高等数学 复旦大学出版社 课后习题答案

合集下载

高等数学复旦大学出版第三版下册课后答案习题全

高等数学复旦大学出版第三版下册课后答案习题全

习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故s==xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149 z=即所求点为M(0,0,149).7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()++=++a b c a b c.证明:利用三角形法则得证.见图7-1图7-19. 设2,3.=-+=-+-u a b c v a b c试用a, b, c表示23.-u v解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b ca b c a b ca b c10. 把△ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A连接,试以AB=c,BC=a表示向量1D A,2D A,3D A和4D A.解:1115D A BA BD=-=--c a2225D A BA BD=-=--c a3335D A BA BD=-=--c a444.5D A BA BD=-=--c a11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M的投影为M',则1Pr j cos604 2.2uOM OM=︒=⨯=12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A的坐标.解:设此向量的起点A的坐标A(x, y, z),则{4,4,7}{2,1,7}AB x y z=-=----解得x=-2, y=3, z=0故A的坐标为A(-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP ==(3) 12cos 14xa PP α== 12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PP PP ===+e j. 14.三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcoscos cosαβγ=== 15. 求出向量a = i +j +k , b=2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e ee 来表达向量a ,b ,c .解:||==a||==b ||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有cos (1,1)3x a ia a i a iπ⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅ 则214y a = 求得12y a =± 又1,a =则2221x y z a a a ++=从而求得11{,,22a =或11{,,22- 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}.19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-= 得2229524x y z z ++=-+126570cos 6, 749z z γ==⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b 21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr jCD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角.解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ; (2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =-22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯. 30.(1)解: x yz x y z ij k a b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()xy z xy z x y za a ab b b C C C = 若,,C a b 共面,则有 a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2)C x y z x y z xy z a a a a b b b b C C C ⨯⋅=()a x y z x y z xy z b b b b C C C C a a a ⨯⋅=() b xy z x y z xyz C C C C a a a a b b b ⨯⋅=() 由行列式性质可得: x y z xy z x y z x y z x y z x y z xy z x y z x y z a a a b b b C C C b b b C C C a a a C C C a a a b b b ==故 C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积.解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅, 而11948222BCD S BC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程.35. 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程. 解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=得b=2.故所求平面方程为1424x y z++=40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知111212121313131x x y y z zx x y y z zx x y y z z------=---代入三已知点,有1112121210111121x y z--+----+=---+化简得x-3y-2z=0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x-1=0;(3) 2x-3y-6=0; (4) x–y =0;(5) 2x-3y+4z=0.解:(1) y =0表示xOz坐标面(如图7-2)(2) 3x-1=0表示垂直于x轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面.解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面. 解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=046. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角: (1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-i j ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-=即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++-化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-1259. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18图7-19图7-20 图7-2161. 求下列曲面和直线的交点:(1)222181369x y z++=与342364x y z--+==-;(2)22211694x y z+-=与2434x y z+==-.解:(1)直线的参数方程为334624x ty tz t=+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t=0,t=1.得交点坐标为(3,4,-2),(6,-2,2).(2) 直线的参数方程为4324x ty tz t=⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t=1,得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z轴上,半径为3,且位于距离xOy平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x , y )|x ≠0};(2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =+(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→ 22001(2)lim;x y x y →→+00x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x+-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数: (1)z = x 2y +2x y ; (2)s =22u v uv+;(3)z = x; (4)z = lntan x y; (5)z = (1+xy )y ; (6)u = z xy ;(7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .yyzz yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y =+,求证:3u uxy u x y∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x =; (4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d0.05d0.07(4.05,2.93)(4,3)d(4,3)0.053(0.07)]15(0.01)54.998xyf f f==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=x y,则d f(x,y)=yx y-1d x+x y ln x d y,取x=2,y=1,d x=-0.03,d y=0.05,则1.05d0.03d0.05(1.97)(1.97,1.05)(2,1)d(2,1)20.0393 2.0393.xyf f f=-==≈+=+=19.矩型一边长a=10cm,另一边长b=24cm, 当a边增加4mm,而b边缩小1mm时,求对角线长的变化.解:设矩形对角线长为l,则d d).l l x x y y==+当x=10,y=24,d x=0.4,d y=-0.1时,d0.4240.1)0.062l=⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20.解:因为圆锥体的体积为21.3V r hπ=⋅0030,0.1,60,0.5r r h h====-而221.33V VV dV r h yh r r hr hππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h====-时,2213.1430600.130(0.5)33Vπ≈⨯⨯⨯⨯+⨯⨯-230()cm=-21.解:设水池的长宽深分别为,,x y z则有:V xyz=精确值为:50.242 2.850.22 3.6 2.80.2V=⨯⨯+⨯⨯⨯+⨯⨯⨯313.632()m=近似值为:V dV zx y xy z ≈=+0.4,0.4,0.2x y z ===430.4530.4540.2V dV ≈=⨯⨯+⨯⨯+⨯⨯ 314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2)z =arc tanx y , x =u +v ,y =u -v , 求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+, y =x 3, 求d d ux; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+25. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂。

高等数学下册黄立宏廖基定著复旦大学出版社第十章课后答案

高等数学下册黄立宏廖基定著复旦大学出版社第十章课后答案

− 2 arcsin y ≤ x ≤ π; arcsin y ≤ x ≤ π − arcsin y.
0 π 1 π − arcsin y
所以 (5) 相应二重积分的积分区域 D 由 D1 与 D2 两部分组成,其中

0
dx ∫
x − sin 2
f ( x, y )dy = ∫ dy ∫
−1
−2arcsin y
∫ (1)
1
2
ww w.
图 10-5 (2) (4)
2 x 的交点(1,2),与 x=2 的交点为(2,4), (3)区域 D 如图 10-5 所示,直线 y=2x 与曲线 2 2 y= ≤ y ≤ 2 x, 1 ≤ x ≤ 2. x 与 x=2 的交点为(2,1) ,区域 D 可表示为 x 曲线
y=
1
1− y
f ( x, y )dx
可表示为
y 2 ≤ x ≤ y + 2, − 1 ≤ y ≤ 2 .
图 10-3 所以
图 10-4
2
D
−1
y2
课 后



x 所以 . 6. 画出积分区域,改变累次积分的积分次序:
∫∫
D
f ( x, y )dσ = ∫ dx ∫2 f ( x, y )dy
1
2y
2
2x
(1) (2)
课 后
I = ∫∫
D
4 + xy dσ , D = {( x, y ) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}
2 2

∫∫
ln( x + y )dσ < ∫∫ [ln( x + y )]2 dσ

高等数学复旦大学出版社习题答案五

高等数学复旦大学出版社习题答案五
(2)L′(x)=R′(x)-C′(x)=5-2x.
在总利润最大的基础上再多生产100台时,利润的增量为
ΔL(x)= .
即此时总利润减少1万元.
21.某企业投资800万元,年利率5%,按连续复利计算,求投资后20年中企业均匀收入率为200万元/年的收入总现值及该投资的投资回收期.
解:投资20年中总收入的现值为
在(3,0)处的切线是y=2x+6
两切线交点是( ,3).故所求面积为
(7)
(8)摆线x=a(tsint),y=a(1cost)的一拱(0t2)与x轴;
解:当t=0时,x=0,当t=2时,x=2a.
所以
(8)
(9)极坐标曲线ρ=asin3φ;
解:

(9)
(10)ρ=2acosφ;
解:

(10)
2.求下列各曲线所围成图形的公共部分的面积:
1.求下列各曲线所围图形的面积:
(1) 与x2+y2=8(两部分都要计算);
解:如图D1=D2
解方程组 得交点A(2,2)
(1)
∴ ,

(2) 与直线y=x及x=2;
解: .
(2)
(3)y=ex,y=ex与直线x=1;
解: .
(3)
(4)y=lnx,y轴与直线y=lna,y=lnb.(b>a>0);
≈0.385386万元=3853.86元.
yt′=3asin2tcost
xt′2+yt′2=9a2sin2tcos2t,利用曲线的对称性,

9.求对数螺线 相应θ=0到θ=φ的一段弧长.
解:

10.求半径为R,高为h的球冠的表面积.

高等数学上_复旦大学出版_习题五答案

高等数学上_复旦大学出版_习题五答案

(16) 对于任意的 y∈[0,h],过点(0,y)且垂直于 y 轴的平面截该立体为一椭圆,且该椭圆的半轴为: A a B b x1=A y , 同理可得该椭圆的另一半轴为: x 2 = B y. h h 故该椭圆面积为 A a B b A ( y )= x 1 x 2 = A y B y h h 从而立体的体积为
2 0 2 2
1 y
1+ y ′ 2 d x =2
0
1+
1 dx y2
=2
2 1 y2 1+ y 2 d =2 1+ y 2 d y y 2 0 0 2
= y 1+ y 2 +ln (y + 1+ y 2 ) =2 5 +ln(2+ 5)
0
(2) y =ln x , 3 ≤x≤ 8 ; 解:l = = (3) y =
∴D =
1 a 0
(x x 2 ax )d x
1 1 1 a = (1 a )· x2 x3 3 0 2 = 1 1 a )3 6( 1 9 1 a )3 = 6( 2 得 a=2. (13) 4. 求下列旋转体的体积: (1) 由 y = x 2 与 y 2 = x 3 围成的平面图形绕 x 轴旋转;
习题五
1. 求下列各曲线所围图形的面积: 1 (1) y = x2 与 x 2 + y 2 =8(两部分都要计算); 2 解:如图 D 1 = D 2
Байду номын сангаас
y = 1 x 2 解方程组 2 得交点 A(2,2) x 2 + y 2 =8
(1) 1 2 D 1 = 8 x 2 x 2 d x =π+ 2 3 0 4 ∴ D 1 + D 2 =2 π + , 3 4 4 D 3 + D 4 =8 π 2 π + =6 π . 3 3 1 (2) y = 与直线 y=x 及 x=2; x

高等数学复旦大学出版第三版上册课后答案习题全 PDF 版本适合手机

高等数学复旦大学出版第三版上册课后答案习题全 PDF 版本适合手机

x x x x ] = 时,邮资 y = × 0.80 = ; 20 20 20 25 x x ⎡ x ⎤ ]≠ 时, 由题意知邮资 y = + 1⎥ × 0.80 . ⎢ 20 20 ⎣ 20 ⎦
当 x 不能被 20 整除时,即 [
⎧x ⎡ x⎤ x , 0 < x ≤ 2000且 ⎢ ⎥ = ; ⎪ ⎪ 25 ⎣ 20 ⎦ 20 综上所述有 y = ⎨ ⎪ ⎡ x + 1⎤ × 0.80, 0 < x ≤ 2000且 ⎡ x ⎤ ≠ x . ⎢ ⎪ ⎣ 20 ⎥ ⎦ ⎣ 20 ⎥ ⎦ 20 ⎩⎢
1− x 1− y 解得 x = , 1+ x 1+ y
所以函数 y =
1− x 1− x 的反函数为 y = ( x ≠ −1) . 1+ x 1+ x
y−1
(2) 由 y = ln( x + 2) + 1 得 x = e
−2,
(x ∈R) .
所以, 函数 y = ln( x + 2) + 1 的反函数为 y = e x −1 − 2
习题一
1. 下列函数是否相等,为什么?
(1) f ( x ) = x 2 , g (x ) = x ; x 2 −1 (3) f ( x ) = , g ( x ) = x + 1. x −1
解: (1)相等.
(2)y = sin2 (3x + 1),u = sin2 (3t + 1);
因为两函数的定义域相同 ,都是实数集 R; 由
4

f ( x) − f (− x) 为奇函数.
12. 某厂生产某种产品 , 年销售量为 106 件, 每批生产需要准备费 103 元, 而每件的年库存费为 0.05 元, 如果销售是均匀的 , 求准备费与库存费之和的总费用与年销售批数之间的函数 ( 销售 均匀是指商品库存数为批量的一半). 解: 设年销售批数为 x, 则准备费为 103x; 又每批有产品

高等数学复旦大学出版第三版上册课后答案习题全

高等数学复旦大学出版第三版上册课后答案习题全
其中
x x x x , 1 分别表示不超过 , 1 的最大整数. 20 20 20 20
14. 已知水渠的横断面为等腰梯形,斜角 =40°,如图所示.当过水断面 ABCD 的面积为定值 S0 时,求湿周 L(L=AB+BC+CD)与水深 h 之间的函数关系式,并指明其定义域.
106 106 106 件,库存数为 件,库存费为 0.05 元. x 2x 2x
3
106 0.05 设总费用为,则 y 10 x . 2x
13. 邮局规定国内的平信,每 20g 付邮资 0.80 元,不足 20 g 按 20 g 计算,信件重量不得超过 2kg, 试确定邮资 y 与重量 x 的关系. 解: 当 x 能被 20 整除,即 [
x
7. 证明: f ( x) 2 x 1 和 g ( x)
3
3
x 1 互为反函数. 2
证:由 y 2 x 1 解得 x
3
3
y 1 , 2
2
故函数 f ( x) 2 x 1 的反函数是 y
3
3
x 1 ( x R ) , 这与 g ( x) 2
3
x 1 是同一个函 2
3
又由 1 cos x 1 得 0 1 cos x 2 , 即 0 y 2 , 故可得反函数的定义域为 [0,2], 所以 , 函数 y 1 cos x, x [0, π] 的反函
3
数为 y arccos 3 x 1
(0 x 2) .
9. 判断下列函数在定义域内的有界性及单调性:
(2) f ( x) e
2 x
e 2 x sin( x) e 2 x e 2 x sin x (e 2 x e 2 x sin x) f ( x)

高等数学(经管类)下、林伟初 郭安学主编、复旦大学出版社、课后习题答案

高等数学(经管类)下、林伟初  郭安学主编、复旦大学出版社、课后习题答案

fx (x,
y,
z)
x
1 yz
,
fy
(x,
y,
z)
x
z yz
,
fz
(x,
y,
z)
x
y yz
.

fx (2, 0,1)
1, 2
fy (2, 0,1)
1, 2
fz (2, 0,1)
0.
3.设 r x 2 y 2 z 2 ,证明:
(1)
r x
2
r y
2
r z
2
1;
(2)
2r x 2
2r y 2
y
x
故所求的定义域为 D={(x,y)| x 1且y x },表示 xOy 平面上直线 y=x 以下且横坐
标 x 1的部分。
(4)由
1 3 x2 y2 1
x y2 0
可得
2 x2 y2 4
y2 x
故所求的定义域为 D={(x,y)| 2 x2 y2 4且y2 x }。
解:(1) z 3x2 3y, z 3x 3y2.
x
y
(2) z sin y2 , z 1 cos y2 2y.
x
x2 y x
(3) z 1 , z 3 . x x 3y y x 3y
(4) z yxy1 y yxy1 1 , z xy ln x 1 .
x
xy
x y
欢迎下载
-3-

习题 7-3
1. 求下列函数偏导数: (1) z=x3+3xy+y3; (3) z ln(x 3y) ;
(2) z sin y 2 ; x
(4) z x y ln x y (x 0,y 0,x 1)

高等数学复旦大学出版第三版课后答案

高等数学复旦大学出版第三版课后答案

206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 解: (1)相等.因为两函数的定义域相同,都是实数集R ;x =知两函数的对应法则也相同;所以两函数相等.(2)相等.因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等.(3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等.2. 解: (1)要使函数有意义,必须400x x -≥⎧⎨≠⎩ 即40x x ≤⎧⎨≠⎩所以函数的定义域是(,0)(0,4]-∞.(2)要使函数有意义,必须30lg(1)010x x x +≥⎧⎪-≠⎨⎪->⎩ 即301x x x ≥-⎧⎪≠⎨⎪<⎩所以函数的定义域是[-3,0)∪(0,1).(3)要使函数有意义,必须210x -≠ 即 1x ≠±所以函数的定义域是(,1)(1,1)(1,)-∞--+∞.(4)要使函数有意义,必须12sin 1x -≤≤ 即 11sin 22x -≤≤即ππ2π2π66k x k -+≤≤+或5π7π2π2π66k x k +≤≤+,(k 为整数).也即ππππ66k x k -+≤≤+ (k 为整数).所以函数的定义域是ππ[π,π]66k k -++, k 为整数.3.解: 由已知显然有函数的定义域为(-∞,+∞),又当0x ≠时,1x 可以是不为零的任意实数,此时,1sinx 可以取遍[-1,1]上所有的值,所以函数的值域为[-1,1]. 4. 解: 10(0)110f -==+,1()1(),1()1x x f x x x --+-==+--1111().111x x f x x x --==++ 5.解: 1,1101,01(1).(1)1,012,13x x f x x x x x -≤-<≤<⎧⎧-==⎨⎨-+≤-≤≤≤⎩⎩6.解: ()ln (())22,g x x x f g x ==(())()ln ()2ln 2(ln 2)2,x x x g f x f x f x x ==⋅=⋅()2(())22,(())()ln ()ln ln(ln ).xf x f f xg g x g x g x x x x x ====7. 证:由321y x =-解得x =故函数3()21f x x =-的反函数是)y x =∈R ,这与()g x =数,所以3()21f x x =-和()g x =.8. 解: (1)由11x y x -=+解得11y x y -=+, 所以函数11x y x -=+的反函数为1(1)1x y x x -=≠-+.(2)由ln(2)1y x =++得1e 2y x -=-,所以,函数ln(2)1y x =++的反函数为1e 2()x y x -=-∈ R . (3)由253x y +=解得31(log 5)2x y =-所以,函数253x y +=的反函数为31(log 5)(0)2y x x =-> .(4)由31cos y x =+得cos x =又[0,π]x ∈,故x =又由1cos 1x -≤≤得301cos 2x ≤+≤,即02y ≤≤,故可得反函数的定义域为[0,2],所以,函数31cos ,[0,π]y x x =+∈的反函数为(02)y x =≤≤.9. 解: (1)()()f x f x -===()f x ∴=.(2)222222()e e sin()e e sin (e e sin )()x x x x x x f x x x x f x ----=-+-=-+=--+=-∴函数22e e sin x xy x -=-+是奇函数.10. 解: (1)函数的定义域为(-∞,+∞), 当0x ≤时,有201xx ≤+,当0x >时,有21122x x x x ≤=+,故(,),x ∀∈-∞+∞有12y ≤.即函数21x y x =+有上界. 又因为函数21x y x =+为奇函数,所以函数的图形关于原点对称,由对称性及函数有上界知,函数必有下界,因而函数21x y x =+有界.又由1212121222221212()(1)11(1)(1)x x x x x x y y x x x x ---=-=++++知,当12x x >且121x x <时,12y y >,而 当12x x >且121x x >时,12y y <.故函数21xy x =+在定义域内不单调.(2)函数的定义域为(0,+∞),10,0M x ∀>∃>且12;e 0M x M x >∃>>,使2ln x M >. 取012max{,}x x x =,则有0012ln ln 2x x x x M M +>+>>,所以函数ln y x x =+在定义域内是无界的. 又当120x x <<时,有12120,ln ln 0x x x x -<-<故1211221212(ln )(ln )()(ln ln )0y y x x x x x x x x -=+-+=-+-<. 即当120x x <<时,恒有12y y <,所以函数ln y x x =+在(0,)+∞内单调递增.11. 解: (1)124(1)y x =+是由124,1y u u x ==+复合而成. (2)2sin (12)y x =+是由2,sin ,12y u u v v x ===+复合而成.(3)512(110)x y -=+是由152,1,10,w y u u v v w x ==+==-复合而成.(4)11arcsin 2y x =+是由1,1,arcsin ,2y u u v v w w x -==+==复合而成. 12.证: (1)设()()()F x f x f x =+-,则(,)x ∀∈-∞+∞, 有()()()()F x f x f x F x -=-+= 故()()f x f x +-为偶函数.(2)设()()(),G x f x f x =--则(,)x ∀∈-∞+∞,有()()()[()()]()G x f x f x f x f x G x -=---=---=- 故()()f x f x --为奇函数.13.解: 设年销售批数为x , 则准备费为103x ;又每批有产品610x 件,库存数为6102x 件,库存费为6100.052x ⨯元.设总费用为,则63100.05102y x x ⨯=+. 14. 解: 当x 能被20整除,即[]2020x x =时,邮资0.802025x x y =⨯=; 当x 不能被20整除时,即[]2020x x ≠时,由题意知邮资0.80120x y ⎡⎤=⨯+⎢⎥⎣⎦.综上所述有,02000;2520200.80,02000.1202020x xx x y x x x x ⎧⎡⎤<≤=⎪⎢⎥⎪⎣⎦=⎨⎡⎤⎡⎤⎪⨯<≤≠+⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩且且其中20x ⎡⎤⎢⎥⎣⎦,120x ⎡⎤+⎢⎥⎣⎦分别表示不超过20x ,120x +的最大整数.15. 证: (1)由e e sinh 2x xy x --==得2e 2e 10x xy --= 解方程2e 2e 10x xy --=得e x y =因为e 0x>,所以e x y =ln(x y = 所以sinh y x =的反函数是arcsin h ln(().y x x x ==+-∞<<+∞(2)由e e tanh e e x x x xy x ---==+得21e 1x y y +=-,得1112ln ,ln 121y yx x y y ++==--; 又由101yy +>-得11y -<<,所以函数tanh y x =的反函数为11arctan h ln (11).21xy x x x +==-<<-16. 解: 011()(2cot )(cot )22S h AD BC h h BC BC h BC h ϕϕ=+=++=+ 从而 0cot SBC h h ϕ=-.000()22cot sin sin 2cos 2cos 40sin sin 40L AB BC CD AB CD S h hBC h hS S h h h h ϕϕϕϕϕ=++==+=+---=+=+由00,cot 0S h BC h h ϕ>=->得定义域为40). 17. 解:1(1),1n n x n -=+当n →∞时,1n x →. 1(2)cos π2n n x n -=,当n 无限增大时,有三种变化趋势:趋向于+∞,趋向于0,趋向于-∞.21(3)(1)21nn n x n +=--,当n 无限增大时,变化趁势有两种,分别趋于1,-1.18. 解: (1)lim 0n n a x →∞==,0ε∀>,要使11π0sin 2n n x n n ε-=<<,只须1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,必有0n x ε-<. 当0.001ε=时,110000.001N ⎡⎤==⎢⎥⎣⎦或大于1000的整数.(2)lim 0n n a x →∞==,0ε∀>,要使0n x ε-==<=<1ε>即21n ε>即可.取21N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有0n x ε-<. 当0.0001ε=时, 821100.0001N ⎡⎤==⎢⎥⎣⎦或大于108的整数.19. 证: (1)0ε∀>,要使22110n n ε=<-,只要n >取N =,则当n>N 时,恒有210n ε<-.故21lim 0n n →∞=.(2) 0ε∀>,要使555313,2(21)4212n n n n n ε-=<<<-++只要5n ε>,取5N ε⎡⎤=⎢⎥⎣⎦,则当n>N 时,恒有313212n n ε-<-+.故313lim 212n n n →∞-=+. (3) 0ε∀>,要使2221a n ε=<<,只要n >,取n =,则当n>N 时,1ε<,从而lim 1n n →∞=.(4)因为对于所有的正整数n ,有10.99991n <-个,故0ε∀>,不防设1ε<,要使1,0.999110n n ε=<-个只要ln ,ln10n ε->取ln ,ln10N ε-⎡⎤=⎢⎥⎣⎦则当n N >时,恒有,0.9991n ε<-个故lim 0.9991n n →∞=个.20.证:lim 0n n x →∞=,由极限的定义知,0,0N ε∀>∃>,当n N >时,恒有nx a ε-<.而n n x x a a ε-<-<0,0N ε∴∀>∃>,当n N >时,恒有n x a ε-<,由极限的定义知lim .n n x a →∞=但这个结论的逆不成立.如(1),lim 1,n n n n x x →∞=-=但lim nn x →∞不存在.21. 解:1111(1)0(1)(1)1(1)1k k k kk k n n n n n n n -⎡⎤⎡⎤<+-=<=+-+-⎢⎥⎢⎥⎣⎦⎣⎦而lim 00n →∞=,当1k <时,11lim0k n n -→∞=lim[(1)]0k k n n n →∞∴+-=.(2)记12max{,,,}m a a a a =则有n n m a <++<即 1n nma a m a <++<⋅而 1lim , lim ,nn n a a m a a →∞→∞=⋅=故 nm n a a++=即12lim max{,,,}n m m n a a a a ++=.(3)111(3)(123)(33)n nn n nn n<++<⋅即 113(123)3n nn nn+<++< 而 1lim33,lim33n nn n +→∞→∞==故1lim(123)3nn nn →∞++=.(4)11111n n <+<+而 1lim10,lim(1)1n n n →∞→∞=+=故1n=.22. 证: (1)122x =<,不妨设2k x <,则12k x +<=.故对所有正整数n 有2n x <,即数列{}n x 有上界.又1n n nx x x+-=0>,又由2n x <从而10n n x x +->即1nn x x +>,即数列{}n x 是单调递增的.由极限的单调有界准则知,数列{}n x 有极限.设lim n n x a→∞=,则a =于是22a a =,2,0a a ==(不合题意,舍去),lim 2n n x →∞∴=.(2) 因为110x =>,且111nn n xx x +=++, 所以02n x <<, 即数列有界又111111111(1)(1)n n n n n n n n n n x x x x x x x x x x --+---⎛⎫⎛⎫++-=-=⎪ ⎪++++⎝⎭⎝⎭ 由110,10n n x x -+>+>知1n n x x +-与1n n x x --同号,从而可推得1n n x x +-与21x x -同号, 而1221131,1,022x x x x ==+=->故10n n x x +->, 即1n n x x +>所以数列{}n x 单调递增,由单调有界准则知,{}n x 的极限存在. 设lim n n x a→∞=, 则11a a a =++,解得a a ==(不合题意,舍去).所以1lim 2n n x →∞+=23. 证:(1)0ε∀>,要使1sin sin 0x xx x x ε=≤<-,只须1x ε>,取1X ε>,则当x X >时,必有sin 0xx ε<-,故sin limx xx →+∞=. (2)0ε∀>,要使 22221313313||44x x x x ε-=<<-++,只须x >取X =X x >时,必有223134x x ε-<-+,故2231lim 34x x x →∞-=+. (3) 0ε∀>,要使24(4)22x x x ε-=<--++,只要取δε=,则当02x δ<<+时,必有24(4)2x x ε-<--+,故224lim 42x x x →--=-+. (4) 0ε∀>,要使21142221221x x x x ε-==<+-++,只须122x ε<+,取2εδ=,则 当102x δ<<+时,必有214221x x ε-<-+ 故21214lim 221x x x →--=+.(5) 0ε∀>,要使11sin0sin x x x x x ε=≤<-,只要取δε=,则 当00x δ<<-时,必有1sin0x x ε<-,故 01lim sinx x x →=.24. 解:()()2232233lim 33933(1)lim 1lim 9151x x x x x x x →→→---===+++.2221424242112222333422424lim()11(2)lim 2.31lim(31)13111111(3)limlim .1121221111lim (4)lim lim 0.3131311lim 1(5x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x →→→→∞→∞→∞→∞→∞→∞+++===--+-+-⨯+--==----⎛⎫-- ⎪-⎝⎭===-+⎛⎫-+-+ ⎪⎝⎭222222121lim 21)lim lim 01111lim 1x x x x x x x x x x x x →∞→∞→∞→∞⎛⎫++ ⎪+⎝⎭===+⎛⎫++ ⎪⎝⎭由无穷大与无穷小的关系知, 21lim 21x x x →∞+=∞+.3(1)(2)(3)1123(6)limlim 1115511123lim lim lim .11155n n n n n n n n n n n n n n n →∞→∞→∞→∞→∞+++⎛⎫⎛⎫⎛⎫=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=⋅⋅=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(7)因为221(1)()(1)11x a x a b x b ax b x x +--++---=++ 由已知211lim 21x x ax b x →∞⎛⎫+=-- ⎪+⎝⎭知,分式的分子与分母的次数相同,且x 项的系数之比为12,于是10a -= 且 ()112a b -+=解得31,2a b ==-. 25.解:22123(1)(1)111(1)limlim lim .1222n n n n n n n n n →∞→∞→∞++++--⎛⎫===- ⎪⎝⎭1221112244411112(2)lim lim 2.11221221(1)(3)lim lim lim(1)0.1168(2)(4)22(4)lim lim lim .54(1)(4)13n n n n x x xx x x x xx x x x x xx x x x x xx x +→∞→∞→→→→→→⎛⎫- ⎪⎛⎫⎝⎭==+++ ⎪⎝⎭--+-==-=---+---===-+---322000(5)lim lim lim2.lim(1 2.x x x x x x x →+∞→→→=====-+=-5555x x x x →→→→=====3333ππ4422π422π41cot 1cot (8)lim lim 2cot cot (1cot )(1cot )(1cot )(1cot cot )lim (1cot )(11cot cot )1cot cot 3lim .2cot cot 4x x x x x xx x x x x x x x x x x x x x →→→→--=---+--++=-+++++==++122222(9)lim(1)(1)(1)(1)(1)(1)(1)(1)lim 111lim .11nnn x x x x x x x x x x x xx +→∞→∞→∞+++<-+++=--==-111211211(1)(1)(10)lim(1))(1))(1)11.234!n n x n n n n x n n n n x n x x x x x x x x n n -→--→-→--=++++=++++==⨯⨯⨯⨯ 22223111221113213(11)lim lim lim (1)(1)(1)(1)11(1)(2)(2)lim lim 1.(1)(1)1x x x x x x x x x x x x x x x x x x x x x x x x x →→→→→++-+-⎛⎫==- ⎪-++-++--⎝⎭-+-+===--++++2212211221lim(1)(1)(12)lim 01lim(1)1lim .(1)x x x x x x x x x x x x x →→→→--==-+-+-+∴=∞-1log (1)(13)log (1)a xa x x x +=+而10lim(1).xx x e →+= 而1limlog log ln a a u eu e a →==0log (1)1lim.ln a x x x a →+∴=(14)令1,xu a =-则log (1),a x u =+当0x →时,0u →. 所以00011lim lim ln log (1)log (1)limx x u a a u a u a u x u u →→→-===++(利用(13)题的结果).1122000336ln(12)ln(12)sin sin 2sin 0lim 6ln(12)6limlimln(12)sin sin 61ln e 6(15)lim(12)lim elim ee ee e .x xx x x xx x xxx xx x x xxx x xx x →→→++→→→⋅⋅+⋅⋅+⨯⨯+======(16)令sin x u x =, 则00sin lim lim 1x x xu x →→==而1limln 0u u →= 所以0sin limln 0.x x x →=26. 解:232200lim lim 022x x x x x x x x x →→--==--∴当0x →时,23x x -是比22x x -高阶的无穷小量.27.解:211111(1)lim lim 112x x x x x →→-==-+ ∴当1x →时,1x -是与21x -同阶的无穷小.2111(1)12(2)lim lim 112x x x xx →→-+==-∴当1x →时,1x -是与21(1)2x -等价的无穷小. 28. 解:(1)因为当0x →时,sin ~,sin ~,mx mx nx nx所以00sin limlim .sin x x mx mx mnx nx n →→== 000002000limcos cos (2)lim cot lim cos lim 1.sin sin sin lim 1cos 22sin sin (3)lim lim 2lim 2.sin sin x x x x x x x x x x x x x x x xx x xx x x x x x x x →→→→→→→→=⋅===-===(4)因为当0x →时,2221ln(1e sin )~e sin 1~2x x x x x+,所以22200002e sin sin lim lim 2e lim 2.12x x x x x x x x x x x →→→→⎛⎫==⋅= ⎪⎝⎭(5)因为当0x →时,arctan3~3,x x 所以00arctan 33limlim 3x x x xx x →→==. sin sin 22(6)lim 2sin lim lim .222n nn n n n n n n x x x x x x x x →∞→∞→∞=⋅==(7)因为当12x →时,arcsin(12)~12x x --,所以22111122224141(21)(21)lim lim lim lim(21) 2.arcsin(12)1212x x x x x x x x x x x x →→→→---+===-+=----(8)因为当0x →时,22arctan ~,sin~,arcsin ~,22x xx x x x 所以2200arctan lim lim 2sin arcsin 22x x x x xx x x →→==⋅.(9)因为当0x →时,2331sin ~,1cos ~,sin ~2x x x x x x -,所以233300001tan sin sin (1cos )2lim lim lim sin sin cos cos 11lim .2cos 2x x x x x x x x x x x x xx x x →→→→⋅--==⋅== (10)因为当0x →时,sin ~,sin ~2222x x x xαβαβαβαβ++--,所以220020222sin sin cos cos 22lim lim 222lim 1().2x x x x xx x x x x xxαβαβαβαβαββα→→→+---=+--⋅⋅==- (11)因为当0x →时,arcsin ~)~,x x --所以000 1.x x x →→→==-=-(12)因为当0x →时,sin ~,sin 2~2,x x x x 所以2222200222200201cos 42sin 2lim lim 2sin tan sin (2sec )2(2)8lim lim (2sec )2sec 84.lim(2sec )x x x x x x x x x x x x x x x x x x xx x →→→→→-=++⋅==++==+(13)因为ln cos ln[1(cos 1)],ln cos ln[1(cos 1)],ax ax bx bx =+-=+- 而当0x →时,cos 10,cos 10ax bx -→-→故 ln[1(cos 1)]~cos 1,ln[1(cos 1)]~cos 1,ax ax bx bx +--+--又当x →0进,2222111cos ~,1cos ~,22ax a x bx b x --所以22220000221ln cos cos 11cos 2lim lim lim lim .1ln cos cos 11cos 2x x x x a xax ax ax a bx bx bx b b x→→→→--====--(14)因为当0x →时,222sin 0,0e e x xx x→→故 222222sin sin ln ~,ln ~,11e e e e xx x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 所以22222222200022222000020sin ln 1ln(sin e )ln(sin e )ln e e lim lim lim ln(e )2ln(e )ln e ln 1e sin sin sin e lim lim e lim e lim e e 1 1.x x x x x x x x x x x x x xx x x x xx x x x x x x x xx x x x x →→→→→→→⎛⎫+ ⎪+-+-⎝⎭==+-+-⎛⎫+ ⎪⎝⎭⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪⎝⎭⎝⎭=⋅=29.解:1112222111(1)lim lim e 1lim 11xxxx x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫====+++ ⎪⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1022121553555(2)lim lim lim 1112222x x x x x x x x x x x -++→∞→∞→∞⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫==⋅++⎢⎥ ⎪ ⎪ ⎪+ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥-⎝⎭⎣⎦102551051055lim e 1e .1lim 122x x x x x -→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=⋅=⋅=+⎢⎥ ⎪+⎢⎥ ⎪-⎝⎭⎣⎦⎢⎥-⎝⎭⎣⎦22233112cot 323tan 23tan 000(3)lim(13tan )lim e .lim(13tan )(13tan )xx x x x x x x x →→→⎡⎤⎡⎤+===+⎢⎥+⎢⎥⎣⎦⎣⎦ [][][]cos 211cos 212221cos 2121cos 2120220333ln ln cos21(cos21)03(cos21)ln 1(cos21)0cos213limlim ln 1(cos21)2sin 3limln lim (4)lim(cos 2)lim elim elim ee e x x x x x x x x xx x x x x x x x x x x x x x x x x ----→→→→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭→→→-+-→-⋅+--⋅=====[]1cos 212201(cos21)sin 6ln e lim 6116ee e .x x x x x -→⎧⎫⎪⎪⎨⎬+-⎪⎪⎩⎭⎛⎫-⋅⋅ ⎪-⨯⨯-⎝⎭===22222(5)lim [ln(2)ln ]lim 2ln lim 2ln 12222lim ln 2ln 1lim 12ln e 2.x x x x xxx x x x x x x x x x x →∞→∞→∞→∞→∞+⎛⎫+-=⋅⋅=+ ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅+ ⎪ ⎪+ ⎪ ⎪⎝⎭⎝⎭⎝⎭==(6)令1x t =+,则当1x →时,0t →.1110001111lim lim 1.ln ln(1)ln e ln lim ln(1)lim(1)x t tt t t x t x t t t →→→→-=-=-=-=-=-+⎡⎤++⎢⎥⎣⎦30. 解:(1)令1(e )x xy x =+,则1ln ln(e )x y x x =+于是:()0000ln e ln 111e lim ln lim ln lim ln e lim1e e x x x x x x x x x x x y x x x x →→→→⎛⎫++ ⎪⎛⎫⎝⎭===++ ⎪⎝⎭e 0001e 1lim 1lim lim ln 1ln 11e e e e 11ln e 2xx xx x x x x x x x x x →→→⎡⎤⎛⎫⎛⎫==+⋅+⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=+⋅=即()lim ln 2x y →= 即2lim ex y →= 即()120lim e e xxx x →=+.(2)令13xxxxa b c y ⎛⎫++= ⎪⎝⎭,则1ln ln 3x x xa b c y x ++=于是00333303300001lim(ln )lim ln 313lim ln 1333lim lim ln 1331111lim ln lim 13x x x x x x xxx x x xx x a b c x x x a b c x xxxxxxa b c x x x x x x x x x x a b c y x a b c x a b c a b c x a b c a b c x x x →→++-++-→++-→→→→++=⎡⎤⎛⎫++-=⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦++-⎛⎫++-=⋅+ ⎪⎝⎭⎛⎫---++=⋅++ ⎪+⎝⎭33331(ln ln ln )ln e ln 3x x x a b c a b c ++-⎡⎤⎛⎫-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦=++⋅=即0lim(ln )x y →= 即()lim ln ln x y →=故0lim x y →=即1lim 3x x xxx a b c →⎛⎫++= ⎪⎝⎭.(3)令11sin cos xy x x ⎛⎫=+ ⎪⎝⎭,则11ln ln sin cos y x x x ⎛⎫=+ ⎪⎝⎭ 于是11sin cos 1111sin cos 1111sin cos 111lim ln lim ln 1sin cos 11111lim ln 1sin cos 1sin cos 111sin 1cos lim ln lim 11xx x x x x x xx x y x x x x x x x x x x x x ⎛⎫+- ⎪⎝⎭+-→∞→∞+-→∞→∞⎧⎫⎪⎪⎡⎤⎛⎫=⎨⎬++- ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎡⎤⎛⎫⎛⎫=⋅++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫- ⎪=-⋅ ⎪ ⎪⎝⎭111sin cos 1111sin cos 1x x x x x +-→∞⎧⎫⎪⎪⎡⎤⎛⎫⎨⎬++- ⎪⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭2111sin 2ln e (10)ln e 1limlim 11x x x x x x →∞→∞⎛⎫⎛⎫ ⎪⎪⎝⎭=⋅=-⋅= ⎪- ⎪ ⎪⎝⎭即limln 1x y →∞= 从而()lim ln 1x y →∞= 故lim e x y →∞=即 11lim e sin cos xx x x →∞⎛⎫=+ ⎪⎝⎭.(4)令211xy x ⎛⎫=+ ⎪⎝⎭,则21ln ln 1y x x ⎛⎫=+ ⎪⎝⎭ 于是:22221222211lim(ln )lim ln lim ln 111111lim ln lim lim ln 110ln e 0x x x x x x x x x x y x x x x x x x x →∞→∞→∞→∞→∞→∞⎡⎤⎛⎫⎛⎫==+⎢⎥ ⎪+ ⎪⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫==⋅++ ⎪ ⎪⎝⎭⎝⎭=⋅=即()lim lim(ln )0,ln 0x x y y →∞→∞==lim 1x y →∞∴= 即21lim 11xx x →∞⎛⎫=+ ⎪⎝⎭.31.解:000(1)lim ()lim lim 1,x x x x x f x x x +++→→→=== 000lim ()lim lim 1x x x x xf x x x ---→→→-===-因为 0lim ()lim ()x x f x f x +-→→≠所以0lim ()x f x →不存在.(2)22221lim ()lim ,lim ()lim(2)42x x x x f x f x x x ++--→→→→==+∞=+=-因为2lim ()x f x +→不存在,所以2lim ()x f x →不存在.32. 解:(1)由初等函数的连续性知,()f x 在(0,1),(1,2)内连续, 又21111lim ()lim(2)1,lim ()lim 1x x x x f x x f x x ++--→→→→=-===1lim ()1,x f x →∴= 而(1)1f =,()f x ∴在1x =处连续,又,由2lim ()lim 0(0)x x f x x f ++→→===,知()f x 在0x =处右连续,综上所述,函数()f x 在[0,2)内连续. 函数图形如下:图1-2(2) 由初等函数的连续性知()f x 在(,1),(1,1),(1,)-∞--+∞内连续,又由1111lim ()lim 11,lim ()lim 1,x x x x f x f x x --++→-→-→-→-====-知1lim ()x f x -→-不存在,于是()f x 在1x =-处不连续.又由1111lim ()lim 1,lim ()lim11,x x x x f x x f x --++→→→→====及(1)1f =知1lim ()(1)x f x f →=,从而()f x 在x =1处连续,综上所述,函数()f x 在(,1)-∞-及(1,)-+∞内连续,在1x =-处间断.函数图形如下:图1-3(3)∵当x <0时,221()lim lim 1,1x x x x x x n n n n n f x n n n --→∞→∞--===-++ 当x =0时,0000()lim 0,n n n f x n n →∞-==+当x >0时,2222111()lim lim lim 1111xxxx x x x n n n xn n n n f x n n n n --→∞→∞→∞---====+++1,0,()lim 0,0,1,0.x xx xn x n n f x x n n x --→∞-<⎧-⎪∴===⎨+⎪>⎩由初等函数的连续性知()f x 在(,0),(0,)-∞+∞内连续,又由 00lim ()lim11,lim ()lim(1)1x x x x f x f x ++--→→→→===-=-知0lim ()x f x →不存在,从而()f x 在0x =处间断.综上所述,函数()f x 在(,0),(0,)-∞+∞内连续,在0x =处间断.图形如下:图1-4(4)当|x |=1时,221()lim 0,1nnn x f x x x →∞-==+当|x |<1时,221()lim ,1nnn x f x x x x →∞-==+当|x |>1时,2222111()limlim 111nnn nn n x x f x x x x x x →∞→∞⎛⎫- ⎪-⎝⎭==⋅=-+⎛⎫+ ⎪⎝⎭即,1,()0,1,,1.x x f x x x x <⎧⎪==⎨⎪->⎩ 由初等函数的连续性知()f x 在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-知1lim ()x f x →-不存在,从而()f x 在1x =-处不连续.又由 1111lim ()lim()1,lim ()lim 1x x x x f x x f x x ++--→→→→=-=-==知1lim ()x f x →不存在,从而()f x 在1x =处不连续.综上所述,()f x 在(-∞,-1),(-1,1),(1,+∞)内连续,在1x =±处间断.图形如下:图1-533. 解:22111(1)(1)(1)lim lim 232(1)(2)x x x x x x x x x →→--+==--+--2221lim 32x x x x →-=∞-+1x ∴=是函数的可去间断点.因为函数在x =1处无定义,若补充定义(1)2f =-,则函数在x =1处连续;x =2是无穷间断点.π0π2(2)lim1,lim 0tan tan x x k x x x x→→+==当0k ≠时,πlimtan x k xx →=∞. π0,π,0,1,2,2x x k k ∴==+=±±为可去间断点,分别补充定义f (0)=1,π(π)02f k +=,可使函数在x =0,及ππ2x k =+处连续.(0,1,2,k =±±);π,0,1,2,x k k k =≠=±±为无穷间断点(3)∵当0x →时,21cosx 呈振荡无极限,∴x =0是函数的振荡间断点.(第二类间断点). (4)11lim lim(3) 2.x x y x ++→→=-=11lim lim(1)0x x y x --→→=-=∴x =1是函数的跳跃间断点.(第一类间断点.)34.解:0003(1)lim ()2x x x f x →→→===∴补充定义3(0),2f =可使函数在x =0处连续. 000tan 22(2)lim ()lim lim 2.x x x x xf x x x →→→===∴补充定义(0)2,f =可使函数在x =0处连续.01(3)limsin sinx x x →=∴补充定义(0)0,f =可使函数在x =0处连续. 10(4)lim ()lim(1)exx x f x x →→=+=∴补充定义(0)e,f =可使函数在x =0处连续.35. 解:(1)()f x 在(,0),(0,)-∞+∞上显然连续,而00lim ()lim(),x x f x a x a ++→→=+=lim ()lim e 1,xx x f x --→→== 且(0)f a =,∴当(0)(0)(0)f f f -+==,即1a =时,()f x 在0x =处连续,所以,当1a =时,()f x 在(,)-∞+∞上连续.(2)()f x 在ππ(,),(,)22-∞+∞内显然连续.而ππ22ππ22lim ()lim (sin )1,πlim ()lim (1)1,2π()1,2x x x x f x x b b f x ax a f b ++--→→→→=+=+=+=+=+∴当π112b a +=+,即π2b a =时,()f x 在π2x =处连续,因而()f x 在(,)-∞+∞上连续. 36. 证:令()21xf x x =⋅-,则()f x 在[0,1]上连续,且(0)10,(1)10f f =-<=>,由零点定理,(0,1)ξ∃∈使()0f ξ=即210ξξ⋅-= 即方程21xx ⋅=有一个小于1的正根.37.证:令()sin f x x a x b =--,则()f x 在[0,]a b +上连续,且 (0)0,()(1sin )0f b f a b a x =-<+=-≥, 若()0f a b +=,则a b +就是方程sin x a x b =+的根. 若()0f a b +>,则由零点定理得.(0,)a b ξ∃∈+,使()0f ξ=即sin 0a b ξξ--=即sin a b ξξ=+,即ξ是方程sin x a x b =+的根,综上所述,方程sin x a x b =+至少有一个不超过a b +的正根.38. 证:令()()()F x f x f x a =-+,由()f x 在[0,2]a 上连续知,()F x 在[0,]a 上连续,且(0)(0)(),()()(2)()(0)F f f a F a f a f a f a f =-=-=-若(0)()(2),f f a f a ==则0,x x a ==都是方程()()f x f x a =+的根,若(0)()f f a ≠,则(0)()0F F a <,由零点定理知,至少(0,)a ξ∃∈,使()0F ξ=,即()()f f a ξξ=+,即ξ是方程()()f x f x a =+的根,综上所述,方程()()f x f x a =+在[0,]a 内至少有一根.39.证:令()()F x f x x =-,则()F x 在[0,1]上连续,且(0)(0)0,(1)(1)10,F f F f =≥=-≤ 若(0)0f =,则0,ξ=若(1)1f =,则1ξ=,若(0)0,(1)1f f ><,则(0)(1)0F F ⋅<,由零点定理,至少存在一点(0,1)ξ∈,使()0F ξ=即()f ξξ=.综上所述,至少存在一点[0,1]ξ∈,使()f ξξ=.. 12()()()()n f x f x f x f n ξ+++=.40证:已知()f x 在1[,]n x x 上连续,则()f x 在1[,]n x x 上有最大值M 和最小值m ,于是 12()()()n f x f x f x m Mn+++≤≤,由介值定理知,必有1[,]n x x ξ∈,使12()()()()n f x f x f x f nξ+++=.。

相关文档
最新文档