离心泵基础知识(最终版)

合集下载

离心泵的基础知识(定义,原理,分类)

离心泵的基础知识(定义,原理,分类)

一、离心泵的概述离心泵引就是根据离心力原理设计的,高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。

离心泵有好多种,从使用上可以分为民用与工业用泵;从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。

二.离心泵的工作原理驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。

液体从叶轮获得能量,•使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。

在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。

离心泵的工作原理是:离心泵之所以能把水送出去是由于离心力的作用。

水泵在工作前,泵体和进水管必须罐满水形成真空状态,当叶轮快速转动时,叶片促使水快速旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。

水源的水在大气压力(或水压)的作用下通过管网压到了进水管内。

这样循环不已,就可以实现连续抽水。

在此值得一提的是:离心泵启动前一定要向泵壳内充满水以后,方可启动,否则泵体将不能完成吸液,造成泵体发热,震动,不出水,产生“空转”,对水泵造成损坏(简称“气缚”)造成设备事故。

离心泵的种类很多,分类方法常见的有以下几种方式1按叶轮吸入方式分:单吸式离心泵双吸式离心泵。

2按叶轮数目分:单级离心泵多级离心泵。

3按叶轮结构分:敞开式叶轮离心泵半开式叶轮离心泵封闭式叶轮离心泵。

4按工作压力分:低压离心泵中压离心泵高压离心泵边立式离心泵。

叶轮安装在泵壳2内,并紧固在泵轴3上,泵轴由电机直接带动。

泵壳中央有一液体吸入4与吸入管5连接。

液体经底阀6和吸入管进入泵内。

泵壳上的液体排出口8与排出管9连接。

在离心泵启动前,泵壳内灌满被输送的液体;启动后,叶轮由轴带动高速转动,叶片间的液体也必须随着转动。

在离心力的作用下,液体从叶轮中心被抛向外缘并获得能量,以高速离开叶轮外缘进入蜗形泵壳。

离心泵的基础知识

离心泵的基础知识
离心泵在运转时,如果泵内没有充满液体,或者在运转过程中泵内漏入空气,由 于空气密度比液体密度小得多,在叶轮旋转时产生的离心力也小,使吸入口处不 能形成足够的真空度,将液体吸入泵内,这时,虽然叶轮转动,却不能输送液体, 这种现象称为“气缚”。为了避免“气缚”的产生,必须在每次启动泵之前将泵 体及吸入管路内充满液体并排尽空气。对于输送温度较高或易挥发的液体,离心 泵通常要在一定的灌注压头下工作。
泵 – 什么是泵?
泵是一种主要用于将流体或气体从一个地方
输送到另一个地方的机器或者设备.
离心泵 - 工作原理
离心力
泵壳
叶轮
压力&流量
机械运动 (旋转)
电能 电机
如何选择一台合适的泵
物料? 流量? 扬程? 其他相关信息,例如真空 下应用,带腐蚀性物料等?!
- 物料信息
- 黏度 - 密度 - 温度 - 物料的流动性 - 饱和蒸汽压 - 固体含量 - 腐蚀性能 - 是否含有硬质颗粒
- 设备工况
- 流量 - 扬程
理解泵头(扬程)和压力之间的相同和 不同点
•泵的主要功能就是产生压力
•压力是可以由Pa 或者 bar来表示的 (1 Pa = 1 N/m²)
•但是, 同一个离心泵并不是一定产生同样的压力. 压力 的大小取决于很多不同的因素, 例如其中一个就是物料 的密度.
•无论物料的密度如何,离心泵产生一个同样的“静压头“, 通常称为泵头,泵头一般通过 mLC 表示 „meter liquid collumn“
单机封, 碳化硅vs碳化硅, 氟橡胶或者乙 丙橡胶带FDA证书 单机封, 碳化硅vs不锈钢, 丁晴橡胶 单机封, 碳化硅vs碳化硅, 氟橡胶 冲洗机封,碳化硅vs碳化硅,氟橡胶 冲洗机封,碳化硅vs碳化硅,氟橡胶 单机封,碳化硅vs碳化硅,氟橡胶 双机封,碳石墨vs不锈钢,丁晴橡胶/,碳 石墨vs不锈钢,丁晴橡胶

离心泵的基本知识

离心泵的基本知识

离心泵的基本知识一、离心泵的基本构造是由六部分组成的离心泵的基本构造是由六部分组成的分别是叶轮,泵体,泵轴,轴承,密封环,填料函。

1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。

叶轮上的内外表面要求光滑,以减少水流的摩擦损失。

2、泵体也称泵壳,它是水泵的主体。

起到支撑固定作用,并与安装轴承的托架相连接。

3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。

滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。

太多油要沿泵轴渗出并且漂*,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封环又称减漏环。

叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。

为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。

6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。

填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。

始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。

所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。

二、离心泵的过流部件离心泵的过流部件有:吸入室,叶轮,压出室三个部分。

叶轮室是泵的核心,也是流部件的核心。

泵通过叶轮对液体的作功,使其能量增加。

离心泵基础知识

离心泵基础知识

离心泵基础知识一、泵的概念通常把提升液体、输送液体和使液体增加压力的机器统称为泵.二、泵的分类根椐泵作用原理,泵可分为以下三大类:(一)容积泵利用工作室容积周期性变化来输送液体,如活塞泵、柱塞泵、隔膜泵、齿轮泵、滑板泵、螺杆泵等.(二)叶片泵利用叶片和液体相互作用来输送液体,如离心泵、混流泵、轴流泵、旋涡泵等.(三)其它类型泵包括只改变液体位能的泵,如水车等;利用流体能量来输送液体的泵,如射流泵、水锤、酸蛋等.在以上泵中,离心泵使用最广泛也是数量最多.三、离心泵(一)离心泵使用条件及优缺点比较.使用条件:流量在5~20000M3/h、扬程在8~2800米的范围内使用离心泵比较合适.离心泵的优点:转速高、体积小、重量轻、效率高、流量大、结构简单、性能平稳、容易操作和维修等.离心泵缺点:启动前需灌泵排气,输送粘度高介质时效率下降严重.离心泵使用范围:最大极限:η=0.45ηw,建议使用极限为η=0.7ηw(ηw 为离心泵在输送常温清水时的效率)(二)离心泵主要零部件1、叶轮:叶轮是将原动机的能量传递给液体的零件,液体经叶轮后能量增加.叶轮由前盖板、后盖板、叶片和轮毂组成.叶轮分开式叶轮、半开式叶轮、开式叶轮三种.2、吸入室:吸入室的作用是使液体以最小的损失均匀进入叶轮.,吸入室主要分三种结构型式:锥形吸入室、圆环形吸入室和半螺旋形吸入室.3、压出室:压出室的作用是以最小的损失,将从叶轮中流出的液体收集起来,均匀地引至泵的吐出口或次级叶轮,在过程中还将一部份动能转变为压力能.压出室主要有以下几种结构型式:螺旋形蜗室、环形压出室、径向导叶、流道式导叶和扭曲叶片式导叶等.4、密封环:密封环的作用,为减少高压区液体向低压区流动.5、轴封机构:轴封作用:减少有压力的液体向外流出和防止空气进入泵内.结构型式有骨架橡胶密封、填料密封、机械密封和浮动环密封.6、轴向力平衡机构:作用:平衡泵在运行中轴向力。

单级泵主要用平衡孔或平衡管;多级泵一般用平衡鼓或平衡盘.平衡盘机构平衡鼓机构6.1平衡鼓一般与机封共用,平衡盘一般与填料密封共用.7、易损件:泵轴、轴套、轴承、中段、轴承体、托架、支架、联轴器等.(三)离心泵主要结构型式1、按轴位置可分为为卧式和立式.2、按压出室型式、吸入方式和叶轮级数又可分为如下几种基本型式:3.1单吸单级泵:一般流量:5.5~300M3/h,扬程:8~150M.3.2两级悬臂泵:一般流量:5~100M3/h,扬程:70~240M.3.3双吸单级泵: 一般流量:120~20000M3/h,扬程:10~110M.3.4分段式多级泵:一般流量:5~720M3/h,扬程:100~650M.高压分段式出口压力可达280公斤/cm2左右.一般用途:一般高压泵、超高压锅炉给水泵、热油泵等.3.5涡壳式多级泵:一般流量:450~1500M3/h,扬程:100~500M.出口压力最高可达180公斤/cm2左右.优点:不需要平衡装置.缺点:体积大、铸造和加工技术要求高.主要用途:用于流量较大的扬程较高的城市给水、矿山排水、输油管线3.6深井泵:一般流量:8~900M3/h,扬程:10~150M.3.7潜水电泵3.8作业面潜水泵等3.9、屏蔽泵3.10、自吸泵3.11、立式泵3.12、水轮泵四、离心泵的的基础知识1、流量:是指单位时间内排出液体的数量,有重量流量(G)与体积流量(Q)两种表示方法.2、扬程:单位重量液体通过泵后获得的能量.又叫总扬程或全扬程.扬程的近似算法H=104(P2-P1)/γP2-泵的出口压力(Kg/CM2);P1-泵的入口压力(Kg/CM2);γ-液体比重(Kg/M3)3、转速:指泵轴每分钟的转数.4、功率:离心泵的功率是指泵的轴功率(N);有效功率(Ne)轴功率与有效功率的关系Ne=G*N5离心泵能量损失:5.1机械损失:指轴封、轴承、及叶轮圆盘摩擦损失所消耗的功率轴封、轴承损失功率=(0.01~0.03)N圆盘摩擦损失在转速为30r.p.m时接近30%(在机械损失中圆盘损失最大) 叶轮外径越大, 圆盘摩擦损失越大;转速越高, 圆盘摩擦损失越小;泵叶轮盖板泵体内壁的表面粗糙直光洁,圆盘摩擦损失越小;采用涂漆或抛光可以减少圆盘摩擦损失.5.2容积损失:由高压区流向低压区的液体,虽然在流经叶轮时获得了能量,但未被有效利用,而是在泵体内循环流动,因克服间隙阻力又消耗掉了,这种能量损失称为容积损失。

离心泵基础知识完整版

离心泵基础知识完整版

编号:TQC/K674离心泵基础知识完整版Through strengthening management, improving production conditions and working environment and increasing all-round monitoring and other measures, in order to prevent casualties and achieve the best production state for safe production and civilized construction.【适用安全技术/生产体系/提升效率/企业管理等场景】编写:________________________审核:________________________时间:________________________部门:________________________离心泵基础知识完整版下载说明:本安全管理资料适合用于通过加强过程管理,不断改善生产条件和作业环境和增加全方位监控等措施,以期达到预防伤亡事故,并实现最佳的生产状态用以安全生产、文明施工等。

可直接应用日常文档制作,也可以根据实际需要对其进行修改。

一.离心泵的工作原理驱动机通过泵轴带动叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。

液体从叶轮获得能量,•使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。

在液体被甩向叶轮出口的同时,叶轮入口中心处形成了低压,•在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。

二、离心泵的结构及主要零部件一台离心泵主要由泵体、叶轮、密封环、旋转轴、轴封箱等部件组成,有些离心泵还装有导轮、诱导轮、平衡盘等。

1.泵体:即泵的壳体,包括吸入室和压液室。

离心泵基础知识

离心泵基础知识

离心泵离心泵结构简单,操作容易,流量易于调节,且能适用于多种特殊性质物料,因此在工业生产中普遍被采用。

一离心泵的主要部件和工作原理1.离心泵的主要部件(1)叶轮:叶轮是离心泵的核心部件,由4-8片的叶片组成,构成了数目相同的液体通道。

按有无盖板分为开式、闭式和半开式(其作用见教材)。

(2)泵壳:泵体的外壳,它包围叶轮,在叶轮四周开成一个截面积逐渐扩大的蜗牛壳形通道。

此外,泵壳还设有与叶轮所在平面垂直的入口和切线出口。

(3)泵轴:位于叶轮中心且与叶轮所在平面垂直的一根轴。

它由电机带动旋转,以带动叶轮旋转。

2.离心泵的工作原理(1)叶轮被泵轴带动旋转,对位于叶片间的流体做功,流体受离心力的作用,由叶轮中心被抛向外围。

当流体到达叶轮外周时,流速非常高。

(2)泵壳汇集从各叶片间被抛出的液体,这些液体在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流体的动能转化为静压能,减小能量损失。

所以泵壳的作用不仅在于汇集液体,它更是一个能量转换装置。

(3)液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上。

气缚现象:如果离心泵在启动前壳内充满的是气体,则启动后叶轮中心气体被抛时不能在该处形成足够大的真空度,这样槽内液体便不能被吸上。

这一现象称为气缚。

(通过第一章的一个例题加以类比说明)。

为防止气缚现象的发生,离心泵启动前要用外来的液体将泵壳内空间灌满。

这一步操作称为灌泵。

为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。

(4)叶轮外周安装导轮,使泵内液体能量转换效率高。

导轮是位于叶轮外周的固定的带叶片的环。

这此叶片的弯曲方向与叶轮叶片的弯曲方向相反,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液体在泵壳通道内平稳地改变方向,使能量损耗最小,动压能转换为静压能的效率高。

离心泵基础知识介绍

离心泵基础知识介绍

症状:噪声大、泵体振动,流量、压头、效率都明显下降。 后果:高频冲击加之高温腐蚀同时作用使叶片表面产生一个个凹穴,
严重时成海绵状而迅速破坏。
离心泵的气蚀现象
在FPSO使用的泵,比较容易发生汽蚀的主要是: 所输送的液体温度较高的泵有热介质循环泵, 加气浮选 循环泵,废水泵等或工作中流注高度会显著降低的泵,还 有那些吸人液面真空度较大的泵。 如何避免离心泵的气蚀 尽可能减小吸人管路的阻力 减小吸上高度或增大流注高度 控制液体温度不要过高 在设计时尽量改进叶轮人口处的几何形状 采用强度和硬度高、韧性和化学稳定性好的抗汽蚀材 料来制造叶轮,以及提高通流部分表面的光洁度。

2 泵壳 将叶轮封闭在一定的空间,以 便由叶轮的作用吸入和压出液 体。泵壳多做成蜗壳形,故又 称蜗壳。扩压管由小增大,流 速降低,大部分动能变为压力 能,然后排出.由于流道截面积 逐渐扩大,故从叶轮四周甩出 的高速液体逐渐降低流速,使 部分动能有效地转换为静压能。
泵壳
叶轮
盖板
泵壳不但有汇聚并导流的作用同 时又是一个能量转换装置。
离心泵的结构



3 泵轴及轴封装置 泵轴:垂直叶轮面,穿过叶轮中心 ,固定叶轮并给叶 轮提供一个旋转中心 轴封装置:防止泵壳内液体沿轴漏出或外界空气漏入 泵壳内。 常用轴封装置有填料密封和机械密封两种。 填料一般用浸油或涂有石墨的石棉绳。
离心泵的结构

轴封装置 机械密封主要的是靠装在轴上的动环与固定在泵壳上的静 环之间端面作相对运动而达到密封的目的
离心泵的特点




离心泵的缺点 1.本身没有自吸能力 为扩大使用范围 在结构上采取特殊措施制造各种自吸式离心泵 在离心泵上附设抽气引水装置。 2.泵的Q随工作扬程而变 H升高,Q减小 达到封闭扬程时,泵即空转而不排液 不宜作滑油泵、燃油泵等要求Q不随H而变场合 3. 扬程由叶轮直径和转速决定的,不适合小Q、高H 这要求叶轮流道窄长,以致制造困难,效率太低。 离心泵产生的最大排压有限,故不必设安全阀。 船用水泵和货油泵大多用离心泵。压载泵、舱底泵、油船扫舱泵等用 具备自吸能力的离心泵.

离心泵基础知识(DOC)

离心泵基础知识(DOC)

图2-1 离心泵活页轮2-2 离心泵离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵是化工厂中最常用的液体输送机械。

近年来,离心泵正向着大型化、高转速的方向发展。

2.2.1 离心泵的主要部件和工作原理一、离心泵的主要部件1.叶轮 叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成。

叶轮的作用是将原动机的机械能直接传给液体,提高液体的动能和静压能。

根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用。

叶轮按其机械结构可分为闭式、半闭式和开式(即敞式)三种,如图2-1所示。

在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c 图);在吸入口侧无盖板的叶轮称为半闭式叶轮(b 图);在叶片两侧无前后盖板,仅由叶片和轮毂组成的叶轮称为开式叶轮(a 图)。

由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮。

叶轮可按吸液方式不同,分为单吸式和双吸式两种。

单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。

双吸式叶轮不仅具有较大的吸液能力,而且可以基本上消除轴向推力。

2.泵壳泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。

泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。

若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。

由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。

注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。

3.轴封装置离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、离心泵的工作原理
驱动机带动叶轮高速旋转 叶轮带动液体高速旋转 产生离心力 液体获得能量(压力能、 速度能增加) 输送液体 吸入液体,实现连续工作 液体甩出,叶轮中心形成低压 吸入罐与泵之间产生压差
二、离心泵的分类
一、按工作叶轮数目来分 类 1、单级泵:即在泵轴上只 有一个叶轮。 2、多级泵:即在泵轴上有 两个或两个以上的叶轮, 这时泵的总扬程为n个叶轮 产生的扬程之和。
二、离心泵的分类
五、按泵轴位置来分类 卧式泵:泵轴位于水平位置。立式泵:泵轴位于垂直位置。
二、离心泵的分类
二、按工作压力来分类 1、低压泵:压力低于100米水柱; 2、中压泵:压力在100~650米水柱之间: 3、高压泵:压力高于650米水柱:
二、离心泵的分类
三、按进水方式来分类 1、单侧进水式泵:又叫单吸泵,叶轮上只有一个进水口; 2、双侧进水式泵:又叫双吸泵,即叶轮两侧都一个进水口。 它的流量比单吸式泵大一倍,可以近似看作是二个单吸泵 叶轮背靠背地放在了一起。
五、离心泵的汽蚀
汽蚀余量 汽蚀余量:为防止气蚀发生,要求离心泵入口处静压头 与动压头之和必须大于液体在输送温度下的饱和蒸汽压头的 最小允许值。是泵的性能的主要参数,用符号NSPH表示,单位 为米液柱。 有效汽蚀余量(NSPHa) 液体流自吸液罐,经吸入管路到达泵吸入口后,所富余的 高出汽化压力的那部分能头。 泵的必须汽蚀余量(NSPHr) 液流从泵入口到叶轮内最低压力点处的全部能量损失。 NSPHa/NSPHr与汽蚀的关系: NSPHa > NSPHr 泵不汽蚀 NSPHa = NSPHr 泵开始汽蚀 NSPHa< NSPHr 泵严重汽蚀
三、离心泵的结构详解
机械密封 机械密封是靠一对或数对垂直于轴作相对滑动的端面 在流体压力和补偿机构的弹力(或磁力)作用下保持 贴合并配以辅助密封而达到阻漏的轴封装置。
动环
静环
三、离心泵的结构详解
常用机械密封结构如图所示。由静止环(静环)1、旋转环 (动环)2、弹性元件3、弹簧座4、紧定螺钉5、旋转环辅助密 封圈6和静止环辅助密封圈8等元件组成,防转销7固定在压盖9 上以防止静止环转动。旋转环和静止环往往还可根据它们是否 具有轴向补偿能力而称为补偿环或非补偿还。
四、离心泵的主要性能参数
效率 效率:用η表示,是衡量泵的经济性的指标。
η
Ne 100 % N
N:泵输入功率 (轴功率) Ne:液体得到功率(有效功率) 注:电功率
η电机
电机输出功率
η传动
轴功率
η泵
有效功率
两者的差别在于损失,包括能量损失、流动损失、泄漏、 机械摩擦等。一般离心泵的效率为50-70%。
三、离心泵的结构详解
2.泵轴、轴套 轴是传递机械能的重要零件,原动机的扭矩通过它传给叶轮。 泵轴的材料一般选用碳素钢或合金钢并经调质处理。 轴套的作用是保护泵轴,以减少泵轴的磨损。 轴套的表面一般进行渗碳、渗氮、镀铬、喷涂等处理方法。
粗糙度:Ra3.2-0.8um
三、离心泵的结构详解
2.泵轴 叶轮和轴靠键相连接,由于这种连接方式只能传递扭矩而不能固定 叶轮的轴向位置,故在水泵中还要用轴套和锁紧螺母来固定叶轮的轴向 位置。 叶轮采用锁紧螺母与轴套轴向定位后,为防止锁紧螺母退扣,要防 止水泵反转,尤其是对初装水泵或解体检修后的水泵要按规定进行转向 检查,确保与规定转向一致
离心泵基础知识
新乡中新化工有限责任公司 李西亚 2014年6月18日

一、离心泵的工作原理
二、离心泵的分类 三、离心泵的结构详解 四、离心泵的主要性能参数 五、离心泵的汽蚀

六、离心泵的轴向力
七、离心泵的操作注意事项 八、离心泵的常见故障与处理
一、离心泵的工作原理
离心泵工作原理 驱动机通过泵轴带动叶轮旋转产生离心力,使液体沿叶片流道被甩 向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,使压力 能和速度能均增加,并依靠此能量将液体输送到工作地点。在液体被甩 向叶轮出口的同时,叶轮入口中心处形成了低压,在吸液罐和叶轮中心处 的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经 吸入管路及泵的吸入室进入叶轮中。
三、离心泵的结构详解
填料密封是常用的一种轴封装置。其是由轴封套、填料、 水封管、水封环和填料压盖等部件组成。
填料箱 填料压盖
填料
水封坏
填料的压紧程度可通过拧松或拧紧压盖上的螺栓 来进行调节。使用时,压盖的松紧要适宜,压得 太松,则达不到密封效果;压得太紧,则泵轴与 填料的机械磨损大,消耗功率大,如果压得过紧, 则有可能造成抱轴现象,产生严重的发热和磨损。 一般地,压盖的松紧以水能通过填料缝隙呈滴状 渗出为宜(约每分钟泄漏30-60滴)。
恒位油杯自动补油原理
1.恒位油杯的作用是 使轴承箱体内的润滑 油位保持恒定。
2.恒位油杯的结构简 图
斜面的位置对恒 位油杯非常关键,由 此形成的工作油位点 是正常工作状态时的 油位。有的恒位油杯 没有专门的气孔,但 都要保证斜面以上部 位与大气自由相通。
恒位油杯自动补油原理
3.上图为恒位油杯正常工作状态 理论设计上工作油位点和设计油位是相 同的,恒位油杯内初始油量一般保持在 整个油杯的2/3处。恒位油杯液面高于 轴承箱体内液面并能保持一定高度的液 位,是由于连通器的原理,油杯内气体 压力小于外界大气压力。 4.下图为恒位油杯补油状态 当轴承箱体内的润滑油由于各种原因而 损耗后,箱体内油位下降,由于连通器 原理,恒位油杯斜面处的油位降低到工 作油位点以下,导致恒位油杯内油液的 压力平衡被破坏,润滑油从恒位油杯内 流出并进入轴承箱体,外界气体在大气 压力作用下通过斜面的上端进入恒位油 杯,直到润滑油液面恢复到工作油位点 时,补油结束。
三、离心泵的结构详解
离心泵的品种、结构繁多,但主要部件基本相同。 其主要部件有泵体、叶轮、泵轴、轴封、轴承箱、联轴器等
三、离心泵的结构详解
转子是指离心泵的转动部分。 它主要包括叶轮、泵轴、轴套、轴承等零;
三、离心泵的结构详解
1.叶轮 叶轮是离心泵的 主要零部件,是对液 体做功的主要元件。 叶轮用键固定于轴上, 随轴由原动机带动旋 转,通过叶片把原动 机的能量传给液体。 叶轮的作用是将 原动机的机械能直接 传给液体,以增加液 体的静压能和动能(主 要增加静压能)。
五、离心泵的汽蚀
汽蚀的后果 汽蚀使过流部件被剥蚀破坏 通常离心泵受汽蚀破坏的部位, 先在叶片入口附近,继而延至叶轮 出口。起初是金属表面出现麻点, 继而表面呈现槽沟状、蜂窝状、鱼 鳞状的裂痕,严重时造成叶片或叶 轮前后盖板穿孔,甚至叶轮破裂, 造成严重事故。因而汽蚀严重影响 到泵的安全运行和使用寿命。 汽蚀使泵的性能下降 汽蚀使叶轮和流体之间的能量 转换遭到严重的干扰,使泵的性能 下降,严重时会使液流中断无法工 作。

三、离心泵的汽结构详解
人的头发
动环 液膜 3 到 5微米 静环
60 微米
注:机械密封通常都有泄漏,但人眼看不见, 因密封面的液膜非常薄,泄露量非常小。而摩 擦热使其慢慢蒸发。
三、离心泵的结构详解
联轴器 联轴器用来联接不同机构中的两根轴(主动轴和从 动轴)使之共同旋转以传递扭矩的机械部件。
四、离心泵的主要性能参数
五、离心泵的汽蚀
汽蚀发生的机理 离心泵运转时,流体的压 力随着从泵入口到叶轮入口而 下降,在叶片附近,液体压力 最低。当叶轮叶片入口附近压 力小于等于液体输送温度下的 饱和蒸汽压力时,液体就汽化。 同时,还可能有溶解在液体内 的气体溢出,它们形成许多汽 泡。当汽泡随液体流到叶道内 压力较高处时,外面的液体压 力高于汽泡内的汽化压力,则 汽泡会凝结溃灭形成空穴。瞬 间内周围的液体以极高的速度 向空穴冲来,造成液体互相撞 击,使局部的压力骤然剧增 (有的可达数百个大气压)。
密封头 动环 传动套 卡环 静环
静环O型 圈
弹簧 推 环 动环O型圈
三、离心泵的结构详解
旋转组件 静止组件
一条光带=0.294μ细的 液膜 ( 3-5μm ) 作用:1.将两密封面分离开; 2.润滑两相对运动的密封面; 3.减小密封面间的摩擦系数 / 发热量; 4.防止介质泄露到大气中去
三、离心泵的结构详解
轴封 由于泵轴转动而泵壳固定不动,在轴和泵壳的接触处必然有一 定间隙。为避免泵内高压液体沿间隙漏出,或防止外界空气从相反 方向进入泵内,必须设置轴封装置。 轴封装置主要防止泵中的液体泄漏和空气进入泵中,以达到密 封和防止进气引起泵气蚀的目的。 轴封的形式:即带有骨架的橡胶密封、填料密封和机械密封。
三、离心泵的结构详解
1.叶轮 叶轮是离心泵的 主要零部件,是对液 体做功的主要元件。 叶轮用键固定于轴上, 随轴由原动机带动旋 转,通过叶片把原动 机的能量传给液体。 叶轮的作用是将 原动机的机械能直接 传给液体,以增加液 体的静压能和动能(主 要增加静压能)。
三、离心泵的结构详解
问题:油镜油位时多少????????? 轴承润滑通常用油槽或油雾进行润滑,为了保证滚动 体和滚道接触面间形成一定厚度的油膜,轴承部分浸在油 中,油浸润高度以没过轴承底的50%为宜。如果超过50%, 过量的油涡流会使油温上升,油温升高会加速润滑荆的氧 化,从而降低润滑性能;如果低于50%,则油对轴承的冲 洗作用降低,润滑效果不好。
三、离心泵的结构详解
叶轮按其盖板情况可分为封闭式、半开式和开式叶 轮三种形式
三、离心泵的结构详解
泵体 泵体由泵壳及泵盖组成, 是主要固定部件。它收集来 自叶轮的液体,并使液体的 部分动能转换为压力能,最 后将液体均匀地导向排出口。 泵壳顶上设有充水和放 气的螺孔,以便在水泵起动 前用来充水及排走泵壳内的 空气。 泵壳的底部设有放水螺 孔,以便在水泵停车检修时 放空积水。
五、离心泵的汽蚀
汽蚀发生的机理 这不仅阻碍流体的正常流动,更为 严重的是,如果这些汽泡在叶轮壁 面附近溃灭,则液体就像无数小弹 头一样,连续地打击金属表面,其 撞击频率很高(有的可达 2000~3000Hz),金属表面会因冲击 疲劳而剥裂。若汽泡内夹杂某些活 性气体(如氧气等),他们借助汽 泡凝结时放出的能量(局部温度可 达200~300℃),还会形成热电偶并 产生电解,对金属起电化学腐蚀作 用,更加速了金属剥蚀的破坏速度。 上述这种液体汽化、凝结、冲击, 形成高压、高温、高频率的冲击载 荷,造成金属材料的机械剥裂与电 化学腐蚀破坏的综合现象称为汽蚀
相关文档
最新文档