函数的奇偶性的典型例题
高中数学函数的奇偶性经典习题(带答案)

绝密★启用前1.判断下列函数的奇偶性:(1)f(x)=x 3-1x ; (2)f(x)=|2|2x +-; (3)f(x)=(x -(4)f(x). 【答案】(1)奇函数(2)奇函数(3)既不是奇函数也不是偶函数(4)既是奇函数也是偶函数解析:(1)定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2)去掉绝对值符号,根据定义判断.由210|2|20x x ⎧≥⎨≠⎩-,+-,得1104x x x ≤≤⎧⎨≠≠⎩-,且-. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f(x)=22x x=+-, 这时有f(-x)=21(x x --)-=-f(x),故f(x)为奇函数. (3)因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4)因为f(x)定义域为{,所以f(x)=0,则f(x)既是奇函数也是偶函数2.下列函数是奇函数的是( )A .()||f x x =-B .()22x x f x -=+C .()lg(1)lg(1)f x x x =+--D .3()1f x x =-【答案】C 解析:对于B ,()22()x x f x f x --=+=,函数()f x 为偶函数,所以B 错;对于C ,由1010x x +>⎧⎨->⎩,故11x -<<,关于原点对称,又()lg(1)lg(1)()f x x x f x -=--+=-对于D ,33()()11()()f x x x f x f x -=--=--≠≠-,函数()f x 既不是奇函数,也不是偶函数,3.已知函数)(x f y =是奇函数,当0>x 时,,lg )(x x f =则( )C.2lgD.-2lg 【答案】D.解析:4.已知函数(1)f x +是奇函数,(1)f x -是偶函数,且(0)2,(4)则f f ==( )A .-2B .0C .2D .3【答案】A 解析:因为函数(1)f x +是奇函数,所以)(x f 的对称中心为(1,0),因为(1)f x -是偶函数,所以)(x f 的对称轴为x=-1。
函数的奇偶性的典型例题

函数的奇偶性的典型例题函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下:①、定义域是否关于原点对称;②、数量关系)()(x f x f ±=-哪个成立;例1:判断下列各函数是否具有奇偶性⑴、x x x f 2)(3+= ⑵、2432)(x x x f += ⑶、1)(23--=x x x x f ⑷、2)(x x f = []2,1-∈x / ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数注:教材中的解答过程中对定义域的判断忽略了。
例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。
.)(),()()()()()(,0,0)()()(,0,0)(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
四、关于函数的奇偶性的几个命题的判定。
~命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。
此命题正确。
如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。
命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。
函数的奇偶性(2)

例3;求下列函数的单调区间:
1)f(X)=x2-2x-3的递增区间为
.
递减区间是
.
2)
f
(x)
x2
1 2x
的递增区间为
3
.
递减区间是
.
3) f (x) x2 2x 3 的递增区间为
x 1
延伸与拓展:
已知: f(x)是偶函数,g(x)是偶函数,x∈R, f(x) g(x)不恒为零 证明: f(x) +g(x)是偶函数。
分析: 设h(x)=f(x)+g(x) ∵ h(x)=f(x)+g(x)不是具体给出的函数, 无法作出图象 ∴ 只能用定义证明 即需证明G(-x) = G(x) 而G(-x)= f(-x) +g(-x) =f(x) +g(x) ∴ G(-x) = G(x) 命题得证
1、2、4
2、已知函数 f(x) x 5 ax 3 bx 8 且f(-2)=10,则f(2)等于( ) A -26 B -18 C -10 D 10 3)若f(x) 2x2 (3 a 2)x 5是偶函数,则 a
例2:已知函数f(x)是定义在[-1,1]上的增函数, 且有f(x-1)<f(3x-4),求x的取值范围.
f (a·b) = a f (b) + b f (a).
(1)求 f (0)=
, f (1)=
.
2、(2004年全国)设函数f(x)(x∈R)为奇函数,
f (1) = 1/2 ,f(x + 2)= f(x)+ f(2),则f(5)=(c )
函数的奇偶性练习题

函数的奇偶性练习题1. 函数f(x)在定义域上是否是奇函数还是偶函数?解析:要判断函数的奇偶性,需要分析函数在x和-f(x)两点处的取值情况。
2. 函数g(x) = x^3 - x是奇函数还是偶函数?解析:首先,我们分别计算g(x)和g(-x)的值。
当x = 1时,g(1) = 1^3 - 1 = 0;当x = -1时,g(-1) = (-1)^3 - (-1) = -2。
由于g(1) = 0,且g(-1) = -2,即当x = 1时,g(x) = -g(-x)成立。
因此,函数g(x)是奇函数。
3. 函数h(x) = x^4 - x^2是奇函数还是偶函数?解析:同样地,我们分别计算h(x)和h(-x)的值。
当x = 1时,h(1) = 1^4 - 1^2 = 0;当x = -1时,h(-1) = (-1)^4 - (-1)^2 = 0。
由于h(1) = h(-1) = 0,即当x = 1和x = -1时,h(x) = h(-x)成立。
因此,函数h(x)是偶函数。
4. 函数i(x) = sin(x)是奇函数还是偶函数?解析:对于三角函数,我们需要利用其周期性质进行判断。
由于sin(x)的周期是2π,即sin(x + 2πk) = sin(x)(k为整数)。
考虑到奇函数关于原点对称,我们将其分为两种情况进行分析:当x = 0时,sin(0) = 0;当x = π时,sin(π) = 0。
由于sin(0) = sin(π) = 0,即当x = 0和x = π时,sin(x) = sin(-x)成立。
因此,函数i(x)是奇函数。
5. 函数j(x) = x^2 + 1是奇函数还是偶函数?解析:对于函数j(x),我们分别计算j(x)和j(-x)的值。
当x = 1时,j(1) = 1^2 + 1 = 2;当x = -1时,j(-1) = (-1)^2 + 1 = 2。
由于j(1) = j(-1) = 2,即当x = 1和x = -1时,j(x) = j(-x)成立。
函数的奇偶性练习题及答案

函数的奇偶性练习题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .a=1/3,b =0B .a =-1,b =0C .a =1,b =0D .a =3,b =03.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )A .-26B .-18C .-10D .105.函数1111)(22+++-++=x x x xx f 是( )A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3二、填空题7.函数2122)(xx x f ---=的奇偶性为________(填奇函数或偶函数) 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数1.解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x|-2)答案:D 4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数.又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C7.答案:奇函数8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .答案:11)(2-=x x f 10.答案:0 11.答案:21<m 12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
函数的奇偶性与周期性典型例题

函数的奇偶性和周期性
例1、 已知为定义在上的奇函数,当时,,求的
表达式.
思路点拨:().00上,这是解题的关键的解析式转化到时将<>x x f x 解:∵
为奇函数,且在处有定义0=x ∴ 当 时, ∵
为奇函数 ∴
∴ ∴()()()()⎪⎩
⎪⎨⎧<--=>-=000022x x x x x x x x f
解题回顾:若一个函数具有奇偶性,则不论这个函数是奇函数还是偶函数,它的定义域一定关于原点对称。
如果一个函数定义域不关于原点对称,那么它就失去了奇函数或是偶函数的条件,即这个函数既不是奇函数又不是偶函数。
变式:已知为定义在上的偶函数,当0≤x 时,,求的
表达式.
例2、 已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有
()()x f x f =+4,若()263=f ,求()()75f f 与的大小关系 思路点拨:解此题的关键由()()x f x f =+4知函数的周期是4. 解:对一切x R ∈,总有f (x+4)=f (x ),故函数)(x f 是周期为4的函数,因此,,2)1(=-f 又函数f (x )是定义在R 上的奇函数,所以,.2)7(,2)5(,2)1(=-=∴-=f f f )7()5(f f <∴。
变式1、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()x f x f -=+2,若()263=f ,则()()75f f 与的大小关系是
变式2、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()
x f x f 12=+,若()263=f ,求()()75f f 与的大小关系。
函数的奇偶性的典型例题

第一种方法判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,主要考查是否与、 相等,判断步骤如下:①、定义域是否关于原点对称;②、数量关系哪个成立;例1:判断下列各函数是否具有奇偶性⑴、 ⑵、⑶、 ⑷、⑸、 ⑹、解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数注:教材中的解答过程中对定义域的判断忽略了。
例2:判断函数的奇偶性。
第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
四、关于函数的奇偶性的几个命题的判定。
命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。
此命题正确。
如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。
命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。
此命题错误。
一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x∈〔-1,1〕),g(x)=x(x∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。
)(x f )(x f -)(x f )()(x f x f ±=-x x x f 2)(3+=2432)(x x x f +=1)(23--=x x x x f 2)(x x f =[]2,1-∈x x x x f -+-=22)(2211)(x x x f -+-=⎩⎨⎧<≥-=)0()0()(22x x x x x f .)(),()()()()()(,0,0)()()(,0,0)(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。
函数奇偶性常见经典试题

函数奇偶性试题1.函数f 〔x 〕=ax 2+bx +c 〔a ≠0〕是偶函数,那么g 〔x 〕=ax 3+bx 2+cx 〔 〕A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数解析:f 〔x 〕=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数, ∴g 〔x 〕=ax 3+bx 2+cx =f 〔x 〕·)(x ϕ满足奇函数的条件.2.函数f 〔x 〕=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],那么〔 〕A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0D .a =3,b =0解析:由f 〔x 〕=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .3.f 〔x 〕是定义在R 上的奇函数,当x ≥0时,f 〔x 〕=x 2-2x ,那么f 〔x 〕在R 上的表达式是〔 〕A .y =x 〔x -2〕B .y =x 〔|x |-1〕C .y =|x |〔x -2〕D .y =x 〔|x |-2〕解析:由x ≥0时,f 〔x 〕=x 2-2x ,f 〔x 〕为奇函数,∴当x <0时,f 〔x 〕=-f 〔-x 〕=-〔x 2+2x 〕=-x 2-2x =x 〔-x -2〕. ∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f 〔x 〕=x 〔|x |-2〕4.f 〔x 〕=x 5+ax 3+bx -8,且f 〔-2〕=10,那么f 〔2〕等于〔 〕A .-26B .-18C .-10D .10解析:f 〔x 〕+8=x 5+ax 3+bx 为奇函数,f 〔-2〕+8=18,∴f 〔2〕+8=-18,∴f 〔2〕=-26.5.函数1111)(22+++-++=x x x x x f 是〔 〕 A .偶函数 B .奇函数 C .非奇非偶函数 D . 既是奇函数又是偶函数解析:此题直接证明较烦,可用等价形式f 〔-x 〕+f 〔x 〕=0. 6.假设)(x ϕ,g 〔x 〕都是奇函数,2)()(++=x bg a x f ϕ在〔0,+∞〕上有最大值5,那么f 〔x 〕在〔-∞,0〕上有〔 〕A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g 〔x 〕为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数. 又f 〔x 〕在〔0,+∞〕上有最大值5, ∴f 〔x 〕-2有最大值3.∴f 〔x 〕-2在〔-∞,0〕上有最小值-3, ∴f 〔x 〕在〔-∞,0〕上有最小值-1.7. 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,那么f (7.5)等于( )B.-0.5 D.-1.5解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)=f (-0.5)=-f (0.5)=-0.5.8. 定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,那么a 的取值范围是( ) A.(22,3) B.(3,10)C.(22,4)D.(-2,3)解析:∵f (x )是定义在(-1,1〕上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0.∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3).9.函数2122)(xx x f ---=的奇偶性为________〔填奇函数或偶函数〕 .10.假设y =〔m -1〕x 2+2mx +3是偶函数,那么m =_________. 解析:因为函数y =〔m -1〕x 2+2mx +3为偶函数,∴f 〔-x 〕=f 〔x 〕,即〔m -1〕〔-x 〕2+2m 〔-x 〕+3=〔m —1〕x 2+2mx +3,整理,得m =0.11.f 〔x 〕是偶函数,g 〔x 〕是奇函数,假设11)()(-=+x x g x f ,那么f〔x 〕的解析式为_______.解析:由f 〔x 〕是偶函数,g 〔x 〕是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .12.函数f 〔x 〕为偶函数,且其图象与x 轴有四个交点,那么方程f 〔x 〕=0的所有实根之和为________.13. 假设f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,那么xf (x )<0的解集为_________.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3)14. 假设函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,那么b 的取值范围是_________.解析:∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0.f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x ,∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0.又知0<x 1<x ,得x 1+x 2>0,∴b =-a (x 1+x 2)<0.15.设定义在[-2,2]上的偶函数f 〔x 〕在区间[0,2]上单调递减,假设f 〔1-m 〕<f 〔m 〕,求实数m 的取值范围.16.函数f〔x〕满足f〔x+y〕+f〔x-y〕=2f〔x〕·f〔y〕〔x∈R,y∈R〕,且f〔0〕≠0,试证f〔x〕是偶函数.16.证明:令x=y=0,有f〔0〕+f〔0〕=2f〔0〕·f〔0〕,又f〔0〕≠0,∴可证f〔0〕=1.令x=0,∴f〔y〕+f〔-y〕=2f〔0〕·f〔y〕⇒f〔-y〕=f〔y〕,故f 〔x〕为偶函数.17.函数f〔x〕是奇函数,且当x>0时,f〔x〕=x3+2x2—1,求f 〔x〕在R上的表达式.解析:此题主要是培养学生理解概念的能力.f〔x〕=x3+2x2-1.因f〔x〕为奇函数,∴f〔0〕=0.+2x 2-1,∴f 〔x 〕=x 3-2x 2+1. 因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f18.f 〔x 〕是定义在〔-∞,-5] [5,+∞〕上的奇函数,且f 〔x 〕在[5,+∞〕上单调递减,试判断f 〔x 〕在〔-∞,-5]上的单调性,并用定义给予证明.18.解析:任取x 1<x 2≤-5,那么-x 1>-x 2≥-5.因f 〔x 〕在[5,+∞]上单调递减,所以f 〔-x 1〕<f 〔-x 2〕⇒f 〔x 1〕<-f 〔x 2〕⇒f 〔x 1〕>f 〔x 2〕,即单调减函数. 点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.19.设函数y=f〔x〕〔x∈R且x≠0〕对任意非零实数x1、x2满足f〔x1·x2〕=f〔x1〕+f〔x2〕,求证f〔x〕是偶函数.解析:由x1,x2∈R且不为0的任意性,令x1=x2=1代入可证,f〔1〕=2f〔1〕,∴f〔1〕=0.又令x1=x2=-1,∴f[-1×〔-1〕]=2f〔1〕=0,∴〔-1〕=0.又令x1=-1,x2=x,∴f〔-x〕=f〔-1〕+f〔x〕=0+f〔x〕=f〔x〕,即f〔x〕为偶函数.点评:抽象函数要注意变量的赋值,分外要注意一些特殊值,如,x1=x2=1,x1=x2=-1或x1=x2=0等,然后再结合具体标题问题要求构造出适合结论特征的式子即可.函数的奇偶性试题参考答案1A 2A 3D 4A 5B 6C 7B 8A 9奇函数 10 0 1111)(2-=x x f12 013 (-3,0〕∪(0,3〕 14 (-∞,0〕 15 21<m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性的典型例题
函数的奇偶性的判断
判断函数的奇偶性大致有下列两种方法:
第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下:
①、定义域是否关于原点对称;
②、数量关系)()(x f x f ±=-哪个成立;
例1:判断下列各函数是否具有奇偶性
⑴、x x x f 2)(3+= ⑵、2
432)(x x x f += ⑶、1
)(2
3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=
解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数
⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数
注:教材中的解答过程中对定义域的判断忽略了。
例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x
x x f 的奇偶性。
.)(),()()
()()()(,0,0)
()()(,0,0)
(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==
第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
四、关于函数的奇偶性的几个命题的判定。
命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分
条件。
此命题正确。
如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。
命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。
此命题错误。
一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。
命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。
此命题错误。
一方面,对于函数|f(x)|=⎩
⎨⎧<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。
如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。
命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶
函数。
此命题错误。
如函数f(x)=⎩
⎨⎧∈+=∈=),12(,),2(,2N n n x x N n n x x 从图像上看,f(x)的图像既不关于原点对称,也不关于y 轴对称,故此函数非奇非偶。
命题5 函数f(x)+f(-x)是偶函数,函数f(x)-f(-x)是奇函数。
此命题正确。
由函数奇偶性易证。
命题6 已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。
此命题正确。
由奇函数的定义易证。
命题7 已知f(x)是奇函数或偶函数,方程f(x)=0有实根,那么方程f(x)=0的所有实根之和为零;若f(x)是定义在实数集上的奇函数,则方程f(x)=0有奇数个实根。
此命题正确。
方程f(x)=0的实数根即为函数f(x)与x 轴的交点的横坐标,由奇偶性的定义可知:若f(x 0)=0,则f(-x 0)=0。
对于定义在实数集上的奇函数来说,必有f(0)=0。
故原命题成立。
五、关于函数按奇偶性的分类
全体实函数可按奇偶性分为四类:①奇偶数、②偶函数、③既是奇函数也是偶函数、④非奇非偶函数。
六、关于奇偶函数的图像特征
例1:已知偶函数)(x f y =在y 轴右则时的图像如图(一)试画出函数y 轴右则的图像。
七、关于函数奇偶性的简单应用
1、利用奇偶性求函数值
例1:已知8)(3
5-++=bx ax x x f 且10)2(=-f ,那么=)2(f
2、利用奇偶性比较大小
例2:已知偶函数)(x f 在()0,∞-上为减函数,比较)5(-f ,)1(f ,)3(f 的大小。
3.利用奇偶性求解析式
例3:已知)(x f 为偶函数时当时当01,1)(,10<≤--=≤≤x x x f x ,求)(x f 的解析式?
4、利用奇偶性讨论函数的单调性
例4:若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间?
5、利用奇偶性判断函数的奇偶性
例5:已知函数)0()(23≠++=a cx bx ax x f 是偶函数,判断cx bx ax x g ++=23)(的奇偶
性。
6、利用奇偶性求参数的值
例6:定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)123()12(22+-<++a a f a a f ,则a 的取值范围是如何?
7、利用图像解题
图(二)
图(一)
例7(2004.上海理)设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则()0<x f 的解是 .
8.利用定义解题
例8.已知函数1().21
x f x a =-
+,若()f x 为奇函数,则a =________。