--SAS系统和数据分析SAS数据库

合集下载

--SAS系统和数据分析拼接和合并数据集

--SAS系统和数据分析拼接和合并数据集

第十二课 拼接和合并数据集数据集的连接是把两个或两个以上的数据集的观测连接成一个新的数据集。

连接的方式有两种:拼接和合并。

在SAS 数据步中用SET 语句可以拼接数据集,而用MERGE 语句可以合并数据集。

例如,我们有两个数据集A 和B ,要拼接和合并成新的数据集C ,两种不同方法的程序和结果见示意图12.1 所示。

一、 数据集的拼接数据集的拼接可分成三种主要的拼接情况:1. 相同变量的数据集拼接这是最简单的情况,在这种情况下,新生成的数据集就含有这些相同的变量,观测的数目是所有这些数据集的观测总和。

例如,数据集A 和B 都含有两个相同的变量COMMOM 和X ,且都有三条观测,如图12.2 所示。

A BSAS 数据集的连接D A T A C ; S ET A B ;R U N ;D A T A C ;M ER G E A B ;R U N ;A BA B图12.1 数据集的两种连接方式:拼接和合并DATA A DATA B OBS COMMON X OBS COMMON X 198011198014 298022298025 398033398036图12.2 含有相同的变量COMMOM和X的两个数据集用下面程序生成新数据集C有两个相同的变量COMMOM和X,6条观测。

Data A;Input common x ;Cards ;9801 19802 298033Data B ;Input common x ;Cards ;980149802598036Data C ;Set A B ;Proc print data=C;Run;拼接生成的新数据集C的结果如图12.3所示。

图12.3 相同变量的数据集拼接结果2.不相同变量的数据集拼接如果两个数据集A和B含有的变量不完全相同,如上例中数据集B含有的不是COMMON 和X变量而是COMMON和Y变量,如图12.4所示。

用SET语句拼接A和B数据集后,新生成的数据集C就含有三个变量COMMON、X和Y,观测的数目仍然是所有这些数据集的观测总和,但原数据集中没有的变量在拼接后新数据集中为缺失值。

如何使用SAS进行数据分析

如何使用SAS进行数据分析

如何使用SAS进行数据分析数据分析在现代社会中变得越来越重要。

从业务领域到学术研究,许多领域都需要对大量数据进行分析和解释。

数据分析可以让人们更了解他们的业务、客户和市场,以及发现潜在的趋势和模式。

在这个过程中,数据处理和统计软件起着至关重要的作用。

SAS就是一个被广泛使用的数据处理和统计工具包。

在本文中,我们将深入了解如何使用SAS进行数据分析。

1. 数据准备数据准备是进行数据分析的首要任务。

数据准备包括数据清洗、转换、选取和缺失值处理。

SAS提供了众多命令和函数,可以轻松地进行数据准备工作。

除此之外,SAS还提供了一个方便的用户界面,SAS Enterprise Guide,可以帮助用户快速准确地进行数据处理。

2. 描述性分析描述性分析是对数据进行初步分析的过程。

在这个过程中,对数据的各种属性进行了解和描述,包括数据的集中趋势、分散趋势和分布形状。

SAS提供了多种统计方法和图形工具,可以帮助用户更轻松地进行描述性分析。

例如,PROC UNIVARIATE和PROC MEANS命令可以计算数据的平均值、标准差、最值和百分位数等统计数据,并输出相应的表格和图形。

此外,图形工具包括直方图、箱形图和散点图等,可以帮助用户更形象地理解数据的分布情况。

3. 探索性分析探索性分析是深入了解数据的过程。

在这个过程中,用户将使用多种方法和技术来探索数据之间的关系和可视化。

SAS提供了多种探索性分析工具。

PROC CORR和PROC REG命令可以帮助用户计算两个或多个变量之间的相关系数和回归系数,并绘制相关图形。

PROC FACTOR和PROC PRINCOMP命令可以帮助用户进行因子分析和主成分分析等多变量分析。

此外,SAS还提供了交互式可视化工具,如SAS Visual Analytics和SAS Visual Statistics,可以帮助用户更方便快速地进行探索性分析。

4. 统计建模在对数据进行描述性分析和探索性分析后,用户可以利用统计建模技术进行预测和分类分析。

SAS系统和数据分析总体均值的估计

SAS系统和数据分析总体均值的估计

第二十四课 总体均值的估计对于样本来自正态总体和方差齐性的基本假设,根据观察结果(结果变量或反映变量)的水平数,一元时基本的分析方法有U 检验、t 检验,多元时用多元检验(2T 或Wilks ’∧检验)。

一、 计量资料的统计指标测定每个观察单位某项指标值的大小,所得的资料称为计量资料(measurement data )又称测量资料,这类资料一般具有计量单位。

计量资料的统计指标分成两大类:● 表达计量资料集中位置的指标,用以描述观察值的平均水平,如算术均值、几何均值、调和均值、中位数、众数、百分位数。

● 表达计量资料变异的指标,又称离散指标,用以描述观察值间参差不齐的程度,即离散度或称变异度,如全距、标准差、方差、标准误差、变异系数、四分位数间距等。

设原始观察值为n x x x ,,,21 ,第i 组频数记为i f ,组中值记为i x 。

在不发生混淆的场合,有时将下标省略,如∑=ni ix1,有时简记为∑x。

1. 集中位置的指标(1) 算术平均值算术平均值(arithmetic mean )简称为均值(mean ),总体均值用希腊字母μ表示,样本均值用x 表示。

算术平均值的具体计算方法分为简单算术平均和加权算术平均两种。

简单算术平均为:n x x ni i /)(1∑==(24.1)加权算术平均为:∑∑===ni i n i i i f f x x 11/)((24.2)算术平均值有两个重要的数学性质:①各个变量值与平均值离差之和等于零,②各个变量值与平均值的离差平方之和为最小值。

(2) 几何均值几何均值(geometric mean )用G 表示,为观察值的总乘积开n 次方根。

根据资料是否分组,也分为简单几何平均和加权几何平均两种方法。

简单几何平均为:n ni i x G /11)(∏==(24.3)为避免溢出及方便计算,常用对数计算,也称对数平均值,两边取对数有:)/)lg ((lg 11n x G ni i ∑=-=(24.4)(3) 加权几何平均)/)lg ((lg 111∑∑==-=ni i ni i i f x f G(24.5)几何均值适用于表达呈对数正态分布资料的平均水平。

SAS系统简介_SAS数据库与数据集

SAS系统简介_SAS数据库与数据集

• 编辑程序导入数据:
data test; input name$ age weight height; wei1=weight+height; Cards; Tom 10 40 165 Mike 11 42 160 Jack 10 46 162 Lucy 10 39 155 Kate 11 37 155 ; Run;
注:NAME:最长不超过32个字符 LABEL:变量的标签,最长不超过256个字符 LENGTH:规定变量的数据的长度,默认为8 FORMAT:修改数据的存储格式 INFORMAT:修改数据的输入格式 TYPE:选择变量是数值型(NUMERIC)还是 字符型(CHARACTER)
用SAS/INSIGHT软件创建SAS数据集(略)
(2)在Editor窗口用Libname语句创建 可用Libname语句指定永久库的库标记,格式: Libname 库标记‘文件夹位置’; 如:指定“E:\CJL\sasdata”为库标记a,可 提交下列语句: libnanme a ‘E:\ CJL\sasdata’; 库标记是临时的,可随意指定,每次启动SAS系 统后都要重新指定 。
• SAS/ETS(经济计量学和时间序列分析模块 ) • 功能:用于时间序列分析和预测,建立经 济系统模型,财务分析和撰写报告。 • 是研究复杂系统和进行预测的有力工具。 • SAS/GRAPH(绘图模块) • 功能:绘制二维或三维高分辨彩色图形。 • 可绘制柱形图,饼形图,星形图,散点图, 等高线图和地图。
• • • • 列表方式或自由格式 列方式 格式化方式 命名方式
列表方式或自由格式: input name $ age;
data ab; input a $ b ; cards; ww33 3 yyyy 322 ; run;

学习使用SAS进行数据分析的基础教程

学习使用SAS进行数据分析的基础教程

学习使用SAS进行数据分析的基础教程一、SAS介绍与安装SAS(全称Statistical Analysis System,统计分析系统)是一种非常强大的数据分析软件。

它提供了丰富的统计分析、数据挖掘和数据管理功能。

在学习使用SAS之前,首先需要下载并安装SAS软件。

在安装过程中,需要根据操作系统选择相应的版本,并按照安装向导进行操作。

安装完成后,可以通过启动菜单找到SAS软件并打开它。

二、SAS基本语法与数据集1. SAS语法基础SAS语法是一种类似于编程语言的语法。

在SAS中,每一个语句都以分号作为结尾。

常用的SAS语句包括DATA、PROC和RUN。

DATA语句用于创建数据集,PROC语句用于执行数据分析过程,RUN语句用于执行SAS语句的运行。

2. SAS数据集SAS数据集是SAS中最重要的数据组织形式。

它可以包含多个数据变量,并且每个变量可以拥有不同的数据类型,如字符型、数值型、日期型等。

通过DATA语句可以创建一个新的SAS数据集,并通过INPUT语句指定每个变量的属性。

使用SET语句可以将现有的数据集读入到SAS数据集中,以供后续分析使用。

三、SAS数据清洗与变换1. 数据清洗数据清洗是数据分析的第一步,其目的是去除数据中的错误或无效信息,保证数据质量。

在SAS中,可以使用IF和WHERE语句来筛选出符合条件的数据观测值,并使用DELETE和KEEP语句删除或保留特定的变量。

2. 数据变换数据变换是对原始数据进行转换,以满足具体的分析需求。

在SAS中,常用的数据变换操作包括缺失值处理、变量重编码、数据排序和数据合并等。

可以使用IF、ELSE和DO语句进行逻辑判断和循环操作,通过FORMAT语句对数据进行格式化。

四、SAS统计分析1. 描述统计分析描述统计分析是对数据的基本特征进行分析,包括均值、标准差、中位数、分位数和频数等。

在SAS中,可以使用PROC MEANS进行基本统计分析,使用PROC FREQ进行频数分析。

SAS系统和数据分析Spearman等级相关分析

SAS系统和数据分析Spearman等级相关分析

第三十课 Spearman 等级相关分析一、 秩相关的Spearman 等级相关分析前面介绍了使用非参数方法比较总体的位置或刻度参数,我们同样也可以用非参数方法比较两总体之间的相关问题。

秩相关(rank correlation )又称等级相关,它是一种分析i x 和i y 等级间是否相关的方法。

适用于某些不能准确地测量指标值而只能以严重程度、名次先后、反应大小等定出的等级资料,也适用于某些不呈正态分布或难于判断分布的资料。

设i R 和i Q 分别为i x 和i y 各自在变量X 和变量Y 中的秩,如果变量X 与变量Y 之间存在着正相关,那么X 与Y 应当是同时增加或减少,这种现象当然会反映在(i x ,i y )相应的秩(i R ,i Q )上。

反之,若(i R ,i Q )具有同步性,那么(i x ,i y )的变化也具有同步性。

因此:∑∑==-==n i ni i i i Q R d d 1122)((30.1)具有较小的数值。

如果变量X 与变量Y 之间存在着负相关,那么X 与Y 中一个增加时,另一个在减小,d 具有较大的数值。

既然由(i x ,i y )构成的样本相关系数反映了X 与Y 之间相关与否的信息,那么在参数相关系数的公式),(Y X r 中以i R 和i Q 分别代替i x 和i y ,不是同样地反映了这种信息吗?基于这种想法,Charles Spearman 秩相关系数),(Q R r s 应运而生:∑∑∑∑∑∑∑----=22)1()1()1)(1(),(i i i i i i i i s Q n Q R n R Q n Q R n R Q R r (30.2)),(Q R r s 与),(Y X r 形式上完全一致,但在),(Q R r s 中的秩,不管X 与Y 取值如何,总是只取1到n 之间的数值,因此它不涉及X 与Y 总体其他的内在性质,例如,秩相关不需要总体具有有限两阶矩的要求。

SAS系统和数据分析SAS系统简介

SAS系统和数据分析SAS系统简介

第一课SAS系统简介一、SAS系统1.SAS系统的功能SAS系统是大型集成应用软件系统,具有完备的以下四大功能:●数据访问●数据管理●数据分析●数据呈现它是美国软件研究所(SAS Institute Inc.)经多年的研制于1976年推出。

目前已被许多国家和地区的机构所采用。

SAS系统广泛应用于金融、医疗卫生、生产、运输、通信、政府、科研和教育等领域。

它运用统计分析、时间序列分析、运筹决策等科学方法进行质量管理、财务管理、生产优化、风险管理、市场调查和预测等等业务,并可将各种数据以灵活多样的各种报表、图形和三维透视的形式直观地表现出来。

在数据处理和统计分析领域,SAS系统一直被誉为国际上的标准软件系统。

2.SAS系统的支持技术在当今的信息时代中,如何有效地利用业务高度自动化所产生的巨量宝贵数据,挖掘出对预测和决策有用的信息,就成为掌握竞争主导权的关键因素。

因此,SAS系统始终致力于应用先进的信息技术和计算机技术对业务和历史数据进行更深层次的加工。

经过二十多年的发展,SAS系统现在是以下三种技术的主要提供者:●数据仓库技术(Data Warehouse)数据仓库是用于支持管理决策过程的面向主题的、集成的、随时间而变化的、持久的(非易失的)数据集合。

通俗地说,可以将数据仓库理解为“将多个生产数据源中的数据按一定规则统一集中起来,并提供灵活的观察分析数据手段,从而为企业制定决策提供事实数据的支持”。

数据仓库最大的用途是能够提供给用户一种全新的方式从宏观或微观的角度来观察多年积累的数据,从而使用户可以迅速地掌握自己企业的经营运转状况、运营成本、利润分布、市场占有率、发展趋势等对企业发展和决策有重要意义的信息,使用户能制定更加准确科学的决策迅速对市场做出反应。

利用数据仓库技术可以使大企业运作的像小企业一样灵活,也可以使小企业像大企业一样规范。

从目前情况来看,许多企业和机构已经建立了相对完善的生产数据库系统。

使用SAS进行数据处理和分析

使用SAS进行数据处理和分析

使用SAS进行数据处理和分析第一章:简介数据处理和分析是现代社会中重要的技能之一,它帮助我们从大量的数据中提取有用的信息,并做出科学决策。

SAS(Statistical Analysis System)是一种功能强大的统计分析软件包,广泛应用于各个领域的数据处理和分析任务中。

本文将介绍SAS的基本功能和常用技术,帮助读者了解如何使用SAS进行数据处理和分析。

第二章:SAS的基本操作SAS具有友好的图形用户界面和强大的命令行功能,可以满足不同用户的需求。

在本章中,我们将介绍SAS的基本操作,包括启动SAS软件、创建和保存数据集、导入和导出数据、运行SAS程序等。

通过学习这些基本操作,读者将能够掌握SAS的基本使用方法。

第三章:数据预处理数据预处理是数据分析的第一步,它包括数据清洗、数据变换、数据归一化等过程。

在本章中,我们将介绍如何使用SAS进行数据预处理,包括缺失值处理、异常值处理、去重、数据变换等技术。

通过学习这些技术,读者将能够清洗和准备好用于分析的数据。

第四章:基本统计分析统计分析是数据处理和分析的核心部分。

在本章中,我们将介绍SAS中常用的统计分析方法,包括描述统计分析、推断统计分析、多元统计分析、回归分析等。

通过学习这些统计分析方法,读者将能够对数据进行全面的分析,并得出科学的结论。

第五章:高级统计分析除了基本的统计分析方法外,SAS还提供了许多高级的统计分析技术,包括因子分析、聚类分析、判别分析、时间序列分析等。

在本章中,我们将介绍这些高级统计分析技术的基本原理和应用方法,帮助读者更好地理解和应用这些技术。

第六章:数据可视化数据可视化是数据分析中的重要环节,它能够帮助我们更直观地理解数据的特征和规律。

在本章中,我们将介绍SAS中常用的数据可视化技术,包括柱状图、折线图、散点图、箱线图等。

通过学习这些数据可视化技术,读者将能够使用图表和图形展示数据的特征和规律。

第七章:模型建立与评估在数据分析中,我们常常需要建立模型来解释和预测数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四课SAS数据库一、SAS数据库(SAS data library)的成员一个目录里的所有SAS文件都是一个SAS数据库(SAS data library)的成员。

一个目录可以包含外部文件(非SAS文件)以及SAS文件,但只有这些SAS文件才是SAS数据库的成员。

SAS数据库是一个逻辑概念,没有物理实体。

图4.1描述了SAS数据库、SAS文件和SAS 文件的元素之间的关系。

注意,这个库对应于主机操作系统的一个目录,而SAS文件对应于目录内的一个文件。

图4.1 在SAS数据库中的成员类型例如,我们前面定义的Study永久库就是一个SAS数据库,对应的目录为d:\sasdata\mydir,在此目录内有SAS数据集文件:●Class.sd2(包含两种成员类型DATA和VIEW)●索引文件Class.si2其他SAS文件如用BASE SAS软件的存储程序功能产生的成员类型为:●PROGRAM程序文件SAS的目录是具有成员类型为:●CATALOG的SAS文件此文件用来存储许多称为目录条目(catalog entries)的不同类型的信息,用于SAS系统识别它的结构。

典型地,像BASE SAS软件,如果存储目录条目信息对于处理是必要的话,就自动地存储SAS目录条目,而在其他SAS软件中,用户必须在各个过程中规定这个目录条目,用下面完整的四级名字形式来识别:libref.catalog.entry-name.entry-type(库标记.目录名.条目名.条目类型)。

SAS系统有一些特性帮助你管理目录中的条目,一是CATALOG过程,它是BASE SAS软件中的一个过程;另一个是显示管理的CATALOG窗口。

SAS访问描述器是一个允许用户创建SAS/ACCESS视图的工具,访问描述器的成员类型为:●ACCESS的一些文件我们可以用SAS/ACCESS软件里的ACCESS过程创建它们。

访问描述器描述存储在SAS 系统外部的数据,如一些公开的数据库管理系统(DBMS)中的数据,每个访问描述器保存我们想要访问的有关DBMS文件的必要信息,如它的名字、列名和列类型等。

二、对SAS数据库的管理1.联系和删除库标记的方法可以使用LIBNAME语句把库标记与一个物理名字联系起来.例如上面例子中: libname Study 'd:\sasdata\mydir';也可以使用LIBNAME语句删除这个库标记,提交的形式如下:libname Study clear ;所谓的SAS数据库的物理名字,是指在你的主机系统下的SAS文件名,因此必须符合主机系统下文件名的法则,如在Windows环境下,文件的路径(也称主机的目录名)命名法则为如d:\sasdata\mydir的形式。

库标记是在SAS系统中用来标识SAS系统一组文件的方式,它是一个临时的名字,使得我们在每一个SAS系统作业或会话中与SAS数据库联系在一起。

2.查看SAS数据库及其内容如图4.2所示,操作步骤如下:图4.2 创建和查看STUDY数据库及其内容●在命令框中键入LIB或LIBNAME,进入LIBNAME窗口,列出了所有已指定库标记的SAS数据集●在想要查看的库前面的横线上键入S(即SELECT)并回车,进入DIR窗口,列出了指定数据库中的所有SAS文件●在想要查看的数据集前面的横线上键入S并回车,进入V AR窗口,列出了指定数据集的描述部分的信息●在想要修改的变量前面的横线上键入R(即RENAME)并回车,可以改变这个变量的属性。

●发布END命令退出当前窗口或用MOUSE单击一下窗口右上角的关闭窗口按钮。

3.用Libraries对话框进行管理用MOUSE单击一下SAS系统的标准工具栏上的Libraries按钮(最后一组命令按钮的第一个),或选择菜单命令:Globals\Access\Display libraries进入Libraries对话框,如图4.3所示。

在这个Libraries对话框中可以更方便地完成上述的库标记的建立(单击New Library按钮)和修改(单击Modify Library按钮),数据库和SAS 文件的查看(使用View下拉菜单)和更新(单击Refresh按钮)等SAS数据库的管理。

图4.3 使用Libraries对话框进行数据库管理三、SAS文件的驱动(Engines)1.驱动(Engines)的概念驱动(Engines)是SAS系统从文件中读出数据和写入数据到文件中的一些内部I/O指令。

从SAS系统的6.06版本起,SAS系统引入了有关驱动(Engines)的文件新概念,用这一方法显著地扩充了系统的文件存取功能。

2.Engnies和SAS数据集模式的关系如图4.4所示。

图4.4 Engines和SAS数据集模式的关系3.SAS系统采用Engines驱动的优点●处理已存在的较早版本的数据集,而不必拷贝它们为新版本的格式●处理由各种数据管理系统(比DB2、ORACLE、Rdb/VMS和SQL/DS)所创建文件的数据格式●处理用统计软件(比如SPSS、BMDP和OSIRIS)生成的数据●创建一些被压缩、加索引和其他特性的SAS数据集第五课采用不同的文件或SAS数据集中的一些变量来创建逻辑的SAS数据集输入输出格式一、SAS数据集中变量的类型SAS共有两种类型的变量:●字符型变量━━以ASCII码存放,最大长度不超过200字符●数据型变量━━以浮点数存放,长度为8个字节SAS数据集的矩阵式结构要求每个观测的每个变量值都必须存在,因此如果某个数据值缺失,系统会自动补上一个缺失值。

对于数字型变量,这个值显示为一个点“.”,而对于字符型变量,这个值显示为空格。

二、输入和输出格式SAS数据集的数据值的内部存放格式并不一定与该数据值的输入和输出格式一致,这取决于SAS的两个重要功能:输入格式(Informats)和输出格式(Formats)。

输入格式指示SAS 系统如何读入数据,而输出格式指示SAS系统如何输出数据。

它们的一般形式如下:●输入格式:<$>informat<w>.<d>●输出格式:<$>format<w>.<d>其中,$符号指示这是个字符输入输出格式,没有$符号表示是数值输入输出格式;Informat 是一个输入格式的名字,format是一个输出格式的名字;w是宽度值,对许多输入输出格式这个值是输入输出数据的列数;d在数值输入输出格式中是小数部分的长度;点“.”是所有输入输出格式中必须包含的分隔符,作为名字的一部分。

如果在格式中省略w和d值,SAS 系统使用缺省的值。

在SAS系统6.12版本中有五类输入格式,字符输入格式共有14种,数值输入格式共有35种;四类输出格式,字符输出格式共有13种,数值输出格式共有41种。

三、日期时间值在SAS系统中的存储当变量的值表示日期、时间和日期时间时,在这种特殊的情况下,用户还需了解日期时间值在SAS系统中是怎样被存储的。

SAS系统存储日期值为:●1960年1月1日和这个日期之间的天数例如,1962年3月8日被存储为797(即366+365+31+28+7),1958年10月1日被存储为-457(即-365-31-30-31)。

SAS系统存储时间值为:-457●从午夜开始到此刻的秒数例如,8:18存储为29880(8×60×60+18×60)。

一个日期时间值存储为1960年1月1日午夜到这个日期时间之间的秒数。

例如,1962年3月8日8:18存储为6915960(797×24×360+29880)。

SAS系统6.12版本提供了17种日期、时间和日期时间的输入格式,31种输出格式。

四、几种常用的输入输出格式如表5.1所示。

表5.1 常用的输入输出格式主要的输入输出格式名描述w.d 标准的数值数据型格式$w. 标准的字符数据型格式COMMAw.d 含有逗号、小数点的数值数据型格式DOLLARw.d 含有美元号$、逗号和小数点的数值数据型格式DATEw. 日、月份、年形式的日期值(ddmmmyy),例如,w=7时,18jan97;w=9时,18jan1997MMDDYYw. 月份、日、年形式的日期值(mmddyy),例如,w=8时,01/18/97;w=6时,011897五、数据格式变换举例设有一个SAS数据集survey,其中有一个数字变量INCOME和一个日期变量BDATE,针对不同的采样数据格式,我们对变量采用对应的输入格式,得到在SAS系统中实际存储的数据值,然后根据报表的输出要求,选定一种输出格式,将实际存储的数据值按所选输出格式显示结果。

如表5.2所示。

表5.2 INCOME 和BDA TE变量的输入输出格式输入数据→变量和输入格式→实际存储数据值→变量和输出格式→显示结果12345.1234 Income8.2 12345.12 Income8.212345.1212,345.1234 Incomecomma8.2 12345.12 Incomecomma8.212,345.12$12,345.1234 Incomedollar8.2 12345.12 Incomedollar8.2$12,345.1208MAR62 Bdatedate7. 797 Bdatemmddyy6.03086203/08/62 Bdatemmddyy8. 797 Bdatedate9.08MAR1962。

相关文档
最新文档