伯努利分布参数p的区间估计 _ 几何分布法
2.3几种重要的离散型分布

C
n N
.
规范性: k
pk
k
C C k nk M NM
C
n N
k
C C k nk M NM
C
n N
C
n N
C
n N
1.
例2.13 N件产品,含M件是次品,随机地从这N
件产品中抽取n件产品,求恰有k 件次品的概率。
15
注:我们用符号(n︱c )表示:随机抽取了n件
产品,其中的次品数≤c的方案。
9
例2.10 某城市每天发生火灾的次数 X ~ P 1 ,
求该城市一天内发生3次或3次以上火灾的概率.
2
解 P X 3 1 P X 3 1 P X k k0
对立事件公式 1 2 1k e1 1 0.920 0.08.
k0 k !
查泊松分布 表(附表1)
10
泊松分布有一个非常实用的特性——二项分
10 1k e1
k3 k !
0.0803.
二项分布的泊松 近似
查泊松分布 表(附表1)
它与例2.9的结果相比较,近似效果是良好的.
如果p较大,那么二项分布不宜转化泊松 分布,该如何办的问题将在§5.3中回答.
13
例2.12 某出租汽车公司共有出租汽车500辆, 设每天每辆出租汽车出现故障的概率为0.01,试求 一天内出现故障的出租汽车不超过10辆的概率.
布的泊松近似.具体地讲,设 X ~ Bn, p , Y ~ P , 其中 n 较大,p 很小,而 np,
如果要计算
PX
k
C
k n
pk
1
p nk ,
那么可近似计算 P Y k k e . 即
k!
几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差中,伯努利试验n次几何分布(Geometric distribution)是离散型概率分布。
其中一种定义为:在次成功的概率。
次皆失败,第k试验k 次才得到第一次成功的机率。
详细的说,是:前k-1 公式:它分两种情况:; ...』2,3,概率分布次伯努利实验,n的,取值范围为『1,11. 得到次成功而进行,n. ...』,3,的概率分布,取值范围为『次成功,m0,1,22. m = n-1次失败,第n 由两种不同情况而得出的期望和方差如下:,;,。
的分布列:首次发生所进行的试验次数,则XA的事件A,以X记概率为p,)。
~Geo(pX具有这种分布列的随机变量X,称为服从参数p的几何分布,记为几何分布的期望,方差。
)比原来的修订本新增加随机变量的几何分布,但书中II高中数学教科书新版第三册(选修p?11???D?E)2,而未加以证明。
本文给出证明,并用于解题。
1只给出了结论:(),(2pp1?k?q?)k?p(P)由,知1(供参考.2k?12k?1??p??kq3p??1?E2?p?2pq?3q?pkqq?q)???(?下面用倍差法(也称为错位相减法)求上式括号内的值。
记2k?1kq3q??S?1?2q??k2k?1k kq?1?2qq??k?qS?q)?(k两式相减,得2k?1k kqq?q?q????(1q)S?1?kkk kqq1?S??k21?q(1?q)k0?limq110?q?p0??,知由,则,故??k111k?2?S???2p?3qkq???1lim??k22(1?q)p??k1??E从而pa1(|q|?1)S?也可用无穷等比数列各项和公式(见教科书91页阅读材料),推导如下:q1?2k?1???3q?kq?S?12q??记2k?1?k?1qqS?q?2q???)(?相减,11k2????????(1q)S1?qqq??1?q11??S则22pq1(?)供参考.nn?1nx?(x)',推导如下:还可用导数公式2k?1???3xkx?1?2x??23k)'?(xx)'??x'?(x?)'?(??k23)'??x???(x?xx??)?(?xx(1?x)()'??2x?1)x(1?1?2)(1?xq?x上式中令,则得111?2k???3q??kq?1?2q??22p)1?q(22???)EE?D(?来推导(该性质的证明,可见本刊6页)。
常见离散型随机变量的分布

P(X=2) =0.2304 P(X=4) =0.2592
P(X=3) =0.3456 P(X=5) =0.07776
若A和A是n重伯努利实验的两个对立结果,“成功”
可以指二者中任意一个, p 是“成功”的概率.
例如: 一批产品的合格率为0.8,有放回地抽取 4次, 每次一件, 取得合格品件数X, 以及取得不合 格品件数Y均服从分布为二项分布. “成功”即取得合格品的概率为p=0.8,
X对应的实验次数为n=4, 所以, X~B(4,0.8)
类似,Y~B(4,0.2)
二项分布的期望与方差 X ~ b(n, p)
1 如第i 次试验成功 X i 0 如第i 次试验失败
i 1,2,, n.
则 X X1 X2 Xn Xi ~ (0 1)分布 EX i p, DX i p(1 p)
两点分布的期望与方差
设X服从参数为p的0-1分布,则有
E(X ) p
E(X 2) p
X
0
1
pk 1 p
p
D( X ) E( X 2 ) [E( X )]2 p p2 p(1 p)
二、二项分布
若在一次伯努利实验中成功(事件A发生)的概率 为p(0<p<1),独立重复进行n次, 这n次中实验成功的 次数(事件A发生的次数)X的分布列为:
E(X ) 1 p
D(X )
q p2
EX 2 k 2 pqk1 p[ k(k 1)qk1 kqk1]
k 1
k 1
k 1
qp(
qk ) EX
qp( q ) 1 q
1 p
k 1
qp
2 (1 q)3
1 p
2q 1 p2 p
2
伯努利分布参数p的区间估计_贝塔分布法

Out[109]=
1.等尾置信区间: 0.0771355, 0.385667 等尾区间长度: 0.308531 2.最短置信区间:
Out[112]=
Out[113]=
Out[114]=
Out[116]=
4
伯努利分布参数p的区间估计_贝塔分布法.nb
0.38
0.36
Out[117]=
0.34
0.32
BetaDistribution k, n k Α 2 ; BetaDistribution k 1, n 1 Α 2 ;
1 , k ,
"2.最短置信区间 :" Plot L Quantile BetaDistribution k 1, n k , 1 Β Quantile BetaDistribution k, n k 1 , Α Β , Β, 0, Α
设X1 , X2 ,
n
, Xn 为伯努利分布 B p 总体的一个 i.i.d. n为样本容量 ,
k
i 1
Xi 为成功数 ,根据定理一 ,知 k B n, p 。 Α的经典等尾置信区间的下限和上限由 FB k FB
n,p n,p
参数 p的置信水平为 1 1 和 FB 从上两式分别得到 Α Β和 FB
n,p
伯努利分布参数 p的区间估计 _贝塔分布法 本文基于 Wolfram Mathematica 9, 在证明伯努利分布与二项分布的关系 、 二项分布与贝塔分布关系的基础上 ,给出了伯努得分布参数 p的经典等尾置信区间和区间长度 , 以及最短置信区间和区间长度的求法 ,并通过程序实现 。 定理一:n个独立同伯努利分布 B p 的和服从二项分布 B n, p : CharacteristicFunction BinomialDistribution n, p , t CharacteristicFunction BernoulliDistribution p , t n
随机变量及其概率分布

随机变量及其概率分布随机变量是概率论和数理统计中的重要概念,描述了随机事件的数值特征。
概率分布则用于描述随机变量取值的概率情况。
本文将介绍随机变量及其概率分布的基本概念和常见的概率分布模型。
一、随机变量的定义与分类随机变量是对随机事件结果的数值化描述。
随机变量可分为离散型随机变量和连续型随机变量两种。
1. 离散型随机变量离散型随机变量只能取有限个或可数个值,常用字母X表示。
例如,抛掷骰子的点数就是一个离散型随机变量,可能取1、2、3、4、5、6之一。
2. 连续型随机变量连续型随机变量可以取某个区间内的任意值,通常用字母Y表示。
例如,测量某个物体长度的随机误差就可看作是一个连续型随机变量。
二、概率分布的概念与性质概率分布描述了随机变量取值的概率情况。
常见的概率分布包括离散型分布和连续型分布。
1. 离散型概率分布离散型概率分布描述了离散型随机变量取值的概率情况。
离散型概率分布函数可以用概率质量函数(probability mass function,PMF)来表示。
PMF表示了随机变量取某个特定值的概率。
离散型概率分布函数具有以下性质:①非负性,即概率大于等于0;②归一性,即所有可能取值的概率之和等于1。
常见的离散型概率分布有:伯努利分布、二项分布、几何分布、泊松分布等。
2. 连续型概率分布连续型概率分布描述了连续型随机变量取值的概率情况。
连续型概率分布函数可以用概率密度函数(probability density function,PDF)来表示。
PDF表示在随机变量取某个特定值附近的概率密度。
连续型概率分布函数具有以下性质:①非负性;②积分为1。
常见的连续型概率分布有:均匀分布、正态分布、指数分布等。
三、常见的1. 伯努利分布伯努利分布描述了一次随机试验中两个互斥结果的概率情况,取值为0或1。
其概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),k=0或1其中,p为成功的概率,1-p为失败的概率。
统计学中的常用概率分布及其性质

统计学中的常用概率分布及其性质概率论是数学中的一个分支,它研究的是随机事件的发生概率以及由随机变量带来的影响。
概率分布则是衡量随机变量取值的可能性的一种方法。
概率分布可以用来得出某些随机变量出现的概率,同时可以用来比较多个随机变量之间的差异。
在统计学中,常用的概率分布有正态分布、伯努利分布、泊松分布、指数分布、二项分布、负二项分布以及几何分布。
正态分布正态分布是一种非常常见的概率分布,也叫高斯分布。
正态分布的概率密度函数是一个钟形曲线,其均值、方差以及标准差的值决定了曲线的位置与形态。
伯努利分布伯努利分布是一种离散概率分布,其只有两个可能结果,即成功或失败。
在伯努利分布中,成功的概率为p,失败的概率为1-p。
伯努利分布可以用来估计投掷硬币等随机事件的概率。
泊松分布泊松分布是一种离散概率分布,它用来衡量独立随机事件在一段时间内发生的次数。
泊松分布的概率密度函数为: P(X=k)= e^-λ * λ^k/k!,其中λ为平均发生次数。
指数分布指数分布是一种连续概率分布,其用途非常广泛,例如在可靠性工程学中,指数分布可以用来描述设备故障发生之间的时间间隔。
指数分布的概率密度函数为: f(x) = λ * e^-λx,其中λ为发生比例。
二项分布二项分布是一种离散概率分布,其表示在n次试验中成功的次数。
二项分布的概率函数为:P(X=k)= (n!/(k!*(n-k)!)) * p^k * (1-p)^(n-k),其中p为成功概率,n为试验次数。
负二项分布负二项分布是一种离散概率分布,其表示在成功x次之前,需要进行n次试验中失败的次数。
负二项分布的概率密度函数为:P(X=k)= (k-1)!((r-1)!*(k-r)!)p^r(1-p)^(k-r)几何分布几何分布是二项分布的一个特例,其表示在n次试验中,首次发生成功的次数。
几何分布的概率密度函数为:P(X=k)=(1-p)^(k-1)* p,其中p为成功概率,k为试验次数。
几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差的证明几何分布的定义以及期望与方差分布。
其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。
详细的说,是:前k-1次皆失败,第k次成功的概率。
公式:它分两种情况:1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,...』;2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』.由两种不同情况而得出的期望和方差如下:高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1),(2),而未加以证明。
本文给出证明,并用于解题。
(1)由,知下面用倍差法(也称为错位相减法)求上式括E p ξ=1D p p ξ=-12P k q p k ()ξ==-1E p pq q p kq p q q kq pk k ξ=++++=+++++--231232121 ()号内的值。
记两式相减,得由,知,则,故从而也可用无穷等比数列各项和公式(见教科书91页阅读材料),推导如下:记相减,S q q kq k k =++++-12321qS q q k q kq k k k=+++-+-2121 ()()1121-=++++--q S q q q kq k k k S q q kq q k k k=----1112()01<<p 01<<q lim k k q →∞=01231112122+++++==-=-→∞p q kq S q p k k k lim ()E pξ=1S a q q =-<111(||)S q q kq k =+++++-12321qS q q k q k =+++-+-2121()()111121-=+++++=--q S q q q qk则还可用导数公式,推导如下:上式中令,则得(2)为简化运算,利用性质来推导(该性质的证明,可见本刊6页)。
常用概率分布间简介

其中 c 为常数,解方程(1)得
f ( ) c f ( )
f
(
)
k
e
1 2
c
2
,
k
为常数.
为使 f ( ) 为概率密度函数,
f
( )d
1,
即
k
e
1 2
c
2
dy
1
故必须 c 0 ,不妨令 c 1 ( 0 ),代入(2)解得 2
k 1 , 2 Biblioteka 于是f ( ) 1
2
e2 2 , R ,
2
这是均值为 0,方差为 2 的正态分布的概率密度函数.
.
X
~
N(0, 2)
,
则Y
X2
~
Ga(
1 2
,
1 2
2
)
.
(1) (2)
Ga( n , 1) 2(n) . 22
m
Xi ~ N(0,1) , i 1,2,,n 且相互独立 , 则 X
X
2 i
~
2(n) .
i 1
⒊ 相当误差(比率)的概率分布
m
设
Xi
~
N(0, 2 ) ,i
1,2,, m,m 1,,m n且相互独立,则
i 1
二、随机误差的概率分布
⒈ 高斯随机误差模型 随机变量的高斯分解
可观测的指标
X
不可观测的随机干扰
指标的标准值(生产控制参数,理论均值)
原始测量误差的概率分布
由棣莫弗提出,高斯推证,拉普拉斯再证,原始测量误差的概率分布为:
~ N (0 , 2 )
高斯的推证要点如下:
设测量误差 X 的密度函数为 f ( ) ,由“最大后验概率”的原则得