《概率论与数理统计》习题答案(复旦大学出版社)第三章
概率论与数理统计(第三版)第三章课后答案

第三章随机向量X122C ;C ; 3c ; 53C ;C ; 25.4 (1) a=-95 12P{1<X < 乙 KYS 5张只2.5肝(1.3"仏5)—F(2.3 卜3 128<3)P{(X.r)eD}=f^『*6*必"制:[(6-〉”-討疗&T:(护-®+5討詁(护3+5”)|:=諾=善3.5 K: (1)y)工J: J:01 皿=f eP寸"血=(-<- UXr^ IS)=(1 -0X1 - 严)<2>P(rsx)= f:\f*如2严创;『dy =「2严(-八Qdx =J; 2宀(i十肚.j:(2宀》女肚=(・严3.6H: PC^ + JSa3.9B : x 術加HK 昨通»斤(0为:饴X>1 或xvOirL /(xj) = Op斤0) = [4.8>・(2-如=4 83[2*4门:*8川卜2》+黑计Zr(x) = O y > 或 <00<><1A(x) = f>.8y(2 “妙=2 妒(2-纠;=2*(2-x)©SOSxMl 时,/t (x) = | 4.8y(2-x>A =2 4y :(2-x)|r =2 4工(2・兀)3・7參见课本后面P227的答案3.8 f x (x) = J :/(x, >•>” J:訊如扌吟|:■专厶ox J :討法訐£ 'X0SXS2AW= 2* 0苴它/iO)h3>20<> <1 0其它Zr(x)h [(沖0<x<l=V2工+3°"幻3其它0 其它0<> <23 60< v<2其它 b 其它Y的血利K率密度跚齐3为:® 当或<0时尸/(x f>) = 0, /}(>) = 0②当0 Sg 时,力3 = f 4.8>(2-x>ft = 4 8>[2x-lr]|; = 4.8口1 卜2)+ £y2] =2.4>(3-4y+>:)MO (1〉券见课本石面P227的答案3 J2聲见课本后面P228的答案313 (1) 6x(17 0<x<l 0 其它0^x<l其它0<y<l其它311參见课本后面P228的答案【3+卸对TO<x<irt, A(x)>o2 5 X 她缘分布 1 0.15 0.250350.75 30.050.18 0.02 0.2S布0.2 0.430.371由表格可知 P{X-l;Y-2b0.29/:P{X.l}P{Y-2)-0.3225对于0<y<2时,/;(i)>0?0<x<l6x 2+ln0<x<lTT3 6 0 ■其它o+y其它-3-咖2卄犒h=2<+兰30 »JiX X故p^X=x)P{Y=y)所以X与Y不独立由鮭僚件P {X二工;丫二)[} "{工=卫尸{ Y=y)则P{X =2;K=2} = P{X = 2}P{Y = 2}P(X=2;r = 3) = P{X= 2}P{Y = 3}y;P{x=?}=iCO""30<x<2, 时,几(力齐(>)=4冷—/(兀“当x>2或x<OH,当)〉1 或y<o时,A(x)/iO) = o=/(x?j) 所以,x与Y之硼互独立・(訐(2〉衽3・9中,f x(x) =‘2.4三(2-力»0<x<l其它A(J)=2.4r(3-4v +y2)b 0^ v<l 其它3.16 B (J 在 3.8 中f x M= 2Io OSxS2其它AO) = <3y2 0<j ^16其它Xr(或40)二2・4疋(2-力2・4丿(3-4,+护)“・7&?(2-如3-令+小*/Uy),所以x与丫之冋不相5独NJ.17 解:二严=xe »)=匸心) f t(0=.匚fg 沁二 f* xe'(妇c以詁;芦希Z (x)/ o)=xe詁孑=fg >')故x与Y相歹檢立J・18聲见课本后面P228的答案。
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
《概率论与数理统计》习题及答案第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。
解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。
解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+,此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。
3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。
解 设i A =‘第i 个零件是合格品’1,2,3i =。
则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。
(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)

概率论与数理统计习题答案详解版(廖茂新复旦版)习题一1. 设A,B,C 为三个事件,用A,B,C 的运算式表示下列事件:(1)A 发生而B与 C 都不发生;(2)A,B,C 至少有一个事件发生;(3)A,B,C 至少有两个事件发生;(4)A,B,C 恰好有两个事件发生;(5)A,B至少有一个发生而 C 不发生;(6)A,B,C 都不发生.解:(1)A BC或 A B C或 A (B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C )∪(AC B )∪(BC A).(5)(A∪B)C.(6) A B C 或ABC.2. 对于任意事件A,B,C,证明下列关系式:(1)(A+B)(A+B )( A + B)( A + B )= ;(2)AB+A B +A B+A B AB= AB;(3)A-(B+C)= (A-B)-C. 证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发生但B不发生的概率;(2)A,B 都不发生的概率;(3)至少有一个事件不发生的概率.解(1)P(A B )=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(AB)=P( A B)=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB )=1-P(AB)=1-0.1=0.9.4.调查某单位得知。
购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。
求下列事件的概率。
(1)至少购买一种电器的;(2)至多购买一种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10 把钥匙中有 3 把能打开门,今任意取两把,求能打开门的概率。
解:8/156. 任意将10 本书放在书架上。
其中有两套书,一套 3 本,另一套4 本。
概率论与数理统计 修订版 (韩旭里 谢永钦 著)课后习题答案 复旦大学出版社

概率论与数理统计习题及答案习题一1. 略.见教材习题参考答案.2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件:(1)A 发生,B ,C 都不发生;(2)A 与B 发生,C 不发生;(3)A ,B ,C 都发生;(4)A ,B ,C 至少有一个发生;(5)A ,B ,C 都不发生;(6)A ,B ,C 不都发生;(7)A ,B ,C 至多有2个发生;(8)A ,B ,C 至少有2个发生.【解】(1)A (2)AB (3)ABC BC C (4)A ∪B ∪C =C ∪B ∪A ∪BC ∪A C ∪AB ∪ABC =AB A C BC A B C ABC(5)=(6)ABC A B C∪∪ABC (7)BC ∪A C ∪AB ∪C ∪A ∪B ∪==∪∪A B C AB BC A C ABC ABC A B C(8)AB ∪BC ∪CA =AB ∪A C ∪BC ∪ABC C B A 3. 略.见教材习题参考答案4.设A ,B 为随机事件,且P (A )=0.7,P (A −B )=0.3,求P ().AB 【解】P ()=1−P (AB )=1−[P (A )−P (A −B )]AB =1−[0.7−0.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求:(1)在什么条件下P (AB )取到最大值?(2)在什么条件下P (AB )取到最小值? 【解】(1)当AB =A 时,P (AB )取到最大值为0.6.(2)当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】P (A ∪B ∪C )=P (A )+P (B )+P (C )−P (AB )−P (BC )−P (AC )+P (ABC )=++−=141413112347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p =5332131313131352C C C C /C 8. 对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P (A 1)==()5(亦可用独立性求解,下同)51717(2)设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)==()5556767(3)设A 3={五个人的生日不都在星期日}P (A 3)=1−P (A 1)=1−()5179. 略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1)n 件是同时取出的;(2)n 件是无放回逐件取出的;(3)n 件是有放回逐件取出的.【解】(1)P (A )=C C /C m n m n M N M N−−(2)由于是无放回逐件取出,可用排列法计算.样本点总数有种,n 次抽取中有mP n N 次为正品的组合数为种.对于固定的一种正品与次品的抽取次序,从M 件正C m n 品中取m 件的排列数有种,从N −M 件次品中取n −m 件的排列数为种,P m M P n m N M −−故P (A )=C P P P m m n m n M N M n N−−由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N−−可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为种,对于固定的一种正、次品的抽取次序,C m n m 次取得正品,都有M 种取法,共有M m 种取法,n −m 次取得次品,每次都有N −M种取法,共有(N −M )n −m 种取法,故()C ()/m m n m nn P A M N M N −=−此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为,则取得M Nm 件正品的概率为()C 1m n mm n M M P A N N −⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+=∪14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1)1212()()()0.70.80.56P A A P A P A ==×=(2)12()0.70.80.70.80.94P A A =+−×=∪(3)2112()0.80.30.20.70.38P A A A A =×+×=∪15. 掷一枚均匀硬币直到出现3次正面才停止.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1)(2)223151115()()22232p C ==1342111C ()()22245/325p ==16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+××+∪22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)×=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】4111152222410C C C C C 131C 21p =−=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.【解】设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB p B A P A ===(2)()()()()0.30.50.10.7p A B P A P B P AB =+−=+−=∪19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521×==×+×21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x−y|>30.如图阴影部分所示.22301604P==22. 从(0,1)中随机地取两个数,求:(1)两个数之和小于的概率;65(2)两个数之积小于的概率.14【解】设两数为x,y,则0<x,y<1.(1)x+y<.6511441725510.68125p=−==(2)xy=<.141111244111d d ln242xp x y⎛⎞=−=+⎜⎟⎝⎠∫∫23. 设P()=0.3,P(B)=0.4,P(A)=0.5,求P(B|A∪)A B B【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB−==+−∪∪课后答案网:。
《概率论与数理统计答案》第三章

习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为
后
答
D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—
案
若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网
。
ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sinsinsinsin 0sinsin 0sin4346361).4=--+=题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数;(3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)(,)d d ed d 112x y A f x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d dy x F x y f u v u v -∞-∞=⎰⎰(34)340012e d d (1e )(1e )0,0,0,0,y y u v x y u vy x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)38{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ; (2) 求P {X <1,Y <3};(3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有2402(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰(3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.5402127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()X Yf x y X Y f x f y 独立 5515e 25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他.(2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-55-1d 25ed (5e5)d =e0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度. 【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y-+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x 24.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他()(,)d Y f y f x y x+∞-∞=⎰12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,y y x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰得 214c =.(2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他()(,)d Y f y f x y x +∞-∞=⎰5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,010,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他 所以|1,||1,(,)(|)2()0,.Y XX y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y yx y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y . (1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===故X 与Y 不独立(2) X 与Y 是否相互独立?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===⨯ 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度; (2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y , 从而方程有实根的概率为:22{}(,)d d x yP XY f x y x y ≥≥=⎰⎰21/21d ed 21(1)(0)]0.1445.x y x y-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z X F z P Z z P z Y =≤=≤(1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z )(如图a)3366102222101010()d d d d yzZ zx y zF z x y y x x yx y+∞≥==⎰⎰⎰⎰33610231010=d 2zzy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zyZ x y zF z x y y x x yx y+∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥ 之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…,P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+= {0,}{1,1}{,X Y i X Y i X i Y =====-==于是0{}{,},ik P Z i P X k Y i k X Y =====-∑相互独立{}{}ik P X k P Y i k===-∑ 0()()ik p k q i k==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P Xi Y k i =+====-∑0022(){}2ki ki n i ki nkii kk n ki k n kP X i P Y k in n p q p qi k i n n p q i k i n p qk =---+=-=-===-⎛⎫⎛⎫=⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫=⎪ ⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=1{,}{,},i ik k P Xi Y k P Xk Y i -=====+==∑∑ 0,1,2,3,4i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3i = 于是20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R ⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d(,)dy y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/41d d π1d d πR R r rRr rRθθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22ee 0111d ln 2.S x xx===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和【解】因21{}{,}j j i j i P Y y P P Xx Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y ===== , 从而11111{}{,}.624P X x P X x Y y =⨯====即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+== 即1,3111{},4248P X x Y y =++==从而131{,}.12P X x Y y ===同理21{},2P Y y ==223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=.同理23{}.4P X x ==从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤= .(2) {,}{}{|}P X n Y m P X n P Y m X n ======eC (1),,0,1,2,.!m mnmnnpp n m n n n λλ--=-≤≤= 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3. x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得 1{m a x {,}1}9P XY ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,(1)a,b,c的值;(2)Z的概率分布;(3)P{X=Z}.解(1) 由概率分布的性质知,a+b+c+0.6=1 即a+b+c = 0.4. 由()0.2E X=-,可得0.1a c-+=-.再由{0,0}0.1 {00}0.5{0}0.5P X Y a bP Y XP X a b≤≤++≤≤===≤++,得0.3a b+=.解以上关于a,b,c的三个方程得0.2,0.1,0.1a b c===.(2) Z的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y=-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y=-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y====+===,{2}{1,1}0.1P Z P X Y=====,即Z的概率分布为(3) {}{0}0.10.20.10.10.20.4P X Z P Y b====++=++=.。