高中数学必修2《空间几何体》知识点

合集下载

高中数学必修2知识点总结归纳整理

高中数学必修2知识点总结归纳整理

高中数学必修二·空间几何体1.1空间几何体的构造 棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE - 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的局部分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等表示:用各顶点字母,如四棱台ABCD —A'B'C'D'几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。

圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的 曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面 展开图是一个扇形。

圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之 间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。

高中数学必修2知识点总结:第一章_空间几何体

高中数学必修2知识点总结:第一章_空间几何体

高中数学必修2知识点总结:第一章_空间几何体高中数学必修2知识点总结第一章空间几何体1.1柱、锥、台、球的结构特征12空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于轴的线长度变半,平行于,轴的线长度不变;(3)画法要写好。

5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图13空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积r2r23圆锥的表面积SrrS22224圆台的表面积SrrRR5球的表面积S4R2(二)空间几何体的体积1柱体的体积VS底h2锥体的体积1VS底h33台体的体积V(S上S上S下S下h4球体的体积VR313扩展阅读:高中数学必修2知识点总结:第一章空间几何体高中数学必修2知识点总结第一章空间几何体1.1柱、锥、台、球的结构特征12空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于轴的线长度变半,平行于,轴的线长度不变;(3)画法要写好。

5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积r2r3圆锥的表面积S22Srr2224圆台的表面积SrrRR5球的表面积S4R2(二)空间几何体的体积1柱体的体积V13S底hVS底h2锥体的体积3台体的体积1V(S上3S上S下S下h4球体的体积V43R3。

必修二数学知识点整理

必修二数学知识点整理

必修二数学知识点整理一、立体几何初步。

(一)空间几何体。

1. 结构特征。

- 棱柱。

- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

- 棱柱的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。

- 棱锥。

- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。

- 棱锥的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。

- 棱台。

- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。

- 圆柱。

- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

- 圆柱的轴、底面、侧面、母线等概念。

- 圆锥。

- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。

- 圆锥的轴、底面、侧面、母线等概念。

- 圆台。

- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

- 圆台的上底面、下底面、侧面、母线等概念。

- 球。

- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。

- 球心、半径、直径等概念。

2. 三视图和直观图。

- 三视图。

- 正视图(主视图)、侧视图(左视图)、俯视图的概念。

- 画三视图的规则:长对正、高平齐、宽相等。

- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。

- 直观图。

- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。

画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。

- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。

- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

(完整word版)人教A版高中数学必修2知识点

(完整word版)人教A版高中数学必修2知识点

必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。

几何体的正视图、侧视图和俯视图统称为几何体的三视图。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。

高中数学必修2知识点加例题加课后习题

高中数学必修2知识点加例题加课后习题

高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中数学必修2《空间几何体》知识点

高中数学必修2《空间几何体》知识点

第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。

这条定直线叫做旋转体的轴。

多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。

棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱与底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱正棱柱: 底面是正多边形的直棱柱叫做正棱柱(1)上下底面平行,且是全等的多边形。

(2)侧棱相等且相互平行。

(3) 侧面是平行四边形。

三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。

按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。

特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。

高中数学必修2复习资料

高中数学必修2复习资料

必修2数学复习资料第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1、 三视图: 正视图:从前往后; 侧视图:从左往右; 俯视图:从上往下。

2、 画三视图的原则: 长对齐、高对齐、宽相等3、直观图:斜二测画法4、斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1、棱柱、棱锥的表面积: 各个面面积之和2、圆柱的表面积3、圆锥的表面积2r rl S ππ+=4、圆台的表面积22R Rl r rl S ππππ+++=5、球的表面积24R S π=(二)空间几何体的体积 1、柱体的体积 h S V ⨯=底2、锥体的体积 h S V ⨯=底313、台体的体积h S S S S V ⨯++=)31下下上上(4、球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11、平面含义:平面是无限延展的2、平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母γβα、、等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为ααα⊂⇒⎪⎪⎭⎪⎪⎬⎫∈∈∈∈L L B L A B A 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,222r rl S ππ+= D CBAαC · B· A·LA· α使.,,ααα∈∈∈C B A公理2作用:确定一个平面的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

旋转体:由一个平面图形绕它所在的平面的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。

这条定直线叫做旋转体的轴。

多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。

棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱与底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱正棱柱: 底面是正多边形的直棱柱叫做正棱柱(1)上下底面平行,且是全等的多边形。

(2)侧棱相等且相互平行。

(3) 侧面是平行四边形。

三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。

按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。

特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。

棱台用表示上、下底面各顶点的字母来表示,如下图,棱台ABCD-A1B1C1D1由三棱锥、四棱锥、五棱锥…截得的棱台,分别叫做三棱台,四棱台,五棱台…特殊的棱锥-由正棱锥截得的棱台叫正棱台上下底面平行,其余各面是梯形,且侧棱延长后交于一点。

三棱台四棱台正棱台3.棱柱定义图形表示性质定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。

用表示它的轴的字母表示,如圆柱OO1。

4.圆锥定义图形表示性质以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥。

用表示它的轴的字母表示,如圆锥SO。

6.圆台定义图形表示性质用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,这样的几何体叫做圆台。

用表示它的轴的字母表示,如圆台OO′7.球的结构特征1、球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球。

(1)半圆的半径叫做球的半径。

(2)半圆的圆心叫做球心。

(3)半圆的直径叫做球的直径。

2、球的表示:用表示球心的字母表示,如球O3、球的性质(1)用一个平面去截球,截面是圆面;用一个平面去截球面,截线是圆。

大圆---截面过圆心,半径等于球半径;小圆---截面不过圆心。

(2)球心和截面的圆心的连线垂直于截面。

(3)球心到截面的距离d与球的半径R及截面的半径r,有下面的关系:22 r R d =-解题方法:将立体中相关问题转化为平面几何问题棱锥由某些线段组成的直角三角形,在计算有关问题时很重要,它是将立体中相关问题转化为平面几何问题的根据,如图2-7中的△AOE,△AOC,△ACE及△OCE.这四个直角三角形中,若知道AE、AC、AO、OE、OC 及CE这六条线段中的若干条时,则可以通过这些直角三角形间的关系求出其他线段.总结三、空间几何体的三视图和直观图1、中心投影与平行投影2、三视图正视图——从正面看到的图侧视图——从左面看到的图俯视图——从上面看到的图画物体的三视图时,要符合如下原则:位置:正视图侧视图俯视图大小:长对正,高平齐,宽相等.3、直观图-----斜二测画法重点:用斜二测画法画水平放置的平面图形的直观图,步骤如下:⑴在已知图形中取互相垂直的x轴和y轴,两轴相交于点O. 画直观图时,把它们画对应的x'轴与y'轴,两轴交于点O' ,且使∠x'O'y' =45º(或135º),它们确定的平面表示水平面.⑵已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段;⑶已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的一半.例1 用斜二测画法画水平放置的正六边形的直观图.说明:1. 保持平行关系不变.2.水平长度保持不变;纵向长度取其一半.例3 用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A'B'C'D'的直观图.四、 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积222rrl S ππ+=3 圆锥的表面积2Srl r ππ=+4 圆台的表面积22S rl r Rl R ππππ=+++5 球的表面积24SR π=6扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)(二)空间几何体的体积 1柱体的体积V S h =⨯底2锥体的体积 13V S h =⨯底3台体的体积 1)3V S S h =++⨯下上(4球体的体积343V R π=第二讲 点、直线、平面之间的位置关系空间点、直线、平面之间的位置关系一、平面1、平面及其表示2、平面的基本性质 ①公理1:②公理2:不共线的三点确定一个平面③公理3:A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭P l P l P ααββ∈⎫⇒⋂=∈⎬∈⎭则二、点与面、直线位置关系1、点与平面有2种位置关系2、点与直线有2种位置关系三、空间中直线与直线之间的位置关系1、异面直线2、直线与直线的位置关系⎧⎧⎨⎪⎨⎩⎪⎩相交共面平行异面3、公理4和定理 公理4:12A B αα∈⎧⎨∉⎩、、12A lB l∈⎧⎨∉⎩、、131223l l l l l l ⎫⇒⎬⎭定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

4、求异面直线所成角的步骤: ①作:作平行线得到相交直线;②证:证明作出的角即为所求的异面直线所成的角; ③构造三角形求出该角。

提示:1、作平行线常见方法有:直接平移,中位线,平行四边形。

2、异面直线所的角的围是 。

四、空间中直线与平面之间的位置关系位置关系公共点有无数个公共点有且只有一个公共点没有公共点符号表示图形表示五、空间中平面与平面之间的位置关系位置关系 两个平面平行 两个平面相交 公共点 没有公共点有一条公共直线符号表示αβa αβ=(000,90⎤⎦a α直线与平面平行a α直线与平面相交a 直线在平面内a α⊂a αa Aα=图形表示直线、平面平行的判定及其性质一、线面平行1、判定:(线线平行,则线面平行)2、性质:(线面平行,则线线平行)二、面面平行1、判定:(线面平行,则面面平行)b a b b a ααα⊄⎫⎪⊂⇒⎬⎪⎭a a ab b αβαβ⎫⎪⊂⇒⎬⎪⋂=⎭a b a b P a b βββααα⊂⎫⎪⊂⎪⎪⋂=⇒⎬⎪⎪⎪⎭2、性质1:(面面平行,则线面平行) 性质2:m m αββα⎫⇒⎬⊂⎭(面面平行,则线面平行)说明(1)判定直线与平面平行的方法:①利用定义:证明直线与平面无公共点。

②利用判定定理:从直线与直线平行等到直线与平面平行。

③利用面面平行的性质:两个平面平行,则其中一个平面的直线必平行于另一个平面。

(2)证明面面平行的常用方法①利用面面平行的定义:此法一般与反证法结合。

②利用判定定理。

③证明两个平面垂直于同一个平面。

④证明两个平面同时平行于第三个平面。

a ab b αβαγβγ⎫⎪=⇒⎬⎪=⎭三、线线平行、面面平行、面面平行间的关系直线与平面垂直的判定及其性质一、直线与平面所成的角00--0,180l αβ⎡⎤∈⎣⎦二、二面角0,90α⎡⎤∈⎣⎦,PO AO PA l αααα⊥∴∴∠证明过程为在平面上的投影,为直线与平面所成的角。

,,--BO l AO l BOA l αβ⊥⊥∴∠证明过程是二面角的平面角。

三、线面垂直1、判定:2、性质1:3、性质2:四、面面垂直1、判定:文字表达:一个平面过另一个平面的垂线,则这两个平面垂直。

2、性质:a b a b A l l al b ααα⊂⎫⎪⊂⎪⎪⋂=⇒⊥⎬⎪⊥⎪⊥⎪⎭a ab b αα⊥⎫⇒⎬⊥⎭l l αβαβ⊥⎫⇒⊥⎬⊥⎭AB AB AB CD αβαββα⊥⎫⎪⋂⎪⇒⊥⎬⊂⎪⎪⊥⎭a ab b αα⊥⎫⇒⊥⎬⊂⎭... . . . 资料 . ..说明:(1)判定直线与平面垂直的方法:①利用定义(可用反证法)。

②利用判定定理。

③利用性质定理。

④结合平行关系: (2)判定平面与平面垂直的方法:①利用定义判断(证)二面角的平面角是直角。

②利用平面与平面垂直的判定定理。

,a b a b αα⊥⇒⊥。

相关文档
最新文档