2009【考研数二】真题及解析
考研数学二历年真题(2000-2012)

2 2
的极值.
(17)(本题满分 12 分) 过 (0,1) 点作曲线 L : y ln x 的切线,切点为 A ,又 L 与 x 轴交于 B 点,区域 D 由 L 与直线 A B 围成,求区域 D 的面积及 D 绕 x 轴旋转一周所得旋转体的体积. (18)(本题满分 10 分) 计算二重积分 xy d ,其中区域 D 为曲线 r 1 cos 0 与极轴围成.
D
(19)(本题满分 10 分) 已知函数 f ( x ) 满足方程 f ( x ) f ( x ) 2 f ( x ) 0 及 f ( x ) f ( x ) 2 e x , (I) 求 f ( x ) 的表达式; (II) 求曲线 y f ( x 2 ) f ( t 2 )d t 的拐点.
(6) 设区域 D 由曲线 y sin x , x
, y 1 围成,则 ( x y 1)d x d y
5 D
( (A) (B) 2 (C) -2 (D) -
)
0 0 1 1 (7) 设 α 1 0 , α 2 1 , α 3 1 , α 4 1 ,其中 c1 , c 2 , c 3 , c 4 为任意常数,则下列向量 c c c c 2 3 4 1
*
1 T (8)设 A , P 均为 3 阶矩阵, P 为 P 的转置矩阵,且 P A P = 0 0
T
0 1 0
0 0 ,若 2
)
T ,则 Q A Q 为( P= ( 1, 2, 3) , Q = ( 1 + 2, 2, 3)
2 A . 1 0 2 C . 0 0
2009年考研数学二试题及答案解析

2009年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 函数()3sin x x f x xπ-=的可去间断点的个数为()A 1 ()B 2 ()C 3 ()D 无穷多个 【答案】C【解析】由于()3sin x x f x xπ-=,则当x 取任何整数时,()f x 均无意义.故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±.320032113211131lim lim ,sin cos 132lim lim ,sin cos 132lim lim .sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±.(2) 当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则()A 11,6a b ==-()B 11,6a b == ()C 11,6a b =-=- ()D 11,6a b =-= 【答案】A 【解析】 22000()sin sin limlim lim ()ln(1)()x x x f x x ax x ax g x x bx x bx →→→--==-⋅- 22002301cos sin lim lim 36sin lim 1,66x x x a ax a ax bx bxa ax ab b axa→→→---==-=-⋅洛洛 36a b ∴=-,故排除,B C .另外,201cos lim3x a axbx →--存在,蕴含了1cos 0a ax -→()0x →,故 1.a =排除D .所以本题选A .(3) 设函数(),z f x y =的全微分为dz xdx ydy =+,则点()0,0()A 不是(),f x y 的连续点 ()B 不是(),f x y 的极值点()C 是(),f x y 的极大值点 ()D 是(),f x y 的极小值点 【答案】D【解析】因dz xdx ydy =+可得,z zx y x y∂∂==∂∂. 2222221,0,1z z z zA B C x x y y x y∂∂∂∂== === ==∂∂∂∂∂∂,又在()0,0处,0,0z zx y∂∂==∂∂,210AC B -=>, 故()0,0为函数(,)z f x y =的一个极小值点. (4) 设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰()A ()2411,xdx f x y dy -⎰⎰ ()B ()241,xxdx f x y dy -⎰⎰()C ()2411,ydy f x y dx -⎰⎰()D ()221,ydy f x y dx ⎰⎰ 【答案】C【解析】222211(,)(,)xxdx f x y dy dy f x y dx +⎰⎰⎰⎰的积分区域为两部分:{}1(,)12,2D x y x x y =≤≤≤≤,{}2(,)12,4D x y y y x y =≤≤≤≤-,将其写成一块{}(,)12,14D x y y x y =≤≤≤≤-, 故二重积分可以表示为2411(,)ydy f x y dx -⎰⎰,故答案为C .(5) 若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则函数()f x 在区间()1,2内()A 有极值点,无零点 ()B 无极值点,有零点()C 有极值点,有零点 ()D 无极值点,无零点 【答案】B【解析】由题意可知,()f x 是一个凸函数,即()0f x ''<,且在点(1,1)处的曲率322||12(1())y y ρ''=='+,而(1)1f '=-,由此可得,(1)2f ''=-. 在[1,2] 上,()(1)10f x f ''≤=-<,即()f x 单调减少,没有极值点. 对于(2)(1)()1(1,2)f f f ξξ'-=<- , ∈ ,(拉格朗日中值定理)(2)0f ∴ <而(1)10f =>,由零点定理知,在[1,2] 上,()f x 有零点.故应选B .(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xF x f t dt =⎰的图形为()A ()B()C ()D【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征: ①[]0,1x ∈时,()0F x ≤,且单调递减。
2009—数二真题、标准答案及解析

工
( B ) ∫1 dx ∫x
2
f ( x, y )dy .
研
( C ) ∫1 dy ∫1
【答案】C 【解析】
4− y
f ( x, y )dx .
2 2
( D ) . ∫1 dy ∫y f ( x, y )dx
2
翔 考
∫
2
1
dx ∫ f ( x, y )dy + ∫ dy ∫ f ( x, y )dx 的积分区域为两部分:
( A ) 不是 f ( x, y ) 的连续点. ( C ) 是 f ( x, y ) 的极大值点.
【答案】 D 【解析】因 dz = xdx + ydy 可得
( B ) 不是 f ( x, y ) 的极值点. ( D ) 是 f ( x, y ) 的极小值点.
AC − B 2 = 1 > 0
故(0,0)为函数 z = f ( x, y ) 的一个极小值点.
sin 4 x
梦
飞
∫
1+ x )dx ( x > 0) . x
(17) (本题满分 10 分)
∂2 z . 设 z = f ( x + y , x − y, xy ) ,其中 f 具有 2 阶连续偏导数,求 dz 与 ∂x∂y
(18) (本题满分 10 分)设非负函数 y = y ( x
曲线 y = y ( x ) 过原点时, 其与直线 x = 1 及 y = 0 围成平面区域 D 的面积为 2, 求D绕 y轴 旋转所得旋转体体积.
.
16
∫ −∞e
+∞
kx
dx = 1 ,则 k =
.
59
梦飞翔考研工作室 友情提供 QQ:81321659
2009-1987年考研数学二真题及答案

历年考研数学真题解析及复习思路(数学二)(1987-2009)考研数学命题研究组㊀编世纪高教编辑部1987年全国硕士研究生招生考试试题ʌ编者注ɔ1987年到1996年的数学试卷Ⅲ为现在的数学二.(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)设y=ln(1+ax),其中a为非零常数,则yᶄ=,yᵡ=.(2)曲线y=arctanx在横坐标为1的点处的切线方程是;法线方程是.(3)积分中值定理的条件是,结论是.(4)limnңɕn-2n+1()n=.(5)ʏfᶄ(x)dx=,ʏbafᶄ(2x)dx=.二㊁(本题满分6分)求极限limxң01x-1ex-1().三㊁(本题满分7分)设x=5(t-sint),y=5(1-cost),{求dydx,d2ydx2.四㊁(本题满分8分)计算定积分ʏ10xarcsinxdx.五㊁(本题满分8分)设D是由曲线y=sinx+1与三条直线x=0,x=π,y=0围成的曲边梯形,求D绕Ox轴旋转一周所生成的旋转体的体积.六㊁证明题(本题满分10分)(1)若f(x)在(a,b)内可导,且导数fᶄ(x)恒大于零,则f(x)在(a,b)内单调增加.(2)若g(x)在x=c处二阶导数存在,且gᶄ(c)=0,gᵡ(c)<0,则g(c)为g(x)的一个极大值.七㊁(本题满分10分)计算不定积分ʏdxa2sin2x+b2cos2x,其中a,b是不全为0的非负常数.11987年真题八㊁(本题满分10分)(1)求微分方程xdydx=x-y满足条件yx=2=0的特解.(2)求微分方程yᵡ+2yᶄ+y=xex的通解.九㊁选择题(本题共4小题,每小题4分,满分16分)(1)f(x)=xsinxecosx(-ɕ<x<+ɕ)是(㊀㊀)(A)有界函数.㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(B)单调函数.(C)周期函数.(D)偶函数.(2)函数f(x)=xsinx(㊀㊀)(A)当xңɕ时为无穷大.(B)在(-ɕ,+ɕ)内有界.(C)在(-ɕ,+ɕ)内无界.(D)当xңɕ时有有限极限.(3)设f(x)在x=a处可导,则limxң0f(a+x)-f(a-x)x等于(㊀㊀)(A)fᶄ(a).(B)2fᶄ(a).(C)0.(D)fᶄ(2a).(4)设I=tʏst0f(tx)dx,其中f(x)连续,s>0,t>0,则I的值(㊀㊀)(A)依赖于s,t.(B)依赖于s,t,x.(C)依赖于t,x,不依赖于s.(D)依赖于s,不依赖于t.十㊁(本题满分10分)在第一象限内求曲线y=-x2+1上的一点,使该点处的切线与所给曲线及两坐标轴所围成的图形面积为最小,并求此最小面积.2历年考研数学真题解析及复习思路(数学二)1988年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题4分,满分20分)(1)设f(x)=2x+a,xɤ0,ex(sinx+cosx),x>0{在(-ɕ,+ɕ)内连续,则a=.(2)设f(t)=limxңɕt1+1x()2tx,则fᶄ(t)=.(3)设f(x)连续,且ʏx3-10f(t)dt=x,则f(7)=.(4)limxң0+1xæèçöø÷tanx=.(5)ʏ40exdx=.二㊁选择题(本题共5小题,每小题4分,满分20分)(1)f(x)=13x3+12x2+6x+1的图形在点(0,1)处的切线与x轴交点的坐标是(㊀㊀)(A)-16,0().(B)(-1,0).(C)16,0().(D)(1,0).(2)若f(x)与g(x)在(-ɕ,+ɕ)上皆可导,且f(x)<g(x),则必有(㊀㊀)(A)f(-x)>g(-x).(B)fᶄ(x)<gᶄ(x).(C)limxңx0f(x)<limxңx0g(x).(D)ʏx0f(t)dt<ʏx0g(t)dt.(3)若函数y=f(x),有fᶄ(x0)=12,则当Δxң0时,该函数在x=x0处的微分dy是(㊀㊀)(A)与Δx等价的无穷小.(B)与Δx同阶的无穷小.(C)比Δx低阶的无穷小.(D)比Δx高阶的无穷小.(4)由曲线y=sin32x(0ɤxɤπ)与x轴围成的平面图形绕x轴旋转而成的旋转体的体积为(㊀㊀)(A)43.(B)43π.(C)23π2.(D)23π.(5)设函数y=f(x)是微分方程yᵡ-2yᶄ+4y=0的一个解,且f(x0)>0,fᶄ(x0)=0,则f(x)在点x0处(㊀㊀)(A)有极大值.(B)有极小值.(C)某邻域内单调增加.(D)某邻域内单调减少.31988年真题三㊁(本题共3小题,每小题5分,满分15分)(1)已知f(x)=ex2,f[φ(x)]=1-x且φ(x)ȡ0,求φ(x)并写出它的定义域.(2)已知y=1+xexy,求yᶄx=0,yᵡx=0.(3)求微分方程yᶄ+1xy=1x(x2+1)的通解(一般解).四㊁(本题满分12分)作函数y=6x2-2x+4的图形,并填写下表.单调增加区间单调减少区间极值点极值凹(ɣ)区间凸(ɘ)区间拐点渐近线五㊁(本题满分8分)将长为a的一段铁丝截成两段,一段围成正方形,另一段围成圆形,问这两段铁丝各长为多少时,正方形与圆形的面积之和为最小?六㊁(本题满分10分)设函数y=y(x)满足微分方程yᵡ-3yᶄ+2y=2ex,且其图形在点(0,1)处的切线与曲线y=x2-x+1在该点处的切线重合,求函数y=y(x).七㊁(本题满分7分)设xȡ-1,求ʏx-1(1-t)dt.八㊁(本题满分8分)设f(x)在(-ɕ,+ɕ)上有连续导数,且mɤf(x)ɤM.(1)求limaң0+14a2ʏa-a[f(t+a)-f(t-a)]dt;(2)证明:12aʏa-af(t)dt-f(x)ɤM-m(a>0).4历年考研数学真题解析及复习思路(数学二)1989年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共7小题,每小题3分,满分21分)(1)limxң0xcot2x=.(2)ʏπ0tsintdt=.(3)曲线y=ʏx0(t-1)(t-2)dt在点(0,0)处的切线方程是.(4)设f(x)=x(x+1)(x+2) (x+n),则fᶄ(0)=.(5)设f(x)是连续函数,且f(x)=x+2ʏ10f(t)dt,则f(x)=.(6)设f(x)=a+bx2,xɤ0,sinbxx,x>0{在x=0处连续,则常数a与b应满足的关系是.(7)设tany=x+y,则dy=.二㊁(本题共5小题,每小题4分,满分20分)(1)已知y=arcsine-x,求yᶄ.(2)求ʏdxxln2x.(3)求limxң0(2sinx+cosx)1x.(4)已知x=ln(1+t2),y=arctant,{求dydx,d2ydx2.(5)已知f(2)=12,fᶄ(2)=0及ʏ20f(x)dx=1,求ʏ10x2fᵡ(2x)dx.㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀三㊁选择题(本题共6小题,每小题3分,满分18分)(1)当x>0时,曲线y=xsin1x(㊀㊀)(A)有且仅有水平渐近线.(B)有且仅有铅直渐近线.(C)既有水平渐近线,也有铅直渐近线.(D)既无水平渐近线,也无铅直渐近线.(2)若3a2-5b<0,则方程x5+2ax3+3bx+4c=0(㊀㊀)(A)无实根.(B)有唯一实根.(C)有三个不同实根.(D)有五个不同实根.(3)曲线y=cosx(-π2ɤxɤπ2)与x轴所围成的图形,绕x轴旋转一周所成的旋转体的体积为(㊀㊀)(A)π2.(B)π.(C)π22.(D)π2.51989年真题(4)设两函数f(x)和g(x)都在x=a处取得极大值,则函数F(x)=f(x)g(x)在x=a处(㊀㊀)(A)必取极大值.(B)必取极小值.(C)不可能取极值.(D)是否取极值不能确定.(5)微分方程yᵡ-y=ex+1的一个特解应具有形式(式中a,b为常数)(㊀㊀)(A)aex+b.(B)axex+b.(C)aex+bx.(D)axex+bx.(6)设f(x)在点x=a的某个邻域内有定义,则f(x)在x=a处可导的一个充分条件是(㊀㊀)(A)limhң+ɕh[f(a+1h)-f(a)]存在.(B)limhң0f(a+2h)-f(a+h)h存在.(C)limhң0f(a+h)-f(a-h)2h存在.(D)limhң0f(a)-f(a-h)h存在.四㊁(本题满分6分)求微分方程xyᶄ+(1-x)y=e2x(0<x<+ɕ)满足y(1)=0的特解.五㊁(本题满分7分)设f(x)=sinx-ʏx0(x-t)f(t)dt,其中f为连续函数,求f(x).六㊁(本题满分7分)证明方程lnx=xe-ʏπ01-cos2xdx在区间(0,+ɕ)内有且仅有两个不同实根.七㊁(本题满分11分)对函数y=x+1x2填写下表.单调减少区间单调增加区间极值点极值凹区间凸区间拐点渐近线八㊁(本题满分10分)设抛物线y=ax2+bx+c过原点,当0ɤxɤ1时,yȡ0.又已知该抛物线与x轴及直线x=1所围图形的面积为13.试确定a,b,c的值,使此图形绕x轴旋转一周而成的旋转体的体积V最小.6历年考研数学真题解析及复习思路(数学二)1990年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)曲线x=cos3t,y=sin3t{上对应于t=π6处的法线方程是.(2)设y=etan1xsin1x,则yᶄ=.(3)ʏ10x1-xdx=.(4)下列两个积分的大小关系是:ʏ-1-2e-x3dxʏ-1-2ex3dx.(5)设函数f(x)=1,xɤ1,0,㊀x>1,{则函数f[f(x)]=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)已知limxңɕx2x+1-ax-b()=0,其中a,b是常数,则()(A)a=1,b=1.(B)a=-1,b=1.(C)a=1,b=-1.(D)a=-1,b=-1.(2)设函数f(x)在(-ɕ,+ɕ)上连续,则dʏf(x)dx[]等于()(A)f(x).(B)f(x)dx.(C)f(x)+C.(D)fᶄ(x)dx.(3)已知函数f(x)具有任意阶导数,且fᶄ(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是(㊀)(A)n![f(x)]n+1.(B)n[f(x)]n+1.(C)[f(x)]2n.(D)n![f(x)]2n.(4)设f(x)是连续函数,且F(x)=ʏe-xxf(t)dt,则Fᶄ(x)等于(㊀㊀)(A)-e-xf(e-x)-f(x).(B)-e-xf(e-x)+f(x).(C)e-xf(e-x)-f(x).(D)e-xf(e-x)+f(x).(5)设F(x)=f(x)x,xʂ0,f(0),x=0,{其中f(x)在x=0处可导,fᶄ(0)ʂ0,f(0)=0,则x=0是F(x)的(㊀㊀)(A)连续点.(B)第一类间断点.(C)第二类间断点.(D)连续点或间断点不能由此确定.三㊁(本题共5小题,每小题5分,满分25分)(1)已知limxңɕx+ax-a()x=9,求常数a.(2)求由方程2y-x=(x-y)ln(x-y)所确定的函数y=y(x)的微分dy.71990年真题(3)求曲线y=11+x2(x>0)的拐点.(4)计算ʏlnx(1-x)2dx.(5)求微分方程xlnxdy+(y-lnx)dx=0满足条件yx=e=1的特解.四㊁(本题满分9分)在椭圆x2a2+y2b2=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形面积为最小(其中a>0,b>0).五㊁(本题满分9分)证明:当x>0时,有不等式arctanx+1x>π2.六㊁(本题满分9分)设f(x)=ʏx1lnt1+tdt,其中x>0,求f(x)+f1x().七㊁(本题满分9分)过点P(1,0)作抛物线y=x-2的切线,该切线与上述抛物线及x轴围成一平面图形.求此平面图形绕x轴旋转一周所成旋转体的体积.八㊁(本题满分9分)求微分方程yᵡ+4yᶄ+4y=eax的通解,其中a为实数.8历年考研数学真题解析及复习思路(数学二)1991年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)设y=ln(1+3-x),则dy=.(2)曲线y=e-x2的凸区间是.(3)ʏ+ɕ1lnxx2dx=.(4)质点以速度tsin(t2)米/秒作直线运动,则从时刻t1=π2秒到t2=π秒内质点所经过的路程等于米.(5)limxң0+1-e1xx+e1x=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)若曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则(㊀㊀)(A)a=0,b=-2.(B)a=1,b=-3.(C)a=-3,b=1.(D)a=-1,b=-1.(2)设函数f(x)=x2,㊀0ɤxɤ1,2-x,1<xɤ2,{记F(x)=ʏx0f(t)dt,0ɤxɤ2,则(㊀㊀)(A)F(x)=x33,㊀㊀㊀㊀0ɤxɤ1,13+2x-x22,1<xɤ2.ìîíïïïï㊀㊀(B)F(x)=x33,㊀㊀㊀㊀㊀0ɤxɤ1,-76+2x-x22,1<xɤ2.ìîíïïïï(C)F(x)=x33,㊀㊀㊀㊀0ɤxɤ1,x33+2x-x22,1<xɤ2.ìîíïïïï(D)F(x)=x33,㊀㊀0ɤxɤ1,2x-x22,1<xɤ2.ìîíïïïï(3)设函数f(x)在(-ɕ,+ɕ)内有定义,x0ʂ0是函数f(x)的极大值点,则(㊀㊀)(A)x0必是f(x)的驻点.(B)-x0必是-f(-x)的极小值点.(C)-x0必是-f(x)的极小值点.(D)对一切x都有f(x)ɤf(x0).(4)曲线y=1+e-x21-e-x2(㊀㊀)(A)没有渐近线.(B)仅有水平渐近线.(C)仅有铅直渐近线.(D)既有水平渐近线又有铅直渐近线.(5)如图,x轴上有一线密度为常数μ,长度为l的细杆,若质量为m的质点到杆右端的距离为a,已知引力系数为k,则质点和细杆之间引力的大小为(㊀㊀)91991年真题(A)ʏ0-lkmμ(a-x)2dx.0kmμ(a-x)2x.(C)2ʏ0-l2kmμ(a+x)2dx.(D)2ʏl20kmμ(a+x)2dx.三㊁(本题共5小题,每小题5分,满分25分){求d2ydx2.(1)设x=tcost,y=tsint,(2)计算ʏ41dxx(1+x).(3)求limxң0x-sinxx2(ex-1).(4)求ʏxsin2xdx.(5)求微分方程xyᶄ+y=xex满足y(1)=1的特解.四㊁(本题满分9分)利用导数证明:当x>1时,ln(1+x)lnx>x1+x.五㊁(本题满分9分)求微分方程yᵡ+y=x+cosx的通解.六㊁(本题满分9分)曲线y=(x-1)(x-2)和x轴围成一平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.七㊁(本题满分9分)如图,A和D分别是曲线y=ex和y=e-2x上的点,AB和DC均垂直x轴,且ABʒDC=2ʒ1,AB<1,求点B和C的横坐标,使梯形ABCD的面积最大.八㊁(本题满分9分)设函数f(x)在(-ɕ,+ɕ)上满足f(x)=f(x-π)+sinx,且f(x)=x,xɪ[0,π).计算ʏ3ππf(x)dx.011992年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)设x=f(t)-π,y=f(e3t-1),{其中f可导,且fᶄ(0)ʂ0,则dydxt=0=.(2)函数y=x+2cosx在[0,π2]上的最大值为.(3)limxң01-1-x2ex-cosx=.(4)ʏ+ɕ1dxx(x2+1)=.(5)由曲线y=xex与直线y=ex所围成的图形的面积S=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)当xң0时,x-sinx是x2的(㊀㊀)(A)低阶无穷小.(B)高阶无穷小.(C)等价无穷小.(D)同阶但非等价的无穷小.(2)设f(x)=x2,㊀㊀xɤ0,x2+x,㊀x>0,{则(㊀㊀)(A)f(-x)=-x2,㊀㊀㊀xɤ0,-(x2+x),㊀x>0.{(B)f(-x)=-(x2+x),㊀x<0,-x2,㊀㊀㊀xȡ0.{(C)f(-x)=x2,㊀㊀xɤ0,x2-x,㊀x>0.{(D)f(-x)=x2-x,㊀x<0,x2,㊀㊀xȡ0.{(3)当xң1时,函数x2-1x-1e1x-1的极限(㊀㊀)(A)等于2.(B)等于0.(C)为ɕ.(D)不存在但不为ɕ.(4)设f(x)连续,F(x)=ʏx20f(t2)dt,则Fᶄ(x)等于(㊀㊀)(A)f(x4).㊀㊀㊀㊀(B)x2f(x4).㊀㊀㊀㊀(C)2xf(x4).㊀㊀㊀㊀(D)2xf(x2).(5)若f(x)的导函数是sinx,则f(x)有一个原函数为(㊀㊀)(A)1+sinx.(B)1-sinx.(C)1+cosx.(D)1-cosx.三㊁(本题共5小题,每小题5分,满分25分)(1)求limxңɕ3+x6+x()x-12.(2)设函数y=y(x)由方程y-xey=1所确定,求d2ydx2x=0的值.11(3)求ʏx31+x2dx.(4)求ʏπ01-sinxdx.(5)求微分方程(y-x3)dx-2xdy=0的通解.四㊁(本题满分9分){求ʏ31f(x-2)dx.设f(x)=1+x2,㊀xɤ0,e-x,㊀㊀x>0,五㊁(本题满分9分)求微分方程yᵡ-3yᶄ+2y=xex的通解.六㊁(本题满分9分)计算曲线y=ln(1-x2)上相应于0ɤxɤ12的一段弧的长度.七㊁(本题满分9分)求曲线y=x的一条切线l,使该曲线与切线l及直线x=0,x=2所围成的平面图形面积最小.八㊁(本题满分9分)已知fᵡ(x)<0,f(0)=0,证明对任何x1>0,x2>0,有f(x1+x2)<f(x1)+f(x2).211993年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)limxң0+xlnx=.(2)函数y=y(x)由方程sin(x2+y2)+ex-xy2=0所确定,则dydx=.(3)设F(x)=ʏx12-1tæèçöø÷dt(x>0),则函数F(x)的单调减少区间是.(4)ʏtanxcosxdx=.(5)已知曲线y=f(x)过点(0,-12),且其上任一点(x,y)处的切线斜率为xln(1+x2),则f(x)=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)当xң0时,变量1x2sin1x是(㊀㊀)(A)无穷小.㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(B)无穷大.(C)有界的,但不是无穷小.㊀㊀㊀㊀㊀㊀㊀㊀(D)无界的,但不是无穷大.(2)设f(x)=x2-1x-1,㊀xʂ1,2,㊀㊀㊀㊀x=1,{则在点x=1处函数f(x)(㊀㊀)(A)不连续.(B)连续,但不可导.(C)可导,但导数不连续.(D)可导,且导数连续.(3)已知f(x)=x2,0ɤx<1,1,1ɤxɤ2,{设F(x)=ʏx1f(t)dt(0ɤxɤ2),则F(x)为(㊀㊀)(A)13x3,㊀0ɤx<1,x,㊀㊀1ɤxɤ2.{(B)13x3-13,0ɤx<1,x,㊀㊀㊀1ɤxɤ2.{(C)13x3,0ɤx<1,x-1,1ɤxɤ2.{(D)13x3-13,0ɤx<1,x-1,㊀1ɤxɤ2.{(4)设常数k>0,函数f(x)=lnx-xe+k在(0,+ɕ)内的零点个数为(㊀㊀)(A)3.㊀㊀㊀㊀㊀㊀㊀(B)2.㊀㊀㊀㊀㊀㊀㊀(C)1.㊀㊀㊀㊀㊀㊀㊀(D)0.(5)若f(x)=-f(-x),在(0,+ɕ)内fᶄ(x)>0,fᵡ(x)>0,则f(x)在(-ɕ,0)内(㊀㊀)(A)fᶄ(x)<0,fᵡ(x)<0.(B)fᶄ(x)<0,fᵡ(x)>0.(C)fᶄ(x)>0,fᵡ(x)<0.(D)fᶄ(x)>0,fᵡ(x)>0.31三㊁(本题共5小题,每小题5分,满分25分)(1)设y=sin[f(x2)],其中f具有二阶导数,求d2ydx2.(2)求limxң-ɕx(x2+100+x).(3)求ʏπ40x1+cos2xdx.(4)求ʏ+ɕ0x(1+x)3dx.(5)求微分方程(x2-1)dy+(2xy-cosx)dx=0满足初值条件y(0)=1的特解.四㊁(本题满分9分)设二阶常系数线性微分方程yᵡ+αyᶄ+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解.五㊁(本题满分9分)设平面图形A由x2+y2ɤ2x与yȡx所确定,求图形A绕直线x=2旋转一周所得旋转体的体积.六㊁(本题满分9分)作半径为r的球的外切正圆锥,问此圆锥的高h为何值时,其体积V最小,并求出该最小值.七㊁(本题满分9分)设x>0,常数a>e.证明:(a+x)a<aa+x.八㊁(本题满分9分)设fᶄ(x)在[0,a]上连续,且f(0)=0,证明:ʏa0f(x)dxɤMa22,其中M=max0ɤxɤafᶄ(x).411994年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)若f(x)=sin2x+e2ax-1x,xʂ0,a,㊀㊀㊀㊀㊀㊀x=0{在(-ɕ,+ɕ)上连续,则a=.(2)设函数y=y(x)由参数方程x=t-ln(1+t),y=t3+t2{所确定,则d2ydx2=.(3)ddxʏcos3x0f(t)dt()=.(4)ʏx3ex2dx=.(5)微分方程ydx+(x2-4x)dy=0的通解为.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设limxң0ln(1+x)-(ax+bx2)x2=2,则(㊀㊀)(A)a=1,b=-52.(B)a=0,b=-2.(C)a=0,b=-52.(D)a=1,b=-2.(2)设f(x)=23x3,xɤ1,x2,㊀x>1,{则f(x)在点x=1处的(㊀㊀)(A)左㊁右导数都存在.(B)左导数存在,但右导数不存在.(C)左导数不存在,但右导数存在.(D)左㊁右导数都不存在.(3)设y=f(x)是满足微分方程yᵡ+yᶄ-esinx=0的解,且fᶄ(x0)=0,则f(x)在(㊀㊀)(A)x0的某个邻域内单调增加.(B)x0的某个邻域内单调减少.(C)x0处取得极小值.(D)x0处取得极大值.(4)曲线y=e1x2arctanx2+x+1(x-1)(x+2)的渐近线有(㊀㊀)(A)1条.㊀㊀㊀㊀㊀㊀(B)2条.㊀㊀㊀㊀㊀㊀(C)3条.㊀㊀㊀㊀㊀㊀(D)4条.(5)设M=ʏπ2-π2sinx1+x2cos4xdx,N=ʏπ2-π2(sin3x+cos4x)dx,P=ʏπ2-π2(x2sin3x-cos4x)dx,则有(㊀㊀)(A)N<P<M.(B)M<P<N.(C)N<M<P.(D)P<M<N.51三㊁(本题共5小题,每小题5分,满分25分)(1)设y=f(x+y),其中f具有二阶导数,且其一阶导数不等于1,求d2ydx2.(2)计算ʏ10x(1-x4)32dx.(3)计算limnңɕtannπ4+2n().(4)计算ʏdxsin2x+2sinx.(5)如图,设曲线方程为y=x2+12,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:DD1<32.四㊁(本题满分9分)设当x>0时,方程kx+1x2=1有且仅有一个解,求k的取值范围.五㊁(本题满分9分)设y=x3+4x2,(1)求函数的增减区间及极值;(2)求函数图形的凹凸区间及拐点;(3)求其渐近线;(4)作出其图形.六㊁(本题满分9分)求微分方程yᵡ+a2y=sinx的通解,其中常数a>0.七㊁(本题满分9分)设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,ʏλ0f(x)dxȡλʏ10f(x)dx.八㊁(本题满分9分)求曲线y=3-x2-1与x轴围成的封闭图形绕直线y=3旋转所得的旋转体体积.611995年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)设y=cos(x2)sin21x,则yᶄ=.(2)微分方程yᵡ+y=-2x的通解为.(3)曲线x=1+t2,y=t3{在t=2处的切线方程为.(4)limnңɕ1n2+n+1+2n2+n+2+ +nn2+n+n()=.(5)曲线y=x2e-x2的渐近线方程为.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设f(x)和φ(x)在(-ɕ,+ɕ)上有定义,f(x)为连续函数,且f(x)ʂ0,φ(x)有间断点,则(㊀㊀)(A)φ[f(x)]必有间断点.(B)[φ(x)]2必有间断点.(C)f[φ(x)]必有间断点.(D)φ(x)f(x)必有间断点.(2)曲线y=x(x-1)(2-x)与x轴所围图形的面积可表示为(㊀㊀)(A)-ʏ20x(x-1)(2-x)dx.(B)ʏ10x(x-1)(2-x)dx-ʏ21x(x-1)(2-x)dx.(C)-ʏ10x(x-1)(2-x)dx+ʏ21x(x-1)(2-x)dx.(D)ʏ20x(x-1)(2-x)dx.(3)设f(x)在(-ɕ,+ɕ)内可导,且对任意x1,x2,当x1>x2时,都有f(x1)>f(x2),则(㊀㊀)(A)对任意x,fᶄ(x)>0.(B)对任意x,fᶄ(-x)ɤ0.(C)函数f(-x)单调增加.(D)函数-f(-x)单调增加.(4)设函数f(x)在[0,1]上fᵡ(x)>0,则fᶄ(1),fᶄ(0),f(1)-f(0)或f(0)-f(1)的大小顺序是(㊀㊀)(A)fᶄ(1)>fᶄ(0)>f(1)-f(0).(B)fᶄ(1)>f(1)-f(0)>fᶄ(0).(C)f(1)-f(0)>fᶄ(1)>fᶄ(0).(D)fᶄ(1)>f(0)-f(1)>fᶄ(0).(5)设f(x)可导,F(x)=f(x)(1+sinx).若F(x)在x=0处可导,则必有(㊀㊀)(A)f(0)=0.(B)fᶄ(0)=0.(C)f(0)+fᶄ(0)=0.(D)f(0)-fᶄ(0)=0.71三㊁(本题共6小题,每小题5分,满分30分)(1)求limxң0+1-cosxx(1-cosx).(2)设函数y=y(x)由方程xef(y)=ey确定,其中f具有二阶导数,且fᶄʂ1,求d2ydx2.(3)设f(x2-1)=lnx2x2-2,且f[φ(x)]=lnx,求ʏφ(x)dx.(4)设f(x)=xarctan1x2,xʂ0,0,㊀㊀㊀x=0,{试讨论fᶄ(x)在x=0处的连续性.(5)求摆线x=1-cost,y=t-sint{一拱(0ɤtɤ2π)的弧长S.(6)设单位质点在水平面内作直线运动,初速度vt=0=v0.已知阻力与速度成正比(比例常数为1),问t为多少时此质点的速度为v03?并求到此时刻该质点所经过的路程.四㊁(本题满分8分)求函数f(x)=ʏx20(2-t)e-tdt的最大值和最小值.五㊁(本题满分8分)设y=ex是微分方程xyᶄ+p(x)y=x的一个解,求此微分方程满足条件yx=ln2=0的特解.六㊁(本题满分8分)如图,设曲线L的方程为y=f(x),且yᵡ>0.又MT,MP分别为该曲线在点M(x0,y0)处的切线和法线.已知线段MP的长度为(1+yᶄ20)32yᵡ0(其中yᶄ0=yᶄ(x0),yᵡ0=yᵡ(x0)),试推导出点P(ξ,η)的坐标表达式.七㊁(本题满分8分)设f(x)=ʏx0sintπ-tdt,计算ʏπ0f(x)dx.八㊁(本题满分8分)设limxң0f(x)x=1,且fᵡ(x)>0,证明f(x)ȡx.811996年全国硕士研究生招生考试试题(试卷Ⅲ)一㊁填空题(本题共5小题,每小题3分,满分15分)(1)设y=(x+e-x2)23,则yᶄx=0=.(2)ʏ1-1(x+1-x2)2dx=.(3)微分方程yᵡ+2yᶄ+5y=0的通解为.(4)limxңɕxsinln1+3x()-sinln1+1x()[]=.(5)由曲线y=x+1x,x=2及y=2所围图形的面积S=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设当xң0时,ex-(ax2+bx+1)是比x2高阶的无穷小,则(㊀㊀)(A)a=12,b=1.㊀㊀(B)a=1,b=1.㊀㊀(C)a=-12,b=-1.㊀㊀(D)a=-1,b=1.(2)设函数f(x)在区间(-δ,δ)内有定义,若当xɪ(-δ,δ)时,恒有f(x)ɤx2,则x=0必是f(x)的(㊀㊀)(A)间断点.(B)连续而不可导的点.(C)可导的点,且fᶄ(0)=0.(D)可导的点,且fᶄ(0)ʂ0.(3)设f(x)处处可导,则(㊀㊀)(A)当limxң-ɕf(x)=-ɕ,必有limxң-ɕfᶄ(x)=-ɕ.(B)当limxң-ɕfᶄ(x)=-ɕ,必有limxң-ɕf(x)=-ɕ.(C)当limxң+ɕf(x)=+ɕ,必有limxң+ɕfᶄ(x)=+ɕ.(D)当limxң+ɕfᶄ(x)=+ɕ,必有limxң+ɕf(x)=+ɕ.(4)在区间(-ɕ,+ɕ)内,方程x14+x12-cosx=0(㊀㊀)(A)无实根.(B)有且仅有一个实根.(C)有且仅有两个实根.(D)有无穷多个实根.(5)设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m(m为常数),由曲线y=g(x),y=f(x),x=a及x=b所围平面图形绕直线y=m旋转而成的旋转体体积为(㊀㊀)(A)ʏbaπ[2m-f(x)+g(x)][f(x)-g(x)]dx.(B)ʏbaπ[2m-f(x)-g(x)][f(x)-g(x)]dx.(C)ʏbaπ[m-f(x)+g(x)][f(x)-g(x)]dx.(D)ʏbaπ[m-f(x)-g(x)][f(x)-g(x)]dx.91三㊁(本题共6小题,每小题5分,满分30分)(1)计算ʏln201-e-2xdx.(2)求ʏdx1+sinx.(3)设x=ʏt0f(u2)du,y=[f(t2)]2,{其中f(u)具有二阶导数,且f(u)ʂ0,求d2ydx2.(4)求函数f(x)=1-x1+x在点x=0处带拉格朗日型余项的n阶泰勒展开式.(5)求微分方程yᵡ+yᶄ=x2的通解.(6)设有一正椭圆柱体,其底面的长㊁短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角0<α<π2()的平面截此柱体,得一楔形体(如图),求此楔形体的体积V.四㊁(本题满分8分)计算不定积分ʏarctanxx2(1+x2)dx.㊀㊀㊀㊀㊀㊀㊀㊀五㊁(本题满分8分)设函数f(x)=1-2x2,x<-1,㊀㊀x3,㊀㊀-1ɤxɤ2,12x-16,x>2.㊀㊀ìîíïïï(1)写出f(x)的反函数g(x)的表达式;(2)g(x)是否有间断点㊁不可导点,若有,指出这些点.六㊁(本题满分8分)设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判别它是否为极值点.七㊁(本题满分8分)设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b)=0,fᶄ(a)fᶄ(b)>0.证明:存在ξɪ(a,b)和ηɪ(a,b),使f(ξ)=0及fᵡ(η)=0.八㊁(本题满分8分)设f(x)为连续函数,(1)求初值问题yᶄ+ay=f(x),yx=0=0{的解y(x),其中a是正常数;(2)若f(x)ɤk(k为常数),证明:当xȡ0时,有y(x)ɤka(1-e-ax).021997年全国硕士研究生招生考试试题一㊁填空题(本题共5小题,每小题3分,满分15分)(1)已知函数f(x)=(cosx)x-2,xʂ0,a,㊀㊀㊀x=0{在x=0处连续,则a=.(2)设y=ln1-x1+x2,则yᵡx=0=.(3)ʏdxx(4-x)=.(4)ʏ+ɕ0dxx2+4x+8=.(5)已知向量组α1=(1,2,-1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设xң0时,etanx-ex与xn是同阶无穷小,则n为(㊀㊀)(A)1.㊀㊀㊀㊀㊀㊀㊀㊀(B)2.㊀㊀㊀㊀㊀㊀㊀㊀(C)3.㊀㊀㊀㊀㊀㊀㊀㊀(D)4.(2)设在闭区间[a,b]上f(x)>0,fᶄ(x)<0,fᵡ(x)>0.记S1=ʏbaf(x)dx,S2=f(b)(b-a),S3=12[f(a)+f(b)](b-a),则(㊀㊀)(A)S1<S2<S3.(B)S2<S1<S3.(C)S3<S1<S2.(D)S2<S3<S1.(3)已知函数y=f(x)对一切x满足xfᵡ(x)+3x[fᶄ(x)]2=1-e-x,若fᶄ(x0)=0(x0ʂ0),则(㊀㊀)(A)f(x0)是f(x)的极大值.(B)f(x0)是f(x)的极小值.(C)(x0,f(x0))是曲线y=f(x)的拐点.(D)f(x0)不是f(x)的极值,(x0,f(x0))也不是曲线y=f(x)的拐点.(4)设F(x)=ʏx+2πxesintsintdt,则F(x)(㊀㊀)(A)为正常数.(B)为负常数.(C)恒为零.(D)不为常数.(5)设函数g(x)=2-x,㊀xɤ0,x+2,㊀x>0,{f(x)=x2,㊀x<0,-x,㊀xȡ0,{则g[f(x)]=(㊀㊀)(A)2+x2,㊀x<0,2-x,㊀㊀xȡ0.{(B)2-x2,㊀x<0,2+x,㊀㊀xȡ0.{(C)2-x2,㊀x<0,2-x,㊀㊀xȡ0.{(D)2+x2,㊀x<0,2+x,㊀㊀xȡ0.{三㊁(本题共6小题,每小题5分,满分30分)(1)求极限limxң-ɕ4x2+x-1+x+1x2+sinx.12(2)设函数y=y(x)由x=arctant,2y-ty2+et=5{所确定,求dydx.(3)计算ʏe2x(tanx+1)2dx.(4)求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.(5)已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.(6)已知矩阵A=11-101100-1æèççöø÷÷,且A2-AB=E,其中E是3阶单位矩阵,求矩阵B.四㊁(本题满分8分)λ取何值时,方程组2x1+λx2-x3=1,λx1-x2+x3=2,4x1+5x2-5x3=-1ìîíïïï无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.五㊁(本题满分8分)设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.六㊁(本题满分8分)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xfᶄ(x)=f(x)+3a2x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.七㊁(本题满分8分)设函数f(x)连续,φ(x)=ʏ10f(xt)dt,且limxң0f(x)x=A(A为常数),求φᶄ(x)并讨论φᶄ(x)在x=0处的连续性.八㊁(本题满分8分)就k的不同取值情况,确定方程x-π2sinx=k在开区间(0,π2)内根的个数,并证明你的结论.221998年全国硕士研究生招生考试试题一㊁填空题(本题共5小题,每小题3分,满分15分)(1)limxң01+x+1-x-2x2=.(2)曲线y=-x3+x2+2x与x轴所围成的图形的面积A=.(3)ʏln(sinx)sin2xdx=.(4)设f(x)连续,则ddxʏx0tf(x2-t2)dt=.(5)曲线y=xlne+1x()(x>0)的渐近线方程为.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设数列{xn}与{yn}满足limnңɕxnyn=0,则下列断言正确的是(㊀㊀)(A)若{xn}发散,则{yn}必发散.(B)若{xn}无界,则{yn}必有界.(C)若{xn}有界,则{yn}必为无穷小.(D)若1xn{}为无穷小,则{yn}必为无穷小.(2)函数f(x)=(x2-x-2)x3-x的不可导点的个数为(㊀㊀)(A)0.(B)1.(C)2.(D)3.(3)已知函数y=y(x)在任意点x处的增量Δy=yΔx1+x2+α,其中α是比Δx(Δxң0)高阶的无穷小,且y(0)=π,则y(1)=(㊀㊀)(A)πeπ4.(B)2π.(C)π.(D)eπ4.(4)设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当xɪ(a-δ,a+δ)时,必有(㊀㊀)(A)(x-a)[f(x)-f(a)]ȡ0.(B)(x-a)[f(x)-f(a)]ɤ0.(C)limtңaf(t)-f(x)(t-x)2ȡ0(xʂa).(D)limtңaf(t)-f(x)(t-x)2ɤ0(xʂa).(5)设A是任一n(nȡ3)阶方阵,A∗是其伴随矩阵,又k为常数,且kʂ0,ʃ1,则必有(kA)∗=(㊀㊀)(A)kA∗.(B)kn-1A∗.(C)knA∗.(D)k-1A∗.三㊁(本题满分5分)求函数f(x)=(1+x)xtan(x-π4)在区间(0,2π)内的间断点,并判断其类型.32四㊁(本题满分5分)确定常数a,b,c的值,使limxң0ax-sinxʏxbln(1+t3)tdt=c(cʂ0).五㊁(本题满分5分)利用代换y=ucosx将方程yᵡcosx-2yᶄsinx+3ycosx=ex化简,并求出原方程的通解.六㊁(本题满分6分)计算积分ʏ3212dxx-x2.七㊁(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始垂直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y与v所满足的微分方程,并求出函数关系式y=y(v).八㊁(本题满分8分)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0ɪ(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;(2)又设f(x)在区间(0,1)内可导,且fᶄ(x)>-2f(x)x,证明(1)中的x0是惟一的.九㊁(本题满分8分)设有曲线y=x-1,过原点作其切线,求由此曲线㊁切线及x轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.十㊁(本题满分8分)设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为11+yᶄ2,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值.十一㊁(本题满分8分)设xɪ(0,1),证明:(1)(1+x)ln2(1+x)<x2;42(2)1ln2-1<1ln(1+x)-1x<12.十二㊁(本题满分5分)设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,B=12-3-2012-300120001æèççççöø÷÷÷÷,㊀㊀C=1㊀2㊀0㊀10㊀1㊀2㊀00㊀0㊀1㊀20㊀0㊀0㊀1æèççççöø÷÷÷÷.求A.十三㊁(本题满分6分)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.521999年全国硕士研究生招生考试试题一㊁填空题(本题共5小题,每小题3分,满分15分)(1)曲线x=etsin2ty=etcost{在点(0,1)处的法线方程为.(2)设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则dydxx=0=㊀㊀㊀.(3)ʏx+5x2-6x+13dx=.(4)函数y=x21-x2在区间12,32[]上的平均值为.(5)微分方程yᵡ-4y=e2x的通解为.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设f(x)=1-cosxx,x>0,x2g(x),xɤ0,{其中g(x)是有界函数,则f(x)在x=0处(㊀㊀)(A)极限不存在.(B)极限存在,但不连续.(C)连续,但不可导.(D)可导.(2)设α(x)=ʏ5x0sinttdt,β(x)=ʏsinx0(1+t)1tdt,则当xң0时,α(x)是β(x)的(㊀㊀)(A)高阶无穷小.(B)低阶无穷小.(C)同阶但不等价的无穷小.(D)等价无穷小.(3)设f(x)是连续函数,F(x)是f(x)的原函数,则(㊀㊀)(A)当f(x)是奇函数时,F(x)必是偶函数.(B)当f(x)是偶函数时,F(x)必是奇函数.(C)当f(x)是周期函数时,F(x)必是周期函数.(D)当f(x)是单调增函数时,F(x)必是单调增函数.(4) 对任意给定的εɪ(0,1),总存在正整数N,当nȡN时,恒有xn-aɤ2ε 是数列{xn}收敛于a的(㊀㊀)(A)充分条件但非必要条件.(B)必要条件但非充分条件.(C)充分必要条件.(D)既非充分条件又非必要条件.(5)记行列式x-2x-1x-2x-32x-22x-12x-22x-33x-33x-24x-53x-54x4x-35x-74x-3为f(x),则方程f(x)=0的根的个数为(㊀㊀)(A)1.㊀㊀(B)2.㊀㊀(C)3.㊀㊀(D)4.62三㊁(本题满分5分)求limxң01+tanx-1+sinxxln(1+x)-x2.四㊁(本题满分6分)计算ʏ+ɕ1arctanxx2dx.五㊁(本题满分7分)求初值问题(y+x2+y2)dx-xdy=0(x>0),yx=1=0{的解.六㊁(本题满分7分)为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口,已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s.在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功?(说明:①1Nˑ1m=1J;m,N,s,J分别表示米,牛顿,秒,焦耳.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)七㊁(本题满分8分)已知函数y=x3(x-1)2,求(1)函数的增减区间及极值;(2)函数图形的凹凸区间及拐点;(3)函数图形的渐近线.八㊁(本题满分8分)设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fᶄ(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f‴(ξ)=3.九㊁(本题满分8分)设函数y(x)(xȡ0)二阶可导,且yᶄ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1,求此曲线y=y(x)的方程.72十㊁(本题满分7分)设f(x)是区间[0,+ɕ)上单调减少且非负的连续函数,an= nk=1f(k)-ʏn1f(x)dx(n=1,2, ),证明数列{an}的极限存在.十一㊁(本题满分6分)设矩阵A=11-1-1111-11æèççöø÷÷,矩阵X满足A∗X=A-1+2X,其中A∗是A的伴随矩阵,求矩阵X.十二㊁(本题满分8分)设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T.(1)p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表示;(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.822000年全国硕士研究生招生考试试题一㊁填空题(本题共5小题,每小题3分,满分15分)(1)limxң0arctanx-xln(1+2x3)=.(2)设函数y=y(x)由方程2xy=x+y所确定,则dyx=0=.(3)ʏ+ɕ2dx(x+7)x-2=.(4)曲线y=(2x-1)e1x的斜渐近线方程为.(5)设A=1000-23000-45000-67æèççççöø÷÷÷÷,E为4阶单位矩阵,且B=(E+A)-1(E-A),则(E+B)-1=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设函数f(x)=xa+ebx在(-ɕ,+ɕ)内连续,且limxң-ɕf(x)=0,则常数a,b满足(㊀㊀)(A)a<0,b<0.(B)a>0,b>0.(C)aɤ0,b>0.(D)aȡ0,b<0.(2)设函数f(x)满足关系式fᵡ(x)+[fᶄ(x)]2=x,且fᶄ(0)=0,则(㊀㊀)(A)f(0)是f(x)的极大值.(B)f(0)是f(x)的极小值.(C)点(0,f(0))是曲线y=f(x)的拐点.(D)f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点.(3)设函数f(x),g(x)是大于零的可导函数,且fᶄ(x)g(x)-f(x)gᶄ(x)<0,则当a<x<b时,有(㊀㊀)(A)f(x)g(b)>f(b)g(x).(B)f(x)g(a)>f(a)g(x).(C)f(x)g(x)>f(b)g(b).(D)f(x)g(x)>f(a)g(a).(4)若limxң0sin6x+xf(x)x3=0,则limxң06+f(x)x2为(㊀㊀)(A)0.㊀㊀(B)6.㊀㊀(C)36.㊀㊀(D)ɕ.(5)具有特解y1=e-x,y2=2xe-x,y3=3ex的3阶常系数齐次线性微分方程是(㊀㊀)(A)y‴-yᵡ-yᶄ+y=0.(B)y‴+yᵡ-yᶄ-y=0.(C)y‴-6yᵡ+11yᶄ-6y=0.(D)y‴-2yᵡ-yᶄ+2y=0.三㊁(本题满分5分)设f(lnx)=ln(1+x)x,计算ʏf(x)dx.92四㊁(本题满分5分)设xOy平面上有正方形D={(x,y)0ɤxɤ1,0ɤyɤ1}及直线l:x+y=t(tȡ0).若S(t)表示正方形D位于直线l左下方部分的面积,试求ʏx0S(t)dt(xȡ0).五㊁(本题满分5分)求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n)(0)(nȡ3).六㊁(本题满分6分)设函数S(x)=ʏx0costdt,(1)当n为正整数,且nπɤx<(n+1)π时,证明:2nɤS(x)<2(n+1);(2)求limxң+ɕS(x)x.七㊁(本题满分7分)某湖泊的水量为V,每年排入湖泊内含污染物A的污水量为V6,流入湖泊内不含A的水量为V6,流出湖泊的水量为V3.已知1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初起,限定排入湖泊中含A污水的浓度不超过m0V.问至多需经过多少年,湖泊中污染物A的含量才可降至m0以内?(注:设湖水中A的浓度是均匀的).八㊁(本题满分6分)设函数f(x)在[0,π]上连续,且ʏπ0f(x)dx=0,ʏπ0f(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.九㊁(本题满分7分)已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当xң0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.十㊁(本题满分8分)设曲线y=ax2(a>0,xȡ0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?十一㊁(本题满分8分)函数f(x)在[0,+ɕ)上可导,f(0)=1,且满足等式03历年考研数学真题解析及复习思路(数学二)fᶄ(x)+f(x)-1x+1ʏx0f(t)dt=0.(1)求导数fᶄ(x);(2)证明:当xȡ0时,不等式e-xɤf(x)ɤ1成立.十二㊁(本题满分6分)设α=121æèççöø÷÷,β=1120æèççççöø÷÷÷÷,γ=008æèççöø÷÷,A=αβT,B=βTα,其中βT是β的转置,求解方程2B2A2x=A4x+B4x+γ.十三㊁(本题满分7分)已知向量组β1=01-1æèççöø÷÷,β2=a21æèççöø÷÷,β3=b10æèççöø÷÷与向量组α1=12-3æèççöø÷÷,α2=301æèççöø÷÷,α3=96-7æèççöø÷÷具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.132000年真题2001年全国硕士研究生招生考试试题一㊁填空题(本题共5小题,每小题3分,满分15分)(1)limxң13-x-1+xx2+x-2=.(2)设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为.(3)ʏπ2-π2(x3+sin2x)cos2xdx=.(4)过点(12,0)且满足关系式yᶄarcsinx+y1-x2=1的曲线方程为.(5)设方程组a㊀1㊀11㊀a㊀11㊀1㊀aæèççöø÷÷x1x2x3æèçççöø÷÷÷=11-2æèççöø÷÷有无穷多解,则a=.二㊁选择题(本题共5小题,每小题3分,满分15分)(1)设f(x)=1,㊀xɤ1,0,㊀x>1,{则f{f[f(x)]}等于(㊀㊀)(A)0.㊀㊀㊀㊀㊀(B)1.㊀㊀㊀㊀㊀(C)1,㊀xɤ1,0,㊀x>1.{㊀㊀㊀㊀㊀(D)0,㊀xɤ1,1,㊀x>1.{(2)设当xң0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,xsinxn是比ex2-1高阶的无穷小,则正整数n等于(㊀㊀)(A)1.(B)2.(C)3.(D)4.(3)曲线y=(x-1)2(x-3)2的拐点个数为(㊀㊀)(A)0.(B)1.(C)2.(D)3.(4)已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,fᶄ(x)严格单调减少,且f(1)=fᶄ(1)=1,则(㊀㊀)(A)在(1-δ,1)和(1,1+δ)内均有f(x)<x.(B)在(1-δ,1)和(1,1+δ)内均有f(x)>x.(C)在(1-δ,1)内,f(x)<x,在(1,1+δ)内,f(x)>x.(D)在(1-δ,1)内,f(x)>x,在(1,1+δ)内,f(x)<x.(5)已知函数y=f(x)在其定义域内可导,它的图形如右图所示,则其导函数y=fᶄ(x)的图形为(㊀㊀)23历年考研数学真题解析及复习思路(数学二)三㊁(本题满分6分)求ʏdx(2x2+1)x2+1.四㊁(本题满分7分)求极限limtңxsintsinx()xsint-sinx,记此极限为f(x),求函数f(x)的间断点并指出其类型.五㊁(本题满分7分)设ρ=ρ(x)是抛物线y=x上任一点M(x,y)(xȡ1)处的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算3ρd2ρds2-dρds()2的值.(在直角坐标系下曲率公式为K=yᵡ(1+yᶄ2)32.)六㊁(本题满分7分)设函数f(x)在[0,+ɕ)上可导,f(0)=0,且其反函数为g(x).若ʏf(x)0g(t)dt=x2ex,求f(x).七㊁(本题满分7分)设函数f(x),g(x)满足fᶄ(x)=g(x),gᶄ(x)=2ex-f(x),且f(0)=0,g(0)=2,求ʏπ0g(x)1+x-f(x)(1+x)2[]dx.八㊁(本题满分9分)设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点(12,0).(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.九㊁(本题满分7分)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程332001年真题。
2009年数二真题、标准答案及解析

B 不是 f x, y 的极值点.
D 是 f x, y 的极小值点.
dx f x, y dy dy
x 1 2 2 4 y y
2
1
f x, y dx (
)
A 1 dx 1
2
2
4 x
f x, y dy . f x, y dx .
a 3 6b
故排除 B, C .
lim
a 2 sin ax a3 1 x 0 6b 6b ax a
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -5-
另外 lim
1 a cos ax 存在,蕴含了 1 a cos ax 0 x 0 故 a 1. 排除 D . x 0 3bx 2
(10)已知
.
e
1 x
+
kx
dx 1 ,则 k
.
y
.
(11) lim
n 0
e
sin nxdx
2 y (12)设 y y ( x ) 是由方程 xy e x 1 确定的隐函数,则 2 x
(13)函数 y x 在区间 0, 1 上的最小值为
2x
B 2.
C 3.
2
D 无穷多个.
)
(2)当 x 0 时, f x x sin ax 与 g x x ln 1 bx 是等价无穷小,则(
A a 1, b
1 . 6
B a 1, b
1 . 6
C a 1, b
故可去间断点为 3 个,即 0, 1 (2)当 x 0 时, f x x sin ax 与 g x x ln 1 bx 是等价无穷小,则(
2009年全国硕士研究生入学考试数学二真题及答案

,
) 的光滑曲线,当
22
x 0 时,曲线上任一点处的发现都过原点,当 0 x 时,函数 y(x)满足
y y x 0 。求 y(x)的表达式。
(21)(本题满分 11 分)(I)证明拉格朗日中值定理:若函数 f (x) 在[a,b]上连续,在(a,b)
可导,则存在 (a,b) ,使得 f (b) f (a) f ( )(b a) 。(II)证明:若函数 f (x) 在 x=0
(A)
0 2 A
3B
0
(B)
0 3 A
2B
0
(C)
0 2B
3A
0
(D)
0 3B
2 A
0
100
(8)设
A,P
均为
3
阶矩阵,
PT
为
P
的转置矩阵,且
PT
AP=
010
,若
002
P (1,2,3),Q (1 2,2,3) ,则 QT AQ 为()
由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)
tan
x)]
(16)(本题满分 10 分)计算不定积分 ln(1 1 x )dx(x 0)
x
(17)(本题满分 10 分)设 z f (x y, x y, xy) ,其中 f 具有 2 阶连续偏导数,求 dz 与
2z xy
(18)(本题满分 10 分)设非负函数 y=y(x)(x 0),满足微分方程 xy y 2 0 ,当曲线
(23)(本题满分 11 分)设二次型 f (x1, x2, x3) ax12 ax22 (a 1)x32 2x1x3 2x2x3
(I)求二次型 f 的矩阵的所有特征值;(II)若二次型 f 的规范形为 y12 y22 ,求 a 的值。
1987-2009考研数学二真题【共58页】(可直接打印)

)
(A)
lim
h---++oo
h
[J(a
+ — 1h )
-f(a)]存在.
(B) lim J(a 曰
+ 2h) -f(a
1
+ h)存在.
(C) 四 f(a + h)�勹 f(a - h)存在.
(D) 四f(a) -�(a - h)存在.
四、(本题满分6分) 求微分方程xy'+ (1 - X)y=产(O <x <+oo)满足y(l)=0的特解
+
2 l
=
,结论是
.
(5) ff'(x)dx =
, ff'(2x)dx =
.
二、(本题满分6分)
1). 求极限lim( x----t()
1 了-
ex
1
-
三、(本题满分7分)
设{ x =
y=
5 5
(t (1
-
sin t), cos t),
求d少x'心 dx2 ·
r。 四、(本题满分8分)
计算定积分 xarcsin xdx.
1987年全国硕士研究生招生考试试题
(试卷皿)
-、填空题(本题共5小题,每小题3分,满分15分)
(1)设y= In(1 + ax),其中a为非零常数,则y'=
,y"=
(2)曲线y= arctan x在横坐标为1的点处的切线方程是
;法线方程是
.
r (3)积分中值定理的条件是
(4)
lim
n--+oc
(nn
(2)求山方程 2y -x=(x -y)ln(x -y)所确定的 函数y=y(x)的微分 dy. 7
2009考研数学二真题及答案

2009考研数学二真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3sin x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==.()C 11,6a b =-=-.()D 11,6a b =-=.【答案】 A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C 。
另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年全国硕士研究生入学统一考试数学二试题一、选择题:1〜8小题,每小题4分,共32分,下列每小题给出的四个选项中 合题目要求的,把所选项前的字母填在答题纸指定位置上 .3X _ X函数f (X )=—的可去间断点的个数为sin Ji x设函数Z = f (X, y )的全微分为 dz = xdx + ydy ,则点(0,0 )设函数 f (X, y )连续,则[dx Jx f (X,y dy +[ dy. f (x,y )dx = ()"(X )不变号,且曲线y = f (X )在点(1,1)处的曲率圆为X 2+y 2=2,则函数f ( X )在区间(1,2 )内(A)有极值点,无零点. (B) (C)有极值点,有零点.(D)设函数y = f (X )在区间[-1,3 ]上的图形为(A)1.(B) 2. 当 X T 0 时,f (x ) = x —sinax 与 g(x ) = x(C) 3.2(D )In (1-bx )是等价无穷小无穷多个.1(A) a =1,b =——.6 1(C) a = —1,b =6(B )(D )a = 1,b =—.6a = -1,b =J 6(A)不是f (x,y )的连续点. (B)不是f (x,y )的极值点.(C)是f (x,y )的极大值点.(D) 是f (X, y )的极小值点. (A) (C )24 _x—dx — f (x,y dy .2 4今—dy — f (X, y dx . (D )(B ) 24_xf dx f H X, y dy .1 X 22[dyj y f (x’yjdx .,只有一项是符 2 4_y无极值点,有零点. 无极值点,无零点.x⑺ 设A, B 均为2阶矩阵,A * ,B *分别为A, B 的伴随矩阵,()则函数F (X )= L f (t p t 的图形为若A =2, B =3,则分块矩阵f O A 、1的伴随矩阵为 ()I B 0丿'o3B *〕(02B* "(A)*|. (B)12A 0丿V 3A0丿 (C)‘0 3A * ](D)f 02A*' *12B|.1 *0丿13B 0丿0 设A,P 均为 3阶矩阵, P T为P 的转置矩阵 ,且P TAP = 0 1、0 若 P =(%,勺,—)2 = (% +02,02,03),则 Q TAQ 为 ‘21 0、‘11 0"1 1 0 (B)1 2 0 .0 0 2>.0 0 2丿100 (82 ,(A2,52,1lim fe 」sinnxdx =n 卡cd 2y设y = y(x)是由方程xy + e y =x+1确定的隐函数,则一ydx(17)(本题满分10分)设z =f(x + y,x-y,xy),其中f 具有二阶连续偏导数,求dz 与dx 讪(18)(本题满分10分)设非负函数y = y (x )(x >0 )满足微分方程xy” —y' + 2 = 0 .当曲线y=y(x )过原点 时,其与直线X =1及y = 0围成的平面区域 D 的面积为2,求D 绕y 轴旋转所得旋转体的体"2 0 0 ^"10 0"0 1 01 (D)0 2 01° 0 2丿 0 2丿二、填空题: (9)I x 曲线{ [y -r 丄"U2d=」0 e U ,在点(0,0)处的切线方程为 =t 2ln(2 -t 2)(10)” 乂 k x已知L edx=1,则“(11) (12) (13) 函数y =x 2x在区间(0,1 ]上的最小值为(14) 设a , P 为3维列向量,P T为P 的转置,若矩阵up T相似于|0 1。
0"0 ,则 P T三、解答题:15- 23小题,共94分.请将解答写在答题纸指定的位置上 明、证明过程或演算步骤.(15)(本题满分9分).解答应写出文字说求极限 limU —cosxZW+tanx)]X T.4Sin x(16)(本题满分10分)计算不定积分Jin[+鬥x (x>0).(C9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上积.(19)(本题满分10分)计算二重积分 JJ(x — y )dxdy,其中 D ={(x, y j(x -1 f +(y — 1, < 2, y > x }.D(20)(本题满分12分)设y=y(x)是区间(心)内过点(p ,方的光滑曲线,当八x <0时,曲线上 任一点处的法线都过原点;当0<x v;i 时,函数y(x)满足y ” + y +x = 0.求函数y(x)的表达式.(21)(本题满分11分) (I )证明拉格朗日中值定理:若函数 f (X )在[a,b ]上连续,在(a,b)可导,则存在(a,b ),使得 f (b )-f (a )=f '(© X b -a ).(n )证明:若函数 f (x 在 x=0处连续,在(0,6卩:>0 )内可导,且lim f'(x )=A ,则f :(0 )存在,且 f ;(0)= A .(22)(本题满分11分)设(n )对(I)中的任意向量 J J 证明:耳上2上3线性无关.f (X i ,X 2,X 3 )=ax 2+ax ; +(a —1 )x 1 中Zx* —2X 2X 3n-1 -1=\-1 1 11V 0 -4 -2 *2$7, A J 3 -~1 r-^3 ;(23)(本题满分 设二次型11分)(I )求二次型 f 的矩阵的所有特征值;(n )若二次型 f 的规范形为y i 2+y |,求a 的值./(I )求满足A JA2009年全国硕士研究生入学统一考试数学二试题答案一、选择题:1〜8小题,每小题 4分,共32分.下列每题给出的四个选项中,只有一个选 项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上.3X _ X—一的可去间断点的个数为( nx(D )无穷多个. 【答案】C【解析】3X —xf(X )=s i nx(1)函数 f (X )= sin(B )2.则当x 取任何整数时, f (X )均无意义|iX-X 3lim X T 0sin 兀X 3X -X lim ----- T sin 兀X3.. X -Xlim ---- x -A 1sin 兀 X ,1-3x 2= lim ------ T 兀cos 兀X 1 - __ JI= lim x T 兀cos 兀X ,1 -3x 2=lim -------- x —A 1 兀 cos=2 JI 2 JI故可去间断点为3个,即0, ±1(2)当 X T 0时,f (X )=x —sinax 与 g (x ) = x 21n (1 —bx )是等价无穷小,则((A )a =1,b = —(B )a=1,b=6•(C )a = -1,b = 1 16.(D )a = T,b = 6【答案】A【解析】f(x)=x-si nax,g(x)=x 2l n(1-bx)为等价无穷小,贝Ulim 他=|imX-sinaXT g(x) x T x 2]n(1 -bx) a 2sin ax= limX^ 洛 limS 警洛 lim T X 2(-bx) = T -3bx 2= 1° -6bx2 .a sin ax = lim -------- X T 6b-—axa3=-—=1 6b 「•a 3=-6b 故排除 B,C .故f (X )的间断点有无穷多个,但可去间断点为极限存在的点,故应是3X - X =0的解X l,2,3=0, ±11 _a cosax另外lim :存在,蕴含了1-acosaxT 0(X T 0 )故a=1.排除D .x-0 -3bx2* 丿所以本题选A.(3)设函数z = f(X, y)的全微分为dz = xdx + ydy,则点(0,0 )()(A)不是f (x,y )的连续点. (B )不是f (x,y )的极值点.(C是f (X, y )的极大值点. (D )是f (x,y )的极小值点.故(0,0)为函数Z = f(X, y)的一个极小值点.2 2(4)设函数 f(x, y )连续,则 f dxj f(x,ydy + IX24』t dyjy f (x,y )dx=()24_x(A )1 dx 1 f (x,y dy .24T(C )1 dy 』f (x,y dx .【答案】C2 224丄(B )J i dx J x2 2(D ).] dyj y f(x,ydxf (X, ydy .【解析】f dx J f (x, y)dy + J dy J f (x, y)dx 的积分区域为两部分:x,y)|l <x<2,x<y <2},D 2 ={(x,y)|l < y <2,y < x 乞 4- y } 将其写成一块 D =Vx,y)1<y<2,1<x<4-y24T故二重积分可以表示为[dy [ f (x, y)dx ,故答案为C.【答案】 DF z 【解析】因dz=xdx + ydy 可得 — e xcz=x,——=yL 2L 2-.2c z c z D Z , ---= =0, C = ------ 2 —1 ■- ■- 创exey cycx 处,& -<z 0,— =>0又在(0, 0)2AC -B =1区间(1,2 )内()【答案】 B【解析】由题意可知,f(X)是一个凸函数,即「'McO ,且在点(1,1)处的曲率P = —,而 f '(1) = -1,由此可得, 「'(1)=—2(1+(y')2)23在[1,2]上,f'(X)< f '⑴二―1 <0,即f(x)单调减少,没有极值点.对于f(2) - f(1) = f '(匚)1 、匚<^(1,2),(拉格朗日中值定理) 二 f(2) <0而 f(1)=1A0 由零点定理知,在[1,2]上,f (X)有零点. 故应选(B ).(6)设函数y = f (X )在区间[-1,3 ]上的图形为f(x)"X则函数F (x )= ( f (t )dt 的图形为(1…I'Z :Z :八12」 >(5)若f "(X 环变号,且曲线y = f (X )在点(1,1)上的曲率圆为X 2+ y 2=2,则f (x )在(A )有极值点,无零点. (B )无极值点,有零点. (C 有极值点,有零点.(D )无极值点,无零点.-2二o 4x(B ).f(x),/f(x)'J1,/ 「-1123X-2 / 2 3-1【答案】X =X 0所围的图形的代数面积为所求函数 F(x),从而可得出几个方面的特征:A y的伴随矩阵为(0丿【解析】此题为定积分的应用知识考核,由y = f(x)的图形可见,其图像与 X 轴及y 轴、 0,1]时,F(x) <0,且单调递减.1,2]时, F(x)单调递增. [2,3 ]时, F(x)为常函数. [-1,0 ]时,F(x)<0为线性函数,单调递增F(x)为连续函数 ⑤由于 结合这些特点,可见正确选项为 D . (7)设A , B 均为2阶矩阵,A ,分别为 A ,B 的伴随矩阵.若 |A =2,|B | = 3,则分\ O g 〔2A *(B J 3O V 3A2BO 丿块矩阵卩I B01(C )l2B O丿 (D ).l 3B【答案】B 【解析】根据 CC* = C E 若 C* = 分块矩阵 f oA 、 的行列式 2A *)。