的直线是这条线段的垂直平分线. 2.垂直平分线的性质定理:线段垂直平分线上的 到这条线段两个端点的距离相等.符号语言:∵∴ 3.垂直平分线的判定定理:到一条线段两个端点距离 的点,在这条线段的 线上. 符号语言:∵ ∴二、基础训练 1.(2013•广州市)点P 在线段AB 的垂直平分线上,PA=7,则PB=______________ .2.如图1,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A .80°B .70°C .60°D .50° 3.如图2,在Rt △ABC 中,∠C=90°,∠B=30°.AB 的垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结论不正确的是( ) A .AE=BE B .AC=BE C .CE=DE D .∠CAE=∠B三.例题展示例:已知,如图,在△ABC 中,AB=AC ,O 是△ABC 内一点,且OB=OC . 求证:直线AO 垂直平分线段BC .NM P CA B 图1 图2图3四、课堂检测1.已知:线段AB及一点P,PA=PB,则点P在上.2.如图4,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=______度.3.如图5,在△ABC中,∠B=30°,ED垂直平分BC,ED=3,则CE长为_______.4.如图6,DE为△ABC的AB边的垂直平分线,D为垂足,DE交BC于E,AC = 5,,BC = 8,求△AEC的周长________.5.如图7,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.6.如图8,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,求线段DE的长。
【新新导学案】2013-2014学年广东省清远市八年级数学(北师大版)下学期备课导学案:2.4一元一次不等式(2)

2.4一元一次不等式(二)一、问题引入:1.不等式的左右两边都是,只含有未知数,并且未知数的,像这样的不等式,叫做一元一次不等式.2.解一元一次不等式的一般步骤是:①;②;③;④;⑤.3.列一元一次不等式解决实际问题的一般步骤是:①;②;③;④;⑤.二、基础训练:1.2x+1是不小于-3的负数,表示为()A.-3≤2x+1≤0 B.-3<2x+1<0 C.-3≤2x+1<0 D.-3<2x+1≤02.不等式732122x x--+<的负整数解有()A.1个 B.2个 C.3个 D.4个3.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x-45≥300 B.30x+45≥300 C.30x-45≤300 D.30x+45≤300 三、例题展示:例1:一次环保知识竞赛共有25道题目,规定答对一题得4分,答错或者不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或者85分以上),小明至少答对了几道题目?例2:小王准备用21元钱买笔和笔记本,已知每支笔3元钱,每个笔记本2.2元钱,他买了2个笔记本,请你帮他算一算,她还可以买几支笔?四、课堂检测:1.(2007年佛山市)小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买( )支笔.A 、1B 、2C 、3D 、42.(2007年潍坊市)幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 _____________件.3.(2012陕西)小宏准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买 瓶甲饮料。
4.(2013江苏淮安)解下列不等式:221+≥+x x ,并把解集在数轴上表示出来.5. 当x 为何值时,代数式的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 直角三角形(一)
一、问题引入:
1. 说出你知道的勾股数
2. 勾股定理的内容是:_____________________________;
它的条件是:______________________________________;
结论是:__________________________________________.
3. 将勾股定理的条件和结论分别变成结论和条件,其内容是:
下面试着将上述命题证明:
已知在△ABC中,AB2+AC2=BC2
求证:△ABC是直角三角形.
得出定理:如果三角形两边的__________等于__________,那么这个三角形是直角三角形.
二、基础训练:
观察勾股定理及上述定理,它们的条件和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系
(1)如果两个角是对顶角,那么它们相等.
如果两个角相等,那么它们是对顶角.
(2)如果小明患了肺炎,那么他一定会发烧.
如果小明发烧,那么他一定患了肺炎.
(3)三角形中相等的边所对的角相等.
三角形中相等的角所对的边相等.
像上述每组命题我们称为互逆命题,即一个命的条件和结论分别是另一个命题的__________和__________.
三、例题展示:
1. 判断
A.每个命题都有逆命题,每个定理也都有逆定理.()
B.命题正确时其逆命题也正确.()
C.角三角形两边分别是3,4,则第三边为5.()
2. 下列长度的三条线段能构成直角三角形的是()
①8,15,17 ②4,5,6 ③7,5.4,8.5 ④ 24,25,7 ⑤ 5,8,
10
A:①②④B:②④⑤C:①③⑤D:①③④
四、课堂检测:
1. 以下命题的逆命题属于假命题的是()
A.两底角相等的两个三角形是等腰三角形.
B.全等三角形的对应角相等.
C.两直线平行,内对角相等.
D.直角三角形两锐角互等.
2. 命题:等腰三角形两腰上的高相等的逆命题是____________.
3. 若一个直角两直角边之比为3:4,斜边长20CM,则两直角边为.
4. 已知直角三角形两直角边长分别为6和8,则斜边长为_______,斜边上的高为_______.
5. 台风过后,某小学旗杆在B处断裂,旗杆顶A落在离旗杆底部C点8M处,已知旗杆
原长16M,则旗杆在距底部几米处断裂.
6. 小明将长2.5M的梯子斜靠在竖直的墙上,这时梯子底端B到墙根C的距离是0.7M,
如果梯子的顶端垂直下滑0.4M,那么梯子的底端B将向外移动多少米.
中考真题:用四个全等的直角三角形拼成了一个如图所示的图形,其中a表示较短,直角三角形,b表示较长的直角边,c表示斜边,你能用这个图形证明勾股定理吗?。