spss样本聚类案例分析

合集下载

SPSS聚类分析加具体案例

SPSS聚类分析加具体案例

六、聚类分析(一)概述1.聚类分析的目的根据已知数据,计算样本或者变量之间亲疏关系的统计量(距离或相关系数)。

根据某种准则(最短距离法、最长距离法、中间距离法、重心法),使同一类内的差别较小,而类与类之间的差别较大,最初达到的就是将样本或变量分成若干类。

2.聚类分析的分类3.距离与相似性为了对样本或者变量进行分类,就需要研究样本之间的关系,最常用的方法有两个。

(二)系统聚类1.系统聚类的步骤距离的具体定义及计算方式计算n各样本两两之间的距离将距离接近的数据依次合并为一类,再计算,再合并 画聚类图,解释类与类之间的关系2.亲疏程度度量方法3.系统聚类的分类4.SPSS操作及实例SPSS采用的是凝聚法。

案例:根据30个省的23个主要行业的平均工资情况,通过聚类分析来判断哪些地区平均工资水平高。

SPSS操作及结果:打开SPSS上方菜单栏中的分析->分类->系统聚类选择变量->勾选统计量->在绘制里选择树状图和冰柱图勾选方法(通常使用组间联接)->度量区间->选择标准化方式(全距从0到1)下图为近似矩阵表,标注了相关系数,数值越大,距离越接近下图为聚类分析结果表,第一类表示这是聚类分析的第几步,第二三列表示该步中那几个样本或者小类聚成一类,第四列表示距离,第五六列表示本步骤中参与的是个体还是小类(0表示样本,非0表示第n步生成的小类),第七列表示本步骤的聚类结果将在以下第几步中用到。

下面是冰柱图和树状图的结果,根据树状图可以看出,如果分为三类的话,第一类包括北京上海,第二类包括天津、广东、浙江、江苏、西藏,剩下的归为一类。

(三)快速聚类(适合大样本聚类)1.快速聚类的步骤指定聚类数目K确定K个初始类的中心(自定义或者根据数据中心初步确定)根据距离最近的原则进行分类根据新的中心位置,重新计算每一记录距离新的类别中心的的距离,并重新分类重复步骤4,直到达到标准2.SPSS操作及实例打开SPSS上方菜单栏中的分析->分类->K-均值聚类选择变量->勾选统计量->定义变量值选择迭代次数->选项(勾选初始聚类中心、每个个案的聚类信息)->定义变量值->保存(勾选聚类成员、聚类中心距离)下图为输出的初始聚类中心下图为最终距离中心,第一类平均工资最高,第二类次之,第三类最低下图为每个聚类中的案例数和聚类成员。

用SPSS进行聚类分析(中文版)

用SPSS进行聚类分析(中文版)

选择聚类方法
根据数据类型和聚类目的选择 合适的聚类方法。常见的聚类 方法有层次聚类、K均值聚类 、DBSCAN聚类等。
层次聚类按照数据点之间的距 离进行层次式的聚类,可以生 成聚类树状图。
K均值聚类将数据点划分为K 个簇,使得每个数据点与其所 在簇的中心点之间的距离之和 最小。
DBSCAN聚类基于密度的聚类 方法,可以发现任意形状的簇 ,并去除噪声点。
03
根据实际需求和应用背景,对聚类结果进行解释和 应用。
03
CATALOGUE
K-means聚类分析
K-means聚类分析的原理
K-means聚类分析是一种无监督学 习方法,通过将数据划分为K个集群 ,使得同一集群内的数据点尽可能相 似,不同集群的数据点尽可能不同。
原理基于距离度量,将数据点分配给 最近的均值(即聚类中心),并不断 迭代更新聚类中心,直到聚类中心收 敛或达到预设的迭代次数。
K-means聚类分析的步骤
选择初始聚类中心
随机选择K个数据点作为初始聚类中心。
分配数据点到最近的聚类中心
根据距离度量,将每个数据点分配给最近的聚类中心。
更新聚类中心
重新计算每个集群的均值,将新的均值作为新的聚类中心。
迭代执行
重复步骤2和3,直到聚类中心收敛或达到预设的迭代次数。
K-means聚类分析的应用实例
系统聚类分析
系统聚类分析的原理
系统聚类分析是一种无监督的统计方法,通过将个体或群体按照其相似性或差异性进行分类,从而揭示数据内在的结构和模 式。
它基于个体间的距离或相似度进行分类,通过不断迭代和合并,最终形成若干个聚类,使得同一聚类内的个体尽可能相似, 不同聚类间的个体尽可能不同。
系统聚类分析的步骤

SPSS聚类分析实例讲解

SPSS聚类分析实例讲解

SPSS聚类分析实例讲解SPSS是一款功能强大的统计分析软件,可用于数据清洗、描述统计分析、假设检验和聚类分析等。

聚类分析是一种无监督学习方法,其目标是按照数据的相似性度量,将样本数据划分为多个不同的群组。

下面将以一个实例来讲解如何使用SPSS进行聚类分析。

实例描述:假设有一个超市的销售数据,包含了不同商品的销售额、销售量和利润等信息。

我们希望将商品进行聚类分析,找出相似销售特征的商品群组。

步骤一:数据准备首先,将销售数据保存为一个.SP文件,然后打开SPSS软件。

在主界面上选择“文件”-“打开”-“数据库”-“从SPSS文件”,打开数据文件。

步骤二:变量选择在数据文件中,选择出要进行聚类分析的变量。

在“数据视图”中,选择那些代表销售特征的变量,例如“销售额”、“销售量”和“利润”。

在变量列上按住“Ctrl”键,同时点击这些变量名,选中它们。

步骤三:聚类分析点击菜单上的“数据”-“服务”-“聚类分析”进行聚类分析操作。

会弹出“聚类分析”对话框。

在对话框中,将选中的变量移到右侧的“变量”框中,并选择“K均值聚类”作为聚类方法。

K值是指要分成的群组数量,可以根据实际情况设定。

这里假设将商品分成3个群组,因此设置为3步骤四:聚类结果解读点击“确定”按钮,SPSS将自动进行聚类分析。

完成后,SPSS会在数据文件中生成一个新的变量,用于表示每个样本所属的群组。

在下方的“结果视图”中,可以看到聚类结果的统计数据、聚类中心和变量间的距离。

此外,在“分类变量资料”中,还可以看到每个样本所属的群组编号。

步骤五:聚类结果可视化为了更好地理解聚类结果,可以进行可视化展示。

点击菜单上的“图形”-“散点图”,在对话框中依次选择所属群组变量和销售额、销售量这两个变量。

点击“确定”按钮,即可生成散点图。

散点图可以清楚地显示出不同群组之间的差异和相似性。

根据散点图,可以对聚类结果进行解读。

例如,如果不同群组之间的点比较分散,则说明聚类效果较差;而如果不同群组之间的点比较集中,则说明聚类效果较好。

spss聚类分析案例

spss聚类分析案例

spss聚类分析案例SPSS聚类分析案例。

在统计学中,聚类分析是一种常用的数据分析方法,它可以将数据集中的个体或变量进行分组,使得同一组内的个体或变量之间的相似度较高,而不同组之间的相似度较低。

聚类分析在市场分析、社会学调查、医学研究等领域有着广泛的应用。

而SPSS作为一款专业的统计分析软件,提供了丰富的聚类分析功能,能够帮助研究者对数据进行深入的分析和挖掘。

在本案例中,我们将以一个实际的数据集为例,介绍SPSS中如何进行聚类分析,并对分析结果进行解读和讨论。

首先,我们需要加载数据集,然后选择合适的变量进行聚类分析。

在选择变量时,需要考虑变量之间的相关性,避免出现多重共线性的情况。

在本案例中,我们选择了A、B、C三个变量进行聚类分析。

接下来,我们需要进行聚类分析的设置。

在SPSS软件中,可以选择不同的聚类算法和距离度量方法,以及设置聚类的个数。

在本案例中,我们选择了K均值聚类算法,并设置聚类的个数为3。

同时,我们还可以对聚类结果进行验证和评价,以确保聚类结果的准确性和稳定性。

在进行聚类分析后,我们需要对聚类结果进行解读和讨论。

首先,我们可以通过聚类中心和聚类图表来直观地展示不同组之间的差异和相似度。

然后,我们可以对每一组的特征进行分析,找出不同组之间的显著性差异和共性特征。

最后,我们可以将聚类结果与实际情况进行比较,验证聚类结果的有效性和可解释性。

通过本案例的介绍,相信读者对SPSS中的聚类分析方法有了更深入的了解。

在实际应用中,聚类分析可以帮助研究者发现数据中潜在的规律和结构,为决策提供科学依据。

同时,SPSS作为一款功能强大的统计分析软件,为用户提供了丰富的数据分析工具和可视化功能,能够满足不同领域的研究需求。

总之,聚类分析是一种重要的数据分析方法,能够帮助研究者理解数据的内在结构和规律。

而SPSS作为一款专业的统计分析软件,为用户提供了便捷的聚类分析工具,能够帮助用户快速准确地进行数据分析和挖掘。

spss聚类分析案例

spss聚类分析案例

spss聚类分析案例在进行SPSS聚类分析时,我们通常会遵循一系列步骤来确保分析的准确性和有效性。

以下是一个典型的聚类分析案例,展示了如何使用SPSS软件进行数据分析。

首先,我们需要收集数据。

数据可以是定量的,也可以是定性的,但必须与研究问题相关。

例如,如果我们正在研究消费者购买行为,我们可能会收集关于消费者年龄、收入、购买频率和偏好的数据。

接下来,我们将数据导入SPSS。

这可以通过直接输入数据、从Excel文件导入或使用SPSS的数据导入向导来完成。

一旦数据在SPSS中,我们需要检查数据的准确性和完整性,确保没有缺失值或异常值。

在进行聚类分析之前,我们通常需要对数据进行预处理。

这可能包括标准化变量、处理缺失值和异常值,以及可能的变量转换。

标准化是重要的,因为它确保了所有变量在聚类分析中具有相同的权重。

然后,我们选择聚类方法。

SPSS提供了几种聚类方法,包括K-means聚类、层次聚类和双向聚类。

选择哪种方法取决于数据的特性和研究目的。

例如,如果我们有明确的类别数量,K-means聚类可能是合适的;如果我们希望看到数据的层次结构,层次聚类可能更合适。

在选择了聚类方法后,我们需要确定聚类的数量。

这可以通过多种方法来确定,包括肘部方法、轮廓系数或基于信息准则的方法。

确定聚类数量后,我们可以运行聚类算法,并将数据点分配到不同的聚类中。

聚类完成后,我们需要评估聚类的质量。

这可以通过查看聚类的内部一致性和聚类之间的差异来完成。

我们还可以进行统计测试,如ANOVA或卡方检验,来检验聚类是否在统计上显著。

最后,我们解释聚类结果。

这包括识别每个聚类的特征,以及这些特征如何与研究问题相关。

例如,如果我们发现一个聚类主要由高收入、频繁购买的消费者组成,这可能表明这是一个高价值的市场细分。

在整个聚类分析过程中,我们可能会进行多次迭代,调整聚类方法、聚类数量或数据预处理步骤,以获得最佳的聚类结果。

聚类分析是一个动态的过程,需要根据数据和研究目的进行调整。

SPSS教程-聚类分析-附实例操作

SPSS教程-聚类分析-附实例操作

各地区各行业工资水平的分析(2009年数据)小组成员:张艺伟、赵月、陈媛、邹莉、朱海龙、曾磊、胡瑛、候银萍1.研究背景及意义1.1 研究背景工资水平是指一定区域和一定时间内劳动者平均收入的高低程度。

生产决定分配,只有经济发展才能提供更多的可分配的社会产品,因此一个地区的工资水平在一定程度上反映了其经济发展的水平。

1.2 研究意义1. 通过多元统计分析方法,探究一个地区的工资水平与其经济发展水平之间的内在联系。

2. 将平均工资水平划分为3类,分析哪些地区、哪些行业的工资水平较高,可以为大学生就业提供宏观上的方向指引。

2.数据来源与描述2.1 数据来源——《中国劳动统计年鉴─2010》(URL:/Navi/YearBook.aspx?id=N2011010069&floor=1###)主编单位:国家统计局人口和就业统计司,人力资源和社会保障部规划财务司出版社:中国统计出版社简介:《中国劳动统计年鉴─2010》是一部全面反映中华人民共和国劳动经济情况的资料性年刊。

本刊收集了2009年全国和各省、自治区、直辖市、香港特别行政区、澳门特别行政区的有关劳动统计数据。

本书资料的取得形式主要有国家和部门的报表统计、行政记录和抽样调查。

2.2 数据描述本数据集记录了全国31个省市(港、澳、台除外)的工资状况,各省市分别记录了其23个主要行业的平均工资水平,这23个主要行业包括:企业、事业、机关、金融业、制造业、建筑业、房地产业、农林牧渔业等等,具体数据格式参见图-0。

图-03.分析方法及原理3.1 通过描述统计分析方法,判断哪些行业平均工资水平较高描述统计分析方法主要是从基本统计量(诸如均值、方差、标准差、极大/小值、偏度、峰度等)的计算和描述开始的,并辅助于SPSS提供的图形功能,能够把握数据的基本特征和整体的分布特征。

在本案例中,通过比较不同行业(诸如企业、事业、机关、建筑业、制造业……)工资的均值、极大/小值,可以从总体上判断哪些行业的平均工资水平较高,哪些行业的较低。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。

二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。

2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。

3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。

4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。

三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。

下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。

2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。

-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。

-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。

3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。

这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。

五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。

基于SPSS用K-means聚类做聚类分析

基于SPSS用K-means聚类做聚类分析

作业2:城镇居民消费结构的K-means聚类模型
本次作业为基于IBM SPSS Statistics 24的K-means聚类运算
一、第一步:导入数据,点击文件下方的图标,选中”案例2-城镇居民消费结构“,点击打开,
二、分析数据
1、点击Spss界面的“分析”,然后依次点击“分类”、“K-均值聚类”,如下图
2、在弹出的界面中点击“选项”,勾选“ANOVA表”,如下图,再点击“继续”
3、在弹出的界面中点击“保存”,勾选“聚类成员”、“与聚类中心距离”,如下图所示,点击“继续”
4、最后在弹出的界面中,把“地区”放入“个案标注依据”,其余的放入“变量”中,如下图所示,点击“确定”。

三、结果展示
ANOVA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原数据
1.1样本聚类(Q聚类)
聚类表

群集组合
系数首次出现阶群

下一阶
群集 1群集 2群集 1群集 2
157.855003 21112 1.379007 325 1.772015
41014 1.776007 526 2.451308 6813 2.7720010 71011 4.3224212 812 4.5570512 934 4.8950013 10815 5.5006011 11897.74010013 121108.3148714 133812.79091114 141316.65012130通过系数做出其散点图
群集成员
案例 5 群集 4 群集 3 群集
1:Case 1 111 2:Case 2 111 3:Case 3 222 4:Case 4 222 5:Case 5 111 6:Case 6 111 7:Case 7 111 8:Case 8 333 9:Case 9 433
541 10:Case
10
541 11:Case
11
12:Case
541 12
333 13:Case
13
14:Case
541 14
15:Case
333 15
1.2变量聚类(R聚类)
近似矩阵
案例矩阵文件输入
总人口从业人

土地面

耕地面

财政收

粮食产

总人口 1.000.857.698.714.512.043从业人

.857 1.000.597.570.643.277
土地面

.698.597 1.000.856.044-.147
耕地面

.714.570.856 1.000-.001-.335
财政收

.512.643.044-.001 1.000.342
粮食产

.043.277-.147-.335.342 1.000
聚类表

群集组合
系数首次出现阶群

下一阶
群集 1群集 2群集 1群集 2
112.857003 234.856003 313.645125 456.342005 515.129340
群集成员
案例 5 群集 4 群集 3 群集
总人口111
从业人

111
土地面

221
耕地面

321财政收

432
粮食产

543
2.K—均值聚类原数据
描述统计量
N极小值极大值均值标准差
身高月平均增长率19.3411.03 1.8842 2.5634
2
体重月平均增长率19.4950.30 5.636311.718
14
胸围月平均增长率19.1611.81 1.4958 2.7933
9
坐高月平均增长率19.1411.27 1.7111 2.8070
9
有效的 N (列表
状态)
19
输出结果:
初始聚类中心
聚类
12345
Zscore(身高月平均增长率)3.5678
1
1.3988
3
.66153.04907-.6024
Zscore(体重月平均增长率)3.8115
1.1660
3
.35959-.1251
3
-.4391
8
Zscore(胸围月平均增长率)3.6923
6
1.3260
6
.58861-.0092
3
-.4710
4
Zscore(坐高月平均增长率)3.4052
9
1.9482
6
.14212-.0466
9
-.5525
5
迭代历史记录a
聚类成员
案例号 月份
聚类
距离 d i m e n s i o n 1 1 1 .000 2 2 2 .000 3 3 3 .000 4 4 4 .208 5 6 4 .258 6 8 4 .312 7 10 4 .194 8 12 5 .297 9
15
5
.245
010185.065
11245.070
12305.112
13365.045
14425.119
15485.051
16545.103
17605.166
18665.074
19725.183
20...
21...
22...
23...
24...
25...
最终聚类中心
聚类
12345
Zscore(身高月平均增长率)3.5678
1
1.3988
3
.66153.02859-.4785
5
Zscore(体重月平均增长率)3.8115
1.1660
3
.35959-.1908
4
-.3811
5
Zscore(胸围月平均增长率)3.6923
6
1.3260
6
.58861-.2025
5
-.3997
4
Zscore(坐高月平均增长率)3.4052
9
1.9482
6
.14212-.0110
6
-.4542
9
最终聚类中心间的距离
聚类12345
1 4.407 6.3757.4428.099
2 4.407 2.236 3.146 3.830
3 6.375 2.236 1.163 1.784
47.442 3.146 1.163.727
58.099 3.830 1.784.727
ANOVA
聚类误差
F Sig.
均方df均方df
每个聚类中的案例

聚类1 1.000
2 1.000
3 1.000
4 4.000
512.000有效19.000缺失 6.000
3.线性回归
研究变量间的非确定性关系,构造变量间经验公式的数理统计方法称为回归分析。

根据自变量的个数,分为一元线性回归和多元线性回归。

3.1一元线性回归
原数据
输入/移去的变量b
模型输入的变
量移去的
变量方法
1咖啡类饮
料销售量,
固体冲泡
饮料销售
量, 茶饮
料销售量,
碳酸饮料
销售量a .输入
a. 已输入所有请求的变量。

b. 因变量: 果汁销售量
模型汇总
模型
R R 方调整 R

标准估计
的误差
1.997a.994.99
2.44012
a. 预测变量: (常量), 咖啡类饮料销售
量, 固体冲泡饮料销售量, 茶饮料销售
量, 碳酸饮料销售量。

Anova b
模型平方和df均方F Sig.
1回归338.05
6484.514436.30
6
.000a
残差 1.93710.194
总计339.99
3
14
a. 预测变量: (常量), 咖啡类饮料销售量, 固体冲泡饮料销售量, 茶饮料销售量, 碳酸饮料销售量。

b. 因变量: 果汁销售量
3.2多元线性回归原数据
输出结果:
输入/移去的变量b
模型输入的
变量移去的
变量方法
1X4, X1,
X2, X3a
.输入a. 已输入所有请求的变量。

输入/移去的变量b
模型输入的
变量移去的
变量方法
1X4, X1,
X2, X3a
.输入
a. 已输入所有请求的变量。

b. 因变量: Y
模型汇总b
模型
R R 方调整 R

标准估计
的误差
1.894a.799.726.619
a. 预测变量: (常量), X4, X1, X2, X3。

b. 因变量: Y
共线性诊断a
模型维数
特征值条件索

方差比例
(常量)X1X2X3X4
11 4.538 1.000.01.01.00.00.00
2.218 4.558.08.30.0
3.11.01
3.114 6.30
4.12.22.19.00.39
4.0927.013.67.39.07.01.19
5.03711.020.12.08.71.87.41
a. 因变量: Y
残差统计量a
极小值极大值均值标准
偏差N
预测值 1.02 4.62 2.25 1.05816残差-.743.981.000.53016标准预
测值
-1.164 2.245.000 1.00016
标准残

-1.200 1.583.000.85616 a. 因变量: Y。

相关文档
最新文档