不定积分的基本公式和直接积分法(教学内容)
不定积分的基本公式和运算法则直接积分法

不定积分的基本公式和运算法则直接积分法一、不定积分的基本公式和运算法则1.基本公式:- 常数公式:$\int c\,dx = cx + C$,其中c为常数,C为常数。
- 幂函数公式:$\int x^n\,dx = \frac{x^{n+1}}{n+1} + C$,其中n为非零常数,C为常数。
- 指数函数公式:$\int e^x\,dx = e^x + C$,其中C为常数。
- 对数函数公式:$\int \frac{1}{x}\,dx = \ln,x, + C$,其中C为常数。
2.基本运算法则:- 常数倍法则:$\int kf(x)\,dx = k\int f(x)\,dx$,其中k为常数。
- 和差法则:$\int (f(x) \pm g(x))\,dx = \int f(x)\,dx \pm \int g(x)\,dx$。
- 乘法法则:$\int u \cdot v\,dx = \int u\,dv + \int v\,du$。
- 除法法则:$\int \frac{u}{v}\,dx=i\ln,v,+j\int\frac{dv}{v}$。
直接积分法是指根据不定积分的基本公式和运算法则,直接进行积分计算的方法。
下面介绍一些常见的直接积分法:1.用代换法进行积分:-根据被积函数的形式,选择一个合适的代换,使得原函数的形式更简单。
-对原函数进行代换,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
-将上述结果带入到原函数中,得到最终的积分结果。
2.用分部积分法进行积分:-对于被积函数的乘积形式,选择一个函数进行求导,选择另一个函数进行积分。
- 根据分部积分公式$\int u \,dv = uv - \int v \,du$,进行积分计算。
3.用换元法进行积分:-对于被积函数的形式,选择一个新的变量代替原来的变量,使得积分变得更简单。
-对原函数进行换元,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
第五章_不定积分

微积分
(三)不定积分的几何意义 的原函数的图形称为 的积分曲线 . 的所有积分曲线组成 的平行曲线族.
f ( x) dx 的图形
y
O
x0
x
微积分
例3. 设曲线通过点( 1 , 2 ) , 且其上任一点处的切线
斜率等于该点横坐标的两倍, 求此曲线的方程.
解:
y
所求曲线过点 ( 1 , 2 ) , 故有
sin x 2、设 f x ,则 x
f x dx
sin x x
x2
3、 f x dx e
x2
C,
则 f x 2 xe
微积分
5.3、 基本积分表
x x 1 x x dx 实例 C. 1 1 ( 1)
(也称配元法 , 凑微分法)
微积分
例1. 求 解: 令 u a x b , 则 d u ad x , 故 原式 = u
m
1 1 1 m 1 du u C a a m 1
注意换回原变量
注: 当
时
微积分
例2. 求 解:
sin x dcos x cos xdx cos x
e xd x e x C
ax x C (7 ) a d x ln a
微积分
dx (8) sec 2 xd x tan x C cos 2 x dx (9) 2 csc 2 xd x cot x C sin x (10) sec x tan xdx sec x C
(二)不定积分的运算性质
1.
k f ( x) dx k f ( x)dx (k 0) 2. [ f ( x ) g ( x )] dx f ( x )dx g ( x ) d x
高等数学第五章 不定积分

例 6 求下列积分:
(1)
x2
1
a2
dx;(2)
3 x dx;(3) 4 x2
1 1 ex
dx;
(4) sin 2
xdx;
(5)
1
1 cos
x
dx;(6)
sin
5x
cos
3xdx.
解 本题积分前,需先用代数运算或三角变换对被
积函数做适当变形.
1
x
2
1
a
2
dx
1 2a
x
1
a
x
1
(
2
x
1)31
C.
例 4 求 cos2 x sin xdx.
解 设u cos x,得du sin xdx,
cos2 x sin xdx u2du 1 u3 C 1 cos3 x C.
3
3
方法较熟悉后,可略去中间的换元步骤,直接凑微 分成积分公式的形式.
例4
求 x
dx . 1 ln2 x
2 sin xdx 3 cos xdx
2cos x 3sin x C (C 为任意常数).
例 9 求下列不定积分:
(1)
x 1 x
1
x
dx;(2)
x2 x2
1dx 1
.
解(1)
x 1 x
1 x
dx
x
x x 1
1 x
dx
x
xdx xdx 1dx
1 dx x
2
f (u )du
回代
F (u ) C
F [ ( x )] C .
这种先“凑”微分式,再作变量置换的方法,叫 第换一元积分法,也称凑微分法.
不定积分

的原函数, 且 求
解: 由题设 F ( x) f ( x) , 则 F ( x) F ( x) sin 2 2 x , 故 即
1 cos 4 x F ( x) F ( x)d x sin 2 xd x 2 d x
2
F 2 ( x) x 1 sin 4 x C 4
2a
1 (a 2t 2 1) 2
3 2
d(a 2t 2 1)
(a t 1) C 2 3a
2 2
当 x < 0 时, 类似可得同样结果 .
4. 分部积分法:
udv uv vdu
(1) 使用原则 : v 易求出, u v dx 易积分
(2) 题目类型 : •直接用公式: 选择u的一般次序—反对幂三指 •循环解出:分部产生循环式 , 由此解出积分式 ;
R( x , n ax b , m ax b ) dx ,
令 t p a x b , p 为m , n 的最小公倍数 .
例. 求
1 1 x x x dx .
1 x ,则 解: 令 t x
2t dt 原式 (t 1) t 2 2 (t 1)
2
t 1 2 2 dt 2 t ln C t 1 t 1
原式 =
1 sin 2 x 2 sin 2 x
d (1 sin 2 x)
令 t 1 sin 2 x
2t 2 d t 2 (1 1 2 ) d t 1 t 1 t2
2t 2arctan t C
2 1 sin 2 x arctan 1 sin 2 x C
2. 第一换元法:
拆、拼、凑 g ( x)dx f ( ( x)) ' ( x)dx = f (u)du 基本积分表 F (u ) C F ( ( x)) C
微积分 不定积分 教案

微积分不定积分教案一、教学目标1. 理解不定积分的概念和物理意义。
2. 掌握基本积分公式和积分方法。
3. 能够运用不定积分解决实际问题。
二、教学内容1. 不定积分的定义和性质。
2. 基本积分公式:幂函数、指数函数、对数函数、三角函数的积分。
3. 换元积分法:代数换元、三角换元。
4. 分部积分法。
5. 积分在物理、经济学等领域的应用。
三、教学重点与难点1. 重点:不定积分的概念、性质和基本积分公式。
2. 难点:换元积分法、分部积分法的运用。
四、教学方法与手段1. 采用讲授法,讲解不定积分的概念、性质和积分方法。
2. 利用多媒体课件,展示积分过程和应用实例。
3. 引导学生通过讨论、练习,巩固所学知识。
五、教学安排1. 第一课时:介绍不定积分的定义、性质和基本积分公式。
2. 第二课时:讲解换元积分法。
3. 第三课时:讲解分部积分法。
4. 第四课时:举例分析不定积分在实际问题中的应用。
5. 第五课时:课堂练习和总结。
六、教学评估1. 课堂练习:布置相关的不定积分题目,检查学生对基本积分公式和积分方法的掌握程度。
2. 课后作业:布置综合性的不定积分题目,要求学生在课后完成,以检验学生对课堂内容的理解和应用能力。
3. 课堂讨论:鼓励学生积极参与课堂讨论,提问和解答问题,评估学生对不定积分概念的理解和分析问题的能力。
七、教学资源1. 教材:选用权威的微积分教材,提供系统的理论知识。
2. 多媒体课件:制作精美的多媒体课件,通过图像、动画等形式展示积分过程,增强学生的直观理解。
3. 练习题库:整理一套丰富的练习题库,包括不同难度层次的题目,以满足不同学生的学习需求。
4. 应用案例:收集一些实际问题,用于讲解不定积分在实际中的应用。
八、教学建议1. 强化基础知识:在学习不定积分之前,确保学生掌握了函数、极限、导数等基本概念,以便能够顺利理解不定积分的性质和计算方法。
2. 逐步引导:从简单的积分公式开始,逐步引导学生掌握更复杂的积分方法,避免一开始就给出复杂的公式和方法,让学生能够逐步建立信心。
基本积分公式直接积分法

1 arctan x C x
“拆项” (2)(把分母分解因式后)按分母的因式拆项
课堂练习
习题3.2 1, 2(1)(3)(5)(7)(9)(11) 1.选择题: 3,4 (1)下列式子正确的是( D ) . P123
x x A. 2 dx 2 C
x x x x B. 2 e dx ( 2 dx )( e dx )
1
C
( 1)
( x) 1
( x )
1
1 x
x
2 x 1 2 x
x
1 d x 2 x C x
(a ) a ln a
特别地:
1 1 x2 d x x C 1 x x a d x a C ln a
(e ) e
1 x x 2 2 e C e C e
e 1 x dx 2 dx 2 e dx e e
x
x x 11 dx (11) 2 dx 2 x 1 x 1 1 dx 2 dx x arctan x C x 1
2 2
dy x 2 ,且 y x2 5 ,求函数 y . 3.已知 dx
1 (ln x 1) x x
(ln x 1) 1 ln x
所以 x(ln x 1) 是 ln x 的一个原函数.
3.2.1
基本求导公式
基本积分公式
基本积分公式
C 0
( x ) x
特别地:
1
0d x C 1 x d x 1 x d x xC
(1)化 x 型
(4)三角恒等变形 (5)拆项:①假分式=整式+真分式 ②按分母的因式拆项
不定积分的基本公式和直接积分法

第二节不定积分旳基本公式和直接积分法(BasicFormula of UndefinedIntegral andDirectIntegral)课题:1.不定积分旳基本公式2.不定积分旳直接积分法课堂类型:讲授教学目旳:纯熟掌握不定积分旳基本公式,对简朴旳函数能用直接积分法进行积分。
教学重点:不定积分旳基本公式教学难点: 直接积分法教具:多媒体课件教学措施:教学内容:一、不定积分旳基本公式由于不定积分是求导旳逆运算,因此由导数旳基本公式相应地可以得到不定积分旳基本公式。
二、不定积分旳直接积分法运用不定积分旳性质和基本公式,可以求出某些简朴函数旳不定积分,一般把这种求不定积分旳措施叫做直接积分法。
例1 求32x dx ⎰导数旳基本公式()1222()01()1()()ln 1(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )1(arctan )1(arccos )1(cot )1x xx x C x x x e e a a ax xx x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='='='=-'='=-'='=-'='=+'='=-+21(log )ln a x x x a'=不定积分旳基本公式()1222011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin arctan 1x xxxdx C dx x Cx x dx C a e dx eCa a dx C a dxx Cx xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x Cx Cdxx C xααα+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2arccos arc cot 11log ln a x C dxx C x dx x Cx a =-+=-++=+⎰⎰⎰解 31333412222312x x dx x dx x dx C x C +===⨯+=++⎰⎰⎰例2求(23cos x x dx -+⎰解(32322233233cos 3cos 3sin 5310sin 3xx dx x dx xdx x x x Cx x x C -+=-+=⨯-++=-++⎰⎰⎰⎰例3 求dx x x ⎰-23)1(解Cx x x x Cx x dxxx x dx xx x x dx x x +++-=+-=-+-=-+-=-⎰⎰⎰1||ln 332 31072 )133( 133)1(22327222323 例4 求221sin cos dx x x⎰ 解22222222221sin cos 11sin cos sin cos cos sin sec csc tan cot x x dx dx dx dx x x x x x x xdx xdx x x C+==+=+=-+⎰⎰⎰⎰⎰⎰例5 求2x x e dx ⎰ 解()()()2222ln 21ln 2xxxx x e e e dx e dx C C e==+=++⎰⎰例6 求2sin 2x dx ⎰解 21cos sin 22x x-=21cos 11sin sin 2222x x dx dx x x C -==-+⎰⎰ 例7 求()221dxx x +⎰解()222211111x xx x =-++ ()222222111111111arctan dx dx dx dx x x x x x x x Cx⎛⎫=-=- ⎪+++⎝⎭=--+⎰⎰⎰⎰例8 已知物体以速度()221/v t m s =+沿Ox 轴作直线运动,当1t s =时,物体通过旳路程为3m ,求物体旳运动方程。
不定积分直接积分法

不定积分直接积分法一、不定积分的概念和基本性质1.1 不定积分的定义不定积分是导数的逆运算,即对于函数f(x),如果存在一个函数F(x),使得F'(x)=f(x),则称F(x)为f(x)的一个原函数,记作∫f(x)dx=F(x)+C,其中C为任意常数。
1.2 不定积分的基本性质(1)线性性:若F(x)和G(x)都是f(x)的原函数,则有∫[a,b]αF(x)+βG(x)dx=α∫[a,b]F(x)dx+β∫[a,b]G(x)dx,其中α、β为任意常数。
(2)换元法:若u=u(x)可导且具有连续导数,则有∫f(u)du=∫f(u(x))u'(x)dx。
(3)分部积分法:若u=u(x)和v=v(x)都可导且具有连续导数,则有∫u'vdx=uv-∫uv'dx。
二、直接求解不定积分的方法2.1 一般(初等)函数的不定积分对于一些常见的初等函数,可以通过直接求解来得到它们的不定积分。
例如:(1)幂函数:对于n≠-1,有∫x^n dx=(x^(n+1))/(n+1)+C。
(2)指数函数:有∫e^x dx=e^x+C。
(3)三角函数:有∫s in(x)dx=-cos(x)+C,∫cos(x)dx=sin(x)+C,∫tan(x)dx=-ln|cos(x)|+C,等等。
2.2 有理函数的不定积分对于有理函数,即多项式除以多项式的形式,可以通过分式分解来将其化为一些基本的初等函数之和的形式。
例如:(1)若f(x)=(x^2+1)/(x-1),则可以进行部分分式分解得到f(x)=x+1+(2/(x-1)),因此有∫f(x)dx=∫(x+1+(2/(x-1)))dx=(1/2)x^2+x+2ln|x-1|+C。
(2)若f(x)=(3x^3+x)/(x^4+x^2+1),则可以进行部分分式分解得到f(x)=(3/4)(1/(x^2-x+1))+(5/4)(1/(x^2+1)),因此有∫f(x)dx=(3/4)∫(1/(x^2-x+1))dx+(5/4)∫(1/(x^2+1))dx=(3/8)ln|x^2-x+1|+(5/4)arctan x+C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节不定积分的基本公式和直接积分法(Basic Formula of Undefined
Integral and Direct Integral)
课题:1.不定积分的基本公式
2.不定积分的直接积分法
课堂类型:讲授
教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。
教学重点:不定积分的基本公式
教学难点: 直接积分法
教具:多媒体课件
教学方法:
教学内容:
一、不定积分的基本公式
由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。
二、不定积分的直接积分法
利用不定积分的性质和基本公式,可以求出一些简单函数的不定积分,通常把这种求不定积分的方法叫做直接积分法。
例1 求32x dx ⎰
解 313
3
3
41
2222312
x x dx x dx x dx C x C +===⨯+=++⎰⎰⎰ 导数的基本公式 ()122222()01
()1()()ln 1
(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )11
(arctan )1(arccos )11
(cot )1x x
x x C x x x e e a a a
x x
x x x x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='=
'='=-'='=-'='=-'=
-'=
+'=-'=-
+21
(log )ln a x x x a
'=
不定积分的基本公式
()
1
22
2
2011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin 1arctan 1x x x
x
dx C dx x C
x x dx C a e dx e C a a dx C a dx
x C
x xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x C
x C
x
dx
x C x αα
α+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+-=++⎰⎰⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰22arccos 1arc cot 11
log ln a x C x dx
x C x dx x C
x a =-+-=-++=+⎰⎰⎰。