(高起专)第十章二重积分习题解答-6页文档资料
高数第10章经典类型题参考答案

第十章 经典类型题一、二重积分的计算(1)直角坐标系1.画出积分区域,并计算二重积分2+1x D e dxdy ⎰⎰(),其中D 是由x 轴,x y =及1x =所围成的闭区域。
解:2+1x D e dxdy ⎰⎰()1=.2e 2.计算二重积分D σ⎰⎰,其中D 是由2与1y x y ==所围成区域。
解:D σ⎰⎰4=-.153.计算二重积分2Dx dxdy ⎰⎰,其中D 是由直线2,3,y x y x ===所围成的闭区域. 解:83.12D xdxdy =⎰⎰ 4. 计算二重积分sin d d ,D x x y x ⎰⎰其中D 是直线2,y x x π==及x 轴所围成的闭区域. 解:sin d d =4.D x x y x ⎰⎰5.计算二重积分22D x dxdy y⎰⎰,其中D 是直线12,,2y y x x x ===所围成的闭区域。
解: 22=3.D x dxdy y⎰⎰ (2)极坐标系6.计算二重积分22x y D e dxdy +⎰⎰,其中D 是由中心在原点,半径为a 的圆周所围成的闭区域. 解:222+(1).x y a D edxdy e π-=-⎰⎰7. 计算二重积分Dx σ⎰⎰2d ,其中D 是圆x y +=221所围成的闭区域。
解: 1.4D x σπ⎰⎰2d =22arctan,1D y dxdy D x y x+=⎰⎰8. 计算其中是由直线y=x,x 轴和围成的在圆周第一象限的闭区域。
. 解:2arctan .64Dy dxdy x π=⎰⎰ 9.计算二重积分cos()D x σ⎰⎰22+y d ,其中D是由直线,y x =轴和圆4x y +=22所围成的在第一象限的闭区域。
解: 2cos(D x σ⎰⎰2+y )d sin 4π6=. 二、三重积分的计算10.计算()⎰⎰⎰++V dxdydz z y x sin ,其中V 是平面2π=++z y x 和三个坐标平面所围成的区域。
二重积分习题及答案

D1
yx
D2
D1 , D2 两部分
2
D2
( x y )d xd y 2 d xd y
D
o
1 x
2 ( 2 1) 3 2 说明: 若不用对称性, 需分块积分以去掉绝对值符号.
5 计算
2 2 ( x y ) dxdy , D : x y 1 D
分析 积分区域D关于x、y轴均对称, 被积函数
f ( x, y) x y 关于x,y均是偶函数,利用对称性
去掉绝对值符号. 解 采用直角坐标 ( x y )dxdy 4 dx
D
1
1 x 2 0
0
( x y )dy 8 3
【注】在利用对称性计算二重积分时,要同时考虑被积 函数的奇偶性和积分区域的对称性,不能只注意积分区域 关于坐标轴的对称性,而忽视了被积函数应具有相应的奇
解
x r cos 在极坐标系下 y r sin 所以圆方程为 r 1, 1 直线方程为 r , sin cos
x2 y2 1
x y 1
f ( x, y )dxdy
D
2
0
d
1
1 sin cos
f ( r cos , r sin )rdr .
8
计算 ( x y )dxdy ,其 D 为由圆
2 2 D
x 2 y 2 2 y , x 2 y 2 4 y 及直线 x 3 y 0 , y 3 x 0 所围成的平面闭区域. 解 y 3x 0 2
3
x y 4 y r 4 sin
2 1
4. 计算二重积分
高等数学第十章《二重积分》复习 课件

y x 2(y) d y
x 1(y)
则
d
dy
2(y) f (x, y)dx
c o
c
1( y)
x
例2. 计算 x yd , 其中D 是抛物线 y2 x 及直线 D
y x 2 所围成的闭区域.
解: 看成Y型区域,
则
D
:
1 y y2 x
2 y
ห้องสมุดไป่ตู้
2
2 y2
D
x yd
dy 1
y2
xyd
该物体的质量为
b
a
Dz
f
(x,
y, z)d
xd
y dz
记作
b
dz
f (x, y, z)dxdy
a
Dz
z
b
z Dz
a
O
y
x
面密度≈
f (x, y, z)d z
截面法的一般步骤:
(1) 把积分区域 向某轴(例如z 轴)投影,得
投影区间 [a, b] ;
(2) 对 z [a, b]用过z轴且平行 截 ,得截面 Dz;
11
一、利用直角坐标计算二重积分
由曲顶柱体体积的计算可知,
若D为 X – 型区域
y y 2(x)
axb
D : 1( x) y 2( x)
D x
则
f (x, y)dxdy
b
dx
2( x)
f
( x,
oa y y)dy
1(x)b
x
D
a
1( x)
若D为Y –型区域
c yd
D : 1( y) x 2( y)
xoy平面的平z面去
二重积分(答案)

第五次课一.(上册)回顾一元定积分的定义,牛顿-莱布尼兹公式(很重要,要掌握)二.二重积分的定义 几何意义(了解), 课本65页三.二重积分的性质(课本68页)四.二重积分的计算(重点) 课本70页(注:最主要的是确定积分的上限限)1. 直角坐标系下计算二重积分(X 型, Y 型,如何选择)2. 极坐标系下计算二重积分一.选择题1.设D 是以(0,0),(1,0),(1,2),(0,1)O A B C 为顶点的梯形所围成的有界闭区域,(,)f x y 是域D 上的连续函数,则二重积分(,)Df x y dxdy =⎰⎰ ( B )(A )1101(,)xdx f x y dy +⎰⎰(B )110(,)xdx f x y dy +⎰⎰(C )11211(,)(,)y dx f x y dy dx f x y dy -+⎰⎰⎰⎰(D )112111(,)(,)y dx f x y dy dx f x y dy -+⎰⎰⎰⎰2.二次积分⎰⎰22),(x dy y x f dx 的另一种积分次序是 ( A )(A )⎰⎰402),(ydx y x f dy (B )⎰⎰40),(ydx y x f dy (C )⎰⎰4022),(x dx y x f dy (D )⎰⎰402),(ydx y x f dy3.设f 是连续函数,而D :122≤+y x 且0>y ,则dxdy y x f D)(22⎰⎰+= ( A )(A )⎰1)(dr r rf π (B )⎰1)(dr r f π (C )2⎰1)(dr r rf π (D )2⎰1)(dr r f π二.填空题1.若积分区域D 是2214x y ≤+≤,则=3D dxdy π⎰⎰2.改换积分的次序⎰⎰⎰⎰-+102120),(),(xxdy y x f dx dy y x f dx =三.计算题1.设区域D 由22,y x y x ==所围成,求2()Dx y d +σ⎰⎰解:原式=241122200)[)]22x x x dx x y dy x x dx +=+-⎰⎰=54142033()22140x x x x dx -+-=⎰2.设D 是由直线2x =,y x =及1xy =所围成的平面区域,求22Dx dxdy y⎰⎰解:原式=222312119()4xxx dx dy x x dx y=-+=⎰⎰⎰ 解:原式=111200111(1)()266xdx x y dy x x dx ---=-+=⎰⎰⎰3.计算(课本81页 例题13)4. (课本81页 例题12).:222a y x D ≤+120(,)yydy f x y dx -⎰⎰,d d 22⎰⎰--Dy x y x e。
(完整word版)高等数学第10章课后习题答案(科学出版社)

于是所求的曲面积分为
.
(2) ,其中 为旋转抛物面 介于 之间部分的下侧。
解由两类曲面积分之间的联系,可得
,
在曲面 上,有
。
故
。
再依对坐标的曲面积分的计算方法,得
。
注意到
,
故
。
(3) ,其中 为 , 的上侧;
解 在 面上的投影为半圆域 , ,
=
= =
由对称性 = , =
∴原式= =
(4) ,其中 是由平面 , , , 所围成的四面体的表面的外侧。
,
其中 为上半球面 , , ,故
,
其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是得
= ,
是一个无界函数的反常积分,按反常积分的计算方法可得
,
故
。
解法2设球面方程为 ,定直径在 轴上,依题意得球面上点 的密度为 ,从而得球面的质量为 ,由轮换对称性可知: ,故有
.
2设某流体的流速为 ,求单位时间内从圆柱 : ( )的内部流向外侧的流量(通量)。
,其中 从 变到 ,
故
。
解法2作有向线段 ,其方程为
,其中 从 变到 ,
则有向曲线 与有向线段 构成一条分段光滑的有向闭曲线,设它所围成的闭区域为 ,由格林公式,有
,
即
,
而
,
故
。
3.计算 ,其中 为平面 在第一卦限中的部分;
解 将曲面 投影到 面上,得投影区域为 ,此时曲面方程可表示为
,
于是
,
。
4. 计算 ,其中 是球面 的上半部分并取外侧;
解如右图所示,因为闭曲面取外侧,所以 取下侧, 取后侧, 取左侧, 取上侧。于是
资料:第十章 重积分答案

第十章 重积分答案第一节 二重积分的概念与性质1.根据二重积分的几何意义,确定下列积分的值。
)1(; ,222222a y x D d y x a D≤+--⎰⎰为其中σ解:由二重积分的几何意义知,;323222a d y x a Dπσ=--⎰⎰)2(.0 , ,)(222D22>>≤++-⎰⎰a b a y x D d y x b 为其中σ 解:由二重积分的几何意义知,).32()(2D22a b a d y x b -=+-⎰⎰πσ 2.根据二重积分的性质,比较下列积分的大小。
)1(;1)2()2( ,)( )(2232≤-+-++⎰⎰⎰⎰y x D d y x d y x DD为其中与σσ 解:由 1)2()2(22≤-+-y x 知 ,1|2|,1|2|≤-≤-y x 即 ,31,31≤≤≤≤y x 于是 ,12>≥+y x 所以 32)()(y x y x +<+ 于是.)( )(32σσd y x d y x DD⎰⎰⎰⎰+<+ ;10 ,53:,)][ln( )ln()2(2≤≤≤≤++⎰⎰⎰⎰y x D d y x d y x DD是矩形区域其中与σσ解:在D 内 x +y >e , 故 ln(x+y )>1, 于是.)][ln( )ln(2⎰⎰⎰⎰+<+DDd y x d y x σσ .1 ,21,0 ,0 , )ln()3(所围成是由直线其中与=+=+==+⎰⎰⎰⎰y x y x y x D xyd d y x DDσσ解:在D 中,,0,0≥≥y x 且,121≤+≤y x 而不在直线x +y =1上的D 内任何点(x , y ), 都有 ,121<+≤y x 故 ,)ln(xy y x <+ 于是. )ln(⎰⎰⎰⎰<+DDxyd d y x σσ3.利用二重积分的性质估计下列积分的值。
)1(};4|),{( ,)94(2222≤+=++⎰⎰y x y x D d y x D其中σ 解:上,:在区域422≤+y x D ,259449)(49492222=+⋅≤++≤++≤y x y x ,422ππσ=⋅=的面积为而区域D从而 ,425)94(4922πσπ⋅≤++≤⋅⎰⎰D d y x 即 .100)94(3622πσπ≤++≤⎰⎰Dd y x)2(}.20 ,10|),{( ,)(22≤≤≤≤=--+⎰⎰y x y x D d y x xy x D其中σ 解:,),(22y x xy x y x f --+=设 则 f (x ,y )在D 上的最大值,31)31,32(==f M 最小值,4)2,0(-==f m 区域D 的面积,2=σ 从而 .32)(822≤--+≤-⎰⎰Dd y x xy x σ 4.设 f (x ,y ) 为一连续函数,试证:).0,0(),(1lim2222f dxdy y x f y x =⎰⎰≤+→ρρπρ证:由于f (x ,y )连续,由二重积分中值定理知,存在点}|,{),(222ρηξ≤+∈y x y x ,使得),,(),(),(2222ηξπρσηξρf f dxdy y x f y x =⋅=⎰⎰≤+所以 ),(1lim),(1lim222222ηξπρπρπρρρρf dxdy y x f y x ⋅=→≤+→⎰⎰).0,0(),(lim 0f f ==→ηξρ第二节 二重积分的计算1.计算下列二重积分(1) ;10 ,10 : ,122≤≤≤≤+⎰⎰y x D d y x D其中σ 解:⎰⎰+D d yx σ221⎰⎰+=1021021y dy dx x 01arctan 01313y x ⋅=12π=。
高等数学 课后习题答案 第十章

习题十1. 根据二重积分性质,比较ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x+y=1与x+y=2之间,显然有图10-112x y ≤+≤从而0l n ()1x y ≤+<故有2l n ()[l n ()]x y x y +≥+ 所以2l n ()d [l n ()]dDDx y x yσσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2 从而 ln(x+y)>1 故有2l n ()[l n ()]x y x y +<+ 所以2l n ()d [l n ()]dDDx y x yσσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值:(1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}DI x y D x y x y σ==≤≤≤≤⎰⎰;(3)2222(49)d ,{(,)|4}DI x y D x y x y σ=++=+≤⎰⎰.解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而04xy ≤≤.从而2≤≤故2d DD σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而d Dσσ=⎰⎰(σ为区域D 的面积),由σ=4得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d DDDx y σσσ≤≤⎰⎰⎰⎰⎰⎰即220sin sin d d DDx y σσσ≤≤=⎰⎰⎰⎰而2πσ=所以2220sin sin d πDx y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以 22229494()925x y x y ≤++≤++≤故229d (49)d 25d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 229(49)d 25Dx y σσσ≤++≤⎰⎰而2π24πσ=⋅=所以 2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值:(1)222(,{(,)|};Da D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,Da σ-⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3D a a σ=⎰⎰(2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰4. 设f(x ,y)为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f(x ,y)为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x0,y0)为圆心,r 为半径的圆盘,所以当0r→时,00(,)(,),x y ξη→于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d Df x y σ⎰⎰化为累次积分:(1){(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥(3)2{(,)|,2,2}D x y y y x x x =≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yDy f x y y f x y xσ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y Dyf x y y f x y xσ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y=2x 与曲线2y x =的交点(1,2),与x=2的交点为(2,4),曲线2y x =与x=2的交点为(2,1),区域D 可表示为22,1 2.y x x x ≤≤≤≤图10-5所以2221(,)d d (,)d xDxf x y x f x y yσ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序:(1)2220d (,)d yy y f x y x⎰⎰; (2)eln 1d (,)d xx f x y y⎰⎰;(3)1320d (,)d y y f x y x-⎰; (4)πsin 0sin2d (,)d xxx f x y y-⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x-+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D:1e,0ln.x y x≤≤≤≤如图10-7所示.图10-7D亦可表示为:01,e e,yy x≤≤≤≤所以e ln1e100ed(,)d d(,)dyxx f x y y y f x y x=⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y≤≤≤≤-如图10-8所示.图10-8D亦可看成D1与D2的和,其中D1:201,0,x y x≤≤≤≤D2:113,0(3).2x y x≤≤≤≤-所以2113213(3)200010d(,)d d(,)d d(,)dy x xy f x y x x f x y y x f x y y--=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D为:0π,sin sin.2xx y x≤≤-≤≤如图10-9所示.图10-9D亦可看成由D1与D2两部分之和,其中D1:10,2arcsinπ;y y x-≤≤-≤≤D2:01,arcsinπarcsin.y y x y≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D1与D2两部分组成,其中 D1:01,02,y x y ≤≤≤≤ D2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-所以()123323012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y--+=⎰⎰⎰⎰⎰⎰7. 求下列立体体积:(1)旋转抛物面z=x2+y2,平面z=0与柱面x2+y2=ax 所围; (2)旋转抛物面z=x2+y2,柱面y=x2及平面y=1和z=0所围. 解:(1)由二重积分的几何意义知,所围立体的体积V=22()d d Dx y x y+⎰⎰其中D :22{(,)|}x y x y ax +≤由被积函数及积分区域的对称性知,V=2122()d d D x y x y+⎰⎰,其中D1为D 在第一象限的部分.利用极坐标计算上述二重积分得cos πππcos 344442220001132d d 2d cos d π4232a a V r r r a a θθθθθθ====⎰⎰⎰⎰.(2) 由二重积分的几何意义知,所围立体的体积22()d d ,DV x y x y =+⎰⎰其中积分区域D 为xOy 面上由曲线y=x2及直线y=1所围成的区域,如图10-11所示.图10-11D 可表示为:211, 1.x x y -≤≤≤≤所以21122221()d d d ()d DxV x y x y x x y y-=+=+⎰⎰⎰⎰2111232461111188d ()d .333105x x y y x x x x x --⎡⎤=+=+--=⎢⎥⎣⎦⎰⎰ 8. 计算下列二重积分:(1)221d d ,:12,;Dx x y D x y x y x ≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y2=x,直线x=0与y=1所围;(3)d ,x y ⎰⎰D 是以O(0,0),A(1,-1),B(1,1)为顶点的三角形;(4)cos()d d ,{(,)|0π,π}Dx y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx Dx xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()xx x y y y y yD xx y y x y y y ==⎰⎰⎰⎰⎰⎰ 21111ed (e 1)d e d d y x y y yy y y y y y y y==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰(3) 积分区域D 如图10-13所示.图10-13 D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxx x y x y x y xx --⎡==+⎢⎣⎰⎰⎰⎰⎰112300ππ1πd .2236x x x ==⋅=⎰ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x xx x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224sin (1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d xx x ⎰求不出来,故应改变积分次序。
(完整版)高等数学II练习册-第10章答案

(完整版)⾼等数学II练习册-第10章答案习题10-1 ⼆重积分的概念与性质1.根据⼆重积分的性质,⽐较下列积分的⼤⼩:(1)2()D x y d σ+??与3()Dx y d σ+??,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成;(2)ln()Dx y d σ+??与2[ln()]Dx y d σ+??,其中D 是三⾓形闭区域,三顶点分别为(1,0),(1,1),(2,0);2.利⽤⼆重积分的性质估计下列积分的值:(1)22sin sin DI x yd σ=,其中{(,)|0,0}D x y x y ππ=≤≤≤≤;(2)22(49)DI x y d σ=++??,其中22{(,)|4}D x y x y =+≤.(3).DI =,其中{(,)|01,02}D x y x y =≤≤≤≤解 (),f x y =Q 2,在D 上(),f x y 的最⼤值()14M x y ===,最⼩值()11,25m x y ====故0.40.5I ≤≤习题10-2 ⼆重积分的计算法1.计算下列⼆重积分:(1)22()Dx y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤;(2)cos()Dx x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三⾓形闭区域。
2.画出积分区域,并计算下列⼆重积分:(1)x y De d σ+??,其中{(,)|||1}D x y x y =+≤(2)22()Dxy x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。
3.化⼆重积分(,)DI f x y d σ=为⼆次积分(分别列出对两个变量先后次序不同的两个⼆次积分),其中积分区域D 是:(1)由直线y x =及抛物线24y x =所围成的闭区域;(2)由直线y x =,2x =及双曲线1(0)y x x=>所围成的闭区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(高起专)第十章二重积分习题解答(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1.1220I dy x y dx =⎰,则交换积分次序后得 C 。
(A)1220I dy x y dy =⎰; (B)12203I x y dy =⎰;(C )2112203x I dx x y dx -=⎰⎰; (D )2112203x I dx x y dy +=⎰⎰。
2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则x yDedxdy +=⎰⎰ D. .(A)2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;3. 设积分域D 由直线,2,2y x x y x =+==围成,则(,)D f x y dxdy =⎰⎰ C(A)120(,)xxdx f x y dy -⎰⎰, (B) 21(,)yydyf x y dx -⎰⎰, (C) 212(,)xxdx f x y dy -⎰⎰, (D) 1(,)xdx f x y dy ⎰⎰.;4.22x y DI e dxdy --=⎰⎰,D :221x y +≤,化为极坐标形式是 D 。
(A )221[]r I edr d πθ-=⎰⎰;(B )21204[]r I e dr d πθ-=⎰⎰;(C )21202[]r I e rdr d πθ-=⎰⎰;(D )221[]r I e rdr d πθ-=⎰⎰。
5. 2DI xy d σ=⎰⎰, 其中22:1D x y +≤的第一象限部分,则 C 。
(A)120I dy xy dy =⎰; (B )1120I dx xy dy =⎰⎰;(C)12I dx dy =⎰;(D )1232cos sin I d r dr πθθθ=⎰⎰。
填空题1.交换二次积分次序,1(,)xI f x y dy =⎰= 。
故211(,)(,)yxy I dx f x y dy dy f x y dx ==⎰⎰⎰2.设积分域D 由11,22,x y -≤≤-≤≤围成,则3(2)Dxy dxdy +=⎰⎰ 03.设积分域为22{(,)|14,}D x y x y y x =≤+≤≥,则积分22()Df x y dxdy +=⎰⎰在极坐标下的二次积分为 。
解52422214()()Df x y d x d y dr f r d rππθ+=⎰⎰⎰⎰。
4.积分224()x y x y dxdy +≤+⎰⎰在极坐标下的二次积分为 。
222224()(cos sin )x y x y dxdy d r dr πθθθ+≤+=+⎰⎰⎰⎰5.二重积分22221()x y x y d σ+≤+=⎰⎰__________ 。
22212231()2x y x y dxdy d r dr ππθ+≤+==⎰⎰⎰⎰6.交换二次积分次序,2200(,)xI dxf x y dy -=⎰⎰= 。
故 2222(,)(,).yxI d x f x y d yd yf x y d x--==⎰⎰⎰⎰ (三)解答题 1.计算积分xy Dxe dxdy ⎰⎰,其中D :01,10≤≤-≤≤y x 。
解 由被积函数可以看出先对y 积分较简单。
110101111|(1)().xy xy xy Dxx xe dxdy xdx e dy e dx e dx x e e -----===-=+=⎰⎰⎰⎰⎰⎰2.计算dxdy xy D⎰⎰2,其中D 是由直线1,==x x y 和x 轴围成的平面区域。
解 由积分区域和被积函数可以看出可以任选积分次序。
解1 先对y 积分1112234510000001111()|333515x x D xy dxdy xdx y dy x y dx x dx x =====⨯⎰⎰⎰⎰⎰⎰ 解2 先对x 积分11122221001()2y D y xy dxdy y dy xdx y x dy ==⎰⎰⎰⎰⎰ 1122350011111(1)()22325111121().23521515y y dy y y =-=-=-==⎰3.计算dxdy y x D⎰⎰+)cos(,其中D 是由直线π===y x x y ,0,围成的平面区域。
解 由积分区域和被积函数可以看出可以任选积分次序,先对y 积分000cos()cos()sin()|1[sin()sin 2]cos()|cos 2| 2.2xDxx y dxdy dx x y dy x y dxx x dx x x πππππππππ+=+=+=+-=-++=-⎰⎰⎰⎰⎰⎰4.计算dxdy y D⎰⎰,其中D 是由直线,x y =,0,1==x x 及曲线xe y =围成的平面区域。
解 由积分区域可以看出,先对y 积分较简单。
11122222000111115|().22446412xx e e x x D x e ydxdy dx ydy y dx e x dx e ===-=--=-⎰⎰⎰⎰⎰⎰ 5.计算22()Dx y dxdy +⎰⎰,其中D 是由抛物线,2x y =直线0,1==y x 围成的平面区域。
解2211122222346001126()()()()33105x x Dx y d x d y d x xy d y x y y d x x x d x+=+=+=+=⎰⎰⎰⎰⎰⎰ 6.将二重积分dxdy y x f D),(⎰⎰化为两种二次积分次序,其中D 是由直线1,1,x y x y +=-=0x =围成的平面区域。
解11110111(,)(,)(,)(,)y yxDx f x y dxdy dx f x y dxdy dy f x y dxdy dy f x y dxdy +----==+⎰⎰⎰⎰⎰⎰⎰⎰7.交换I=110yxdx dy ⎰的积分次序,并求该积分的值。
解 由所给二次积分次序写出积分域D的不等式表达式:01x y ≤≤≤≤ 由此可得积分域的图形:故2110(,)(,)yxy Idx f x y dy dy f x y dx ==⎰⎰⎰8.设()f x 在[0,1]上连续,证明:21100()()()yx dy f x dx e e f x dx =-⎰⎰证 积分dx x f edy y y)(01⎰⎰可以表达成dx x f dy e yy)(01⎰⎰,函数)(x f 为抽象表达式,不便先对x 积分,故可考虑交换积分次序,2221111110()()()|()().yyy x x x f x dx f x dx e dy f x e dx e e f x dx ===-⎰⎰⎰⎰⎰9.计算二重积分dxdy x y I D)22(--=⎰⎰,其中D 是由抛物线,22x y =和直线42=+y x 围成的平面区域。
解 第一步:绘出区域图形,第二步:解方程22(1)24(2)y xx y ⎧=⎨+=⎩,求交点, 将(1)代入(2)得212202,1y y y y +-=⇒=-=,交点为12(8,2),(2,1)M M -。
第三步:确定积分限:由区域特点知,先对x ,后对y 积分较方便,2:21,242D y y x y -≤≤≤≤-2242122124222123452(2)(2)22(2)41181(4432)2510yD y yy x xI y dxdy dy y dxx x xy dyy y y y y dy -----=--=--=--=--+++=⎰⎰⎰⎰⎰⎰10.计算二重积分22(1)DI x y dxdy =--⎰⎰,其中D 是由221x y +=和直线0,==y x y 在第一象限内围成的平面区域。
解 区域是单位圆的一部分,被积函数有表达式22y x+,一般用极坐标计算二重积分,144422224100000111(1)(1)()|24416D I x y dxdy d r rdr r r d d ππππθθθ=--=-=-==⎰⎰⎰⎰⎰⎰11.计算二重积分DI =,其中D 是圆222x y y +=围成的平面区域。
解 区域是圆,被积函数有表达式22y x+,一般用极坐标计算二重积分,由直角坐标化为极坐标,变换公式为:cos ,sin ,x r y r dxdy rdrd θθθ===,因此圆222x y y +=在极坐标下的表达式为22sin 2sin r r r θθ=⇒=,积分域:0,02sin D r θπθ≤≤≤≤, 于是2sin 20320030188sin (1cos )(1)cos 338132(1)(cos cos )339DI d r drd d πθπππθθθθθθθ====--=--=⎰⎰⎰⎰ 12.计算二重积分DI =⎰⎰,其中D 是圆环22224x y ππ≤+≤。
解 用极坐标2202222sinsin 2(cos )2(cos |cos )6.Dd r rdrrd r r r rdr πππππππππθπππ==-=-+=-⎰⎰⎰⎰⎰⎰13.已知D 是圆域222(0)x y a a +≤>,求a 的值,使22()2xy DI e dxdy π-+==⎰⎰。
解 利用极坐标有:22222()2012()(1)2xy D ar r a a I e dxdyd e rdre e πθππ-+---===-=-⎰⎰⎰⎰令 2(1)2a eππ--=,解得a =14.求抛物面222z x y =--与上半圆锥面z =所围成的立体的体积V 。
解 由二重积分的几何意义,⎰⎰Dd y x f σ),(的值等于以D 为底,以曲面),(y x f z =为顶的曲顶柱体的体积,所以抛物面222z x y =--与上半圆锥面z =所围成的立体的体积为2222(2)(2DDDV x y d x y d σσσ=---=--⎰⎰⎰⎰其中D 为抛物面222z x y =--与圆锥面z =所围成的立体在xoy 面上的投影。
为求区域D,由222z x y z ⎧=--⎪⎨=⎪⎩消去z ,得221x y +=,所以区域22:1D x y +≤是圆,被积函数有表达式22y x +,用极坐标计算二重积分,得2134222210005(2(2)2[]346D r r V x y d d r r rdr r πσθππ=--=--=--=⎰⎰⎰⎰.。